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Abstract

Background

Segmented cine cardiac MRI combines data from multiple heartbeats to achieve high spa-

tiotemporal resolution cardiac images, yet predefined k-space segmentation trajectories

can lead to suboptimal k-space sampling. In this work, we developed and evaluated an

autonomous and closed-loop control system for radial k-space sampling (ARKS) to increase

sampling uniformity.

Methods

The closed-loop system autonomously selects radial k-space sampling trajectory during live

segmented cine MRI and attempts to optimize angular sampling uniformity by selecting

views in regions of k-space that were not previously well-sampled. Sampling uniformity and

the ability to detect cardiac phase in vivo was assessed using ECG data acquired from 10

normal subjects in an MRI scanner. The approach was then implemented with a fast gradi-

ent echo sequence on a whole-body clinical MRI scanner and imaging was performed in 4

healthy volunteers. The closed-loop k-space trajectory was compared to random, uniformly

distributed and golden angle view trajectories via measurement of k-space uniformity and

the point spread function. Lastly, an arrhythmic dataset was used to evaluate a potential

application of the approach.

Results

The autonomous trajectory increased k-space sampling uniformity by 15±7%, main lobe

point spread function (PSF) signal intensity by 6±4%, and reduced ringing relative to golden

angle sampling. When implemented, the autonomous pulse sequence prescribed radial

view angles faster than the scan TR (0.98 ± 0.01 ms, maximum = 1.38 ms) and increased k-
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space sampling mean uniformity by 10±11%, decreased uniformity variability by 44±12%,

and increased PSF signal ratio by 6±6% relative to golden angle sampling.

Conclusion

The closed-loop approach enables near-uniform radial sampling in a segmented acquisition

approach which was higher than predetermined golden-angle radial sampling. This can be

utilized to increase the sampling or decrease the temporal footprint of an acquisition and the

closed-loop framework has the potential to be applied to patients with complex heart

rhythms.

Introduction

Cine MRI captures the motion of the heart by acquiring images at frame rates faster than the

motion occurs. One approach to do so is to collect the image at a frame rate much higher than

the heart rate [1, 2], yet practical limitations of physiology, hardware and patient safety limit

how quickly image data can be obtained and spatial or temporal fidelity may be compromised.

The lowest acceptable frame rate to visualize a heart beating at 60 beats-per-minute is about 20

frames-per-second and higher frame rates are required for higher heart rates [3]. To improve

fidelity, cine MRI is conventionally performed using segmented sampling techniques where

periodic motion enables a subset of k-space data to be collected [4–6].

Segmented MRI can be performed using different k-space trajectories including Cartesian

and non-Cartesian patterns. However, Cartesian trajectories are known to be sensitive to

arrhythmias and data from irregular beats must be reacquired otherwise images will have

inconsistent spatial information and artifacts. While arrhythmia rejection algorithms have

been developed, reacquiring rejected data can lead to prolonged breathholds that are too long

for patients–which leads to respiratory motion artifacts. Non-Cartesian radial [7–10] and spi-

ral trajectories [11, 12] have the advantageous properties of local k-space uniformity, meaning

that adjacent lines of data can be distributed uniformly in k-space, reducing the need for pro-

longed acquisitions. In particular, golden angle acquisitions [13] can address the problem of

arrhythmias by using an adaptive temporal footprint [14, 15]. However, a limitation of this

approach is that only a contiguous set of golden angle views will have uniform k-space sam-

pling properties. As a result, segmented golden angle trajectories are suboptimal, since views

collected from adjacent heartbeats will not have near uniform k-space sampling [14, 16, 17].

To address this limitation, we developed a radial trajectory that adapts in response to physi-

ologic changes in the patient being scanned and uses same-scan data to optimize the sampling

trajectory on-the-fly using a closed-loop [18]. In this manuscript, we evaluate the sampling

uniformity and point spread function signal properties using ECG data from subjects with

normal rhythm. Further, we demonstrate the autonomous radial k-space sampling (ARKS)

control system on a whole-body clinical MRI scanner. We show feasibility of this approach in

4 healthy human volunteers and demonstrate initial proof of utility in one patient with a com-

plex rhythm. Images and sampling properties were compared to a segmented golden angle

cine MRI approach.

Methods

In this study, all subjects and patients gave written informed consent prior to participating in

the study, approved by the Institutional Review Board of the University of Pennsylvania.
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Closed-loop radial k-space sampling

We developed a closed-loop radial acquisition in which the k-space trajectory to be acquired is

calculated dynamically throughout the scan. The data to acquire is determined according to

the segmented data which was previously acquired with the goal of minimizing angular gaps

in k-space and reducing unequal angular sampling density. All acquired k-space locations are

time-stamped and a simple cross-correlation of the ECG signal is used to identify prior periods

of similar cardiac phase. The advantage of ECG-matching by cross-correlation is that it has

real-time performance and can compute cross-correlation results in less than 1 ms—an essen-

tial requirement for fast scans such as segmented cine MRI which requires very rapid repeti-

tion times.

An overview of the closed-loop radial k-space sampling acquisition is shown in Fig 1 and

more details are included in S1 Fig. Prior periods of similar ECG signal are identified as local

maxima of the cross-correlation of the historical signal with the most recent ECG signal. In

conventional segmented k-space trajectories, the total number of projections Nθ is obtained by

sampling a subset of radial views (segments Ns) during each heartbeat (shots Nq). Fig 1 shows

how segments and shots are defined for a closed-loop acquisition. In our closed-loop approach

the definition of Nθ is different from a traditional segmented trajectory, for which Nθ =NSNQ,

as closed-loop sampling can only use half the views of the current shot since the other half has

not occurred yet. For the four heartbeat segmented cine example shown in Fig 1 there are 3

shots with 4 segments (i.e. radial views), but the fourth shot (yellow) has only 2 views.

From the list of all previously acquired view angles, the subset corresponding to the periods

associated with local maxima in the cross-correlated ECG signal are collated. The new radial

angle θi (green radial line in Fig 1A) is chosen so that it bisects the largest angular gap Δθi. As a

result, the closed-loop acquisition closes the largest gap in k-space and improves angular sam-

pling uniformity.

Implementation and interface of closed-loop radial scheme with MRI

system

To demonstrate the feasibility of autonomous radial imaging, we developed a software plat-

form for closed-loop radial imaging and interfaced it to a whole-body clinical MRI scanner. As

Fig 1. Segmented acquisition using an autonomous closed-loop system. A) During the acquisition, the closed-loop system identifies prior, similar phases of the

cardiac cycle using cross-correlation of the recorded ECG signal. For frame fn, radial k-space lines from prior phases (red, blue, and teal) as well as the most recent views

(yellow) are aggregated and the newest projection θn (green) is defined to bisect the largest angle, thus closing the gap in k-space. B) The calculated angle θn is provided

to the bSSFP sequence in real-time such that the Gx and Gy gradients are updated. C) The closed loop nature of the physiologic signal (ECG), the angle calculator,

scanner, and log of prior scan data.

https://doi.org/10.1371/journal.pone.0244286.g001
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outlined in S2 Fig, the system consisted of four systems for real-time communication and

feedback: (1) the physiologic monitor, (2) adaptive measurement controller, (3) pulse

sequence, and (4) digital signal processors (DSPs).

ECG signals were received from the patient using a MR-compatible 4-lead system (In vivo

Gainesville, FL USA). The ECG signal was transmitted wirelessly to the physiologic monitor.

Analog signals were digitized, logged and transmitted via TCP/IP in software (LabView,

National Instruments, Austin, TX USA) to the adaptive controller, which in turn determined a

new view angle.

During the closed-loop period, the adaptive measurement controller and pulse sequence

respond to ECG feedback. The adaptive measurement controller performs 3 steps sequentially.

It a) transmits an updated k-space trajectory to the pulse sequence; b) reads and stores in

memory new ECG data; and c) analyzes ECG data and computes a new k-space trajectory. The

pulse sequence receives the new trajectory from the adaptive measurement controller, trans-

mits the instructions to the DSPs and enters the standby period until the DSPs have executed a

wake-up instruction. After wake-up, the pulse sequence waits for a new trajectory from the

adaptive measurement controller and repeats.

To evaluate real-time timing performance, the calculation times for the adaptive measure-

ment controller were measured for the initialization and active periods of the software. Aver-

age, standard deviation, and maximum calculation times were calculated. Timing information

was calculated during scanning of 4 subjects. For each subject, 4 scans were performed accord-

ing to the segmentation strategies in Table 1. The average calculating time for the initialization

period was 0.793 ± 0.030 ms and for active mode was 0.98 ± 0.01 ms. The maximum time to

update was 1.11 ms during the initialization period and 1.38 ms during the active period was.

All maximum update times were faster than the repetition time of the sequence.

Simulation-based assessment of closed-loop k-space trajectory

performance

We performed simulations using recorded ECG signals to investigate the distribution of view

angles that would be assigned under a closed-loop radial trajectory. This simulation did not

include k-space or image space data but was used to evaluate the distribution of view angles

Table 1. Performance of closed-loop radial imaging sampling for 10 subjects with recorded ECG for different k-space segmentation sampling schemes.

Nθ Nq Ns Uniformity (%)§ PSF Signal Ratio

ARKS Golden Random ARKS Golden Random

27 1 54 94.6±1.0� 82.9±0.0 50.9±0.1 99.8±0.2� 94.9±0.0 86.5±0.3

2 18 71.5±0.6� 66.9±1.5 50.9±0.1 93.3±0.2� 91.2±0.8 86.6±0.2

5 6 69.0±1.1� 56.5±1.8 50.9±0.1 91.9±0.4� 87.5±0.9 86.6±0.2

45 1 90 94.4±1.1� 83.8±0.0 50.6±0.2 99.3±0.2� 90.3±0.0 78.7±0.2

2 30 70.4±0.7� 66.1±3.4 50.6±0.1 88.6±0.1� 86.6±1.0 78.8±0.2

5 10 68.0±1.1� 56.3±3.5 50.5±0.1 86.7±0.7� 81.2±1.6 78.9±0.2

8 6 66.5±1.3� 54.3±2.4 50.6±0.1 85.8±1.1� 80.3±1.0 78.9±0.2

75 1 150 94.4±0.8� 82.0±0.0 50.3±0.1 98.9±0.5� 87.9±0.0 74.7±0.4

2 50 69.5±0.6� 64.7±4.3 50.4±0.2 86.3±0.8� 85.6±0.7 74.8±0.3

8 10 65.8±1.0� 53.5±4.3 50.3±0.1 83.1±1.0� 78.4±1.6 74.8±0.3

§Uniformity (Eq 12) compares the performance of the radial acquisition to the ideal distribution (Eq 9).

�indicates significant (p<0.05) difference between ARKS and golden approach. Nθ = number of radial views, Nq = number of shots, Ns = number of segments/shot,

ARKS = autonomous radial k-space sampling, GA = golden angle, PSF = point spread function.

https://doi.org/10.1371/journal.pone.0244286.t001
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for different ECGs with respect to angular sampling density (uniformity) and their point

spread function (PSF). For this simulation, 3-lead, chest ECG data was collected from 10 nor-

mal subjects at a 400 Hz sampling rate and resampled to the MRI scanner repetition time

(TR). The duration of the ECG recordings was 75.7 ± 23.7 sec, corresponding to 2.7 ± 0.85

x104 views at TR = 2.8 ms.

After an initial training period where golden angle radial sampling θ = 111.25˚ occurred,

ECG signals were cross-correlated, and view angles were determined for the segmentation

schemes shown in Table 1. These results were compared to segmented golden angle and ran-

dom radial approaches. Golden angle views continuously incremented at the golden angle fol-

lowing the initialization period. Random view angles were chosen from the interval 0 to 180˚

with uniform (flat) probability distribution for selection.

A second set of closed-loop radial simulations were performed using ECG and previously

collected cardiac cine data from one patient with an arrhythmia. Image data was acquired

on a 1.5 T whole-body MRI system (Avanto; Siemens Healthcare; Erlangen, Germany)

equipped with a 40 mT/m gradient coil and a 32 channel RF receiver array (16 anterior and

16 posterior elements). Cardiac gating was obtained with a 3-lead wireless ECG system.

Time-stamps were communicated using TCP/IP from the pulse sequence to the ECG log

file to synchronize imaging and ECG data. Left ventricular, short-axis, real-time data was

obtained using a golden angle radial trajectory and image parameters, flip angle = 70˚,

TE = 1.4 ms, TR = 2.8 ms, number of frequency encoded points = 128, field-of-view = 340

mm x 340 mm, slice thickness = 8 mm, bandwidth = 1140 Hz/pixel. 16.8 seconds of contin-

uous golden angle radial data was collected, resulting in 6000 golden angle radial projec-

tions. K-space signal data was reconstructed offline using adaptive coil synthesis [19] and

non-Cartesian SENSE algorithm [20] in open-source software [21] on a Linux workstation

as previously detailed [22]. Images were reconstructed with an exposure time (temporal

footprint) of 95 ms (= 34 projections per frame) and sliding window of 1 (leading to 357

images per second). To remove residual radial streak artifacts, a median filter was applied

with a width of 30 frames. The final 128 x 128 images were interpolated to 512 x 512 to gen-

erate the simulation spin density ρ(x). Simulated k-space data was then generated and sam-

pled using random, golden angle or closed-loop acquisitions. Images were reconstructed as

for the in vivo data in the following sections.

In vivo evaluation of closed-loop MRI imaging and image reconstruction

Imaging was performed on a 1.5 T whole-body MRI scanner (Avanto, Siemens Healthcare,

Erlangen, Germany) with a 16-channel RF receiver array. 4 healthy volunteers subjects partici-

pated in this study. To visualize cardiac contraction, a mid-ventricular short-axis slice was

imaged during an instructed breathhold. Subjects were imaged using a spoiled gradient echo

sequence with the following parameters: TE/TR = 4.1/8.2 ms, FOV = 320x320 mm2, band-

width = 240 Hz and flip angle = 12˚. The MRI sequence sent a request to the adaptive control-

ler for the next radial angle to acquire 2 ms prior to the end of the current data acquisition

(every TR). This 2 ms window allowed for reply from the adaptive controller as well as prepa-

ration of the RF gradients by the scanner given the prescribed angle. Acquisitions were per-

formed with various combinations of radial views (segments) per heartbeat (shots) as shown

in the Table 2.

Image reconstruction was performed using a previously-described iterative reconstruction

with spatial and temporal variation constraints which also incorporates parallel imaging [23,

24]. As previously described, weights and convergence criteria were empirically tuned on a test

dataset to provide high visual quality, while achieving rapid convergence of the cost function
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and the iterative approach was stopped when the convergence criterion was reached:

100kInþ1 � Ink
kInk

� 0:025 ð1Þ

Sampling performance metric: Point spread function analysis

The number of projections Nθ required to fulfill Nyquist sampling and prevent aliasing of the

Fourier signal is [25, 26]

Ny ¼
Nrp

2
ð2Þ

where Nr is the number of samples kr per projection. More generally, the point spread function

(PSF) describes degradation of a MR image by the k-space sampling trajectory. In the case of

Nyquist sampling, the field-of-view free from image degradation is equal to 1/Δkr. However, in

the case of angular undersampling (Nθ�2πNr), this diameter is reduced by the ratio of the

number of projections Nθ to the number of samples per projection Nr [27]

FOV ¼
Ny

2pNr

1

Dkr
ð3Þ

In general, Eqs (2) and (3) are correct for a radial sampling distribution in which the view

angles are separated by a single angle Δθ. However, while other radial sampling trajectories

may not satisfy the same Nyquist sampling criteria given by Eq (2) [27], it is still possible to

understand the aliasing properties of the image from the PSF of the sampling trajectory such

as for closed-loop sampling. An additional complicating factor is that each image frame does

not have the same distribution of Δθ so it is not possible to understand all the aliasing proper-

ties of closed-loop radial sampling from a single image frame.

To better understand potential image space artifacts caused by closed-loop radial sampling

and segmented golden angle imaging, we estimated the PSF for each image frame individually

and combined these individual results to present a single average PSF. We observed that these

average results showed circular symmetry on account of the large number of image frames

that were involved. The circularly symmetric PSF could thus be presented as a single 1D pro-

jection through the center of the 2D PSF. Revolving the 1D circularly symmetric PSF around

the coordinate [kx = 0, ky = 0] by 180˚ would recover the original 2D PSF. The PSF signal

intensity ratio was estimated from the 1D circularly symmetric PSF as the sum of signal s(x) in

the main lobe (-τ to τ defined by the location of the first zero-corssing) divided by the total sig-

nal in the image.

PSF Ratio ¼
R t
� t
sðxÞdx=

R1
� 1

sðxÞdx ð4Þ

Table 2. Mean and variability of k-space uniformity for golden-angle and autonomous scanning.

Nθ Nq NS Mean Uniformity Uniformity Variability PSF Signal Ratio

ARKS GA ARKS GA ARKS GA

27 5 6 62.7 ± 0.5 56.4 ± 5.9 5.2 ± 0.2 8.0 ± 2.4 87.6 ± 0.7% 84.0 ± 5.6%

45 5 10 65.7 ± 2.0 53.0 ± 7.1 4.2 ± 0.1 9.7 ± 3.3 83.2 ± 0.9% 73.2 ± 6.6

45 8 6 56.0 ± 1.5 58.3 ± 2.9 4.4 ± 0.2 6.5 ± 1.3 79.4 ± 1.0% 80.2 ± 3.2

75 8 10 63.1 ± 1.1 56.4 ± 6.5 3.3 ± 0.2 6.6 ± 2.8 79.6 ± 0.8% 75.4 ± 2.9

Nq = number of shots, Ns = number of segments/shot, ARKS = autonomous radial k-space sampling, GA = golden angle, PSF = point spread function.

https://doi.org/10.1371/journal.pone.0244286.t002
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Sampling performance metric: Quantitative analysis of view angle

distribution

We analyzed the distribution of view angles for different k-space sampling approaches using

probability and cumulative sum functions as illustrated by S3 Fig.

The probability distribution χ is the probability that two adjacent view angles are separated by

Δθ where Δθ lies on the closed interval (0,π]. The ideal distribution of χ0 is the Dirac delta function

w0 ¼ d Dyi ¼
p

N

� �
ð5Þ

where all radial view angles are separated by the same angleDyi ¼
p

N and N is the total number of

view angles and whose aliasing properties are given by Eq 3.

In general, it should be noted that radial k-space trajectories do not uniformly sample k-

space, since the center of k-space has higher sampling density than the periphery. The ideal

distribution for radial k-space sampling is only ideal with respect to the Δθ parameter.

The deviation from the ideal distribution can be measured using uniformity metric U

which is the ratio of integral of the cumulative sum CS of the sorted vector of view angles rela-

tive to the ideal sampling approach where

CSðkÞ ¼
Pk

i¼1
Dyi ð6Þ

U ¼
P

k¼1NCSweðkÞ
�
XN

k¼1
CSw0ðkÞ ð7Þ

where CSwe is the cumulative sum of the trajectory of interest, CSw0
is of the ideal sampling, k

lies on the interval (1,N) and N is the number of view differences Δθ. U is the uniformity of the

sampling distribution and quantitatively compares any view angle distribution to the ideal dis-

tribution. Analytical expression for Eqs (6–7) are not available for closed-loop radial imaging

since it depends on the ECG, algorithm and acquisition parameters. Uniformity was calculated

for each image in the acquisition which enabled both mean and variability (standard devia-

tion) metrics to be defined.

Statistics

Continuous, quantitative measures such as angular uniformity and PSF ratio are reported as

mean values with standard deviations. Given non-normal distribution of the parameters

(based on the Shapiro-Wilk test), significant differences in angular uniformity and PSF signal

ratio between the proposed closed-loop system and golden angle and random sampling were

assessed using the Wilcoxon Signed-Rank test for paired samples at a P< 0.05 level of signifi-

cance (Matlab, the MathWorks, Natick, MA).

Results

Closed-loop, segmented cine MRI acquisition

Cardiac cine MRI data was acquired on 4 healthy subjects using the autonomous sampling tra-

jectory at 1.5 T. Fig 2 shows results from a segmented (eight-shot) acquisition during a breath-

hold in a normal subject. The adaptive sampling technique showed good sampling uniformity

across the cardiac phase. Furthermore, the image quality was good and showed that end-sys-

tolic and end-diastolic periods were well-resolved with good ventricular-blood contrast.

Despite being initialized with a golden angle trajectory, the closed-loop approach did not

sustain this pattern and within a second the angular gaps deviated substantially from the

PLOS ONE Adaptive, closed-loop control segmented CMR sampling

PLOS ONE | https://doi.org/10.1371/journal.pone.0244286 December 29, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0244286


golden trajectory. Reconstructed, multi-shot images illustrate that ECG cross-correlation can

be used to robustly identify the correct cardiac phases. A projection through the left and right

ventricle (along the 4-chamber view) is included to demonstrate the motion of the heart (Fig

2C). In this view, the motion of the ventricular wall is shown during the scan. In this healthy

subject with no history of cardiovascular disease, the wall motion was normal with regular

contractile function of the myocardium.

Point spread function and view distribution analysis

During autonomous scanning the closed-loop controller selected new k-space radial projec-

tions on-the-fly. Since the user has no control over the trajectory, it was unclear what angles

would be chosen and how it would affect image quality, uniformity and the point spread func-

tion. Fig 3 shows that the autonomous scan achieved lower blurring (improved PSF images)

than a similar segmented golden angle trajectory.

To obtain a better understanding of these properties, the uniformity of autonomous, golden

and random trajectories was compared to the percent ideal uniformity that would be achieved

with a constant Δθ. If the trajectory were perfectly uniform, then all views would be equally dis-

tributed between 0 and 180˚. Per-frame uniformity enabled estimation of uniformity variabil-

ity (standard deviation of uniformity values over the acquisition).

Fig 3B and Table 1 show that the autonomous scan had the best k-space sampling unifor-

mity for all combinations of segmented trajectories that were investigated for recorded ECGs

(Table 1). Angular uniformity from autonomous sampling during recorded ECGs was 15±7%

(range: 7–23%) higher than golden-angle sampling and PSF signal ratio was 14±6% (range:

1–12%) higher than golden-angle sampling. Single-shot closed-loop trajectories were only

slightly lower in uniformity (94.4–94.6) and PSF signal (98.9–99.8) than equispaced sampling

where the oldest view would be replaced immediately and surpassed golden angle trajectories

in both metrics for all shot/segment combinations.

In the four patients imaged in vivo (Table 2), the autonomous approach increased k-space

sampling mean uniformity in 3 out of the 4 scan modes (10±11%, range: -4–24%), decreased

uniformity variability in all scan modes (44±12%, range: 32–57%), and increased PSF signal

ratio in 3 out of 4 scan modes (6±6%, range: -1–14%) relative to golden angle sampling.

Arrhythmia subject

To demonstrate the potential utility of this approach in imaging the heart of patients who have

an arrhythmia, we utilized previously collected ECG and golden angle radial data (Fig 4) to

demonstrate the closed-loop approach in the setting of a complex ECG. The cross-correlation

Fig 2. Closed-loop radial sampling of scanning in a healthy volunteer. Distribution of radial views and corresponding 2D real-time short axis images of closed-loop

sampling at A) end-systole and B) end-diastole. Adaptive sampling results in near uniform radial distribution of views and thus high image quality. C) Cardiac motion is

shown via projection through the left ventricle.

https://doi.org/10.1371/journal.pone.0244286.g002
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algorithm (Fig 4A) correctly identified the correct phase in the cardiac cycle despite the com-

plex arrhythmia seen on the ECG. While the data was acquired with golden-angle views, we

calculated the angles the closed-loop approach would prescribe and show the short-axis (Fig

4B) and temporal projection images (Fig 4C). This suggests our approach could be used to

increase the image quality of real-time images in patients with complex rhythms.

Discussion

We developed and investigated an autonomous k-space trajectory control system for cardiac

MRI that implements closed-loop feedback. There were several important conceptual and

Fig 3. Point spread function and k-space sampling uniformity of autonomous, golden angle, random, and equispaced radial scanning. A) Each row on the left

shows the 2D point spread function for different segmentation strategies and each column shows autonomous (ARKS), golden or equispaced (Ideal) point spread

functions. The fourth column shows a 1D profile for the circularly symmetric PSFs (autonomous shown in red). B) and C) K-space uniformity (Eq 7) and the PSF (Eq 4)

for ten subjects with different combinations of shots and segments. The autonomous approach results in improved PSF images (left), signal uniformity (top right), and

point spread function lobe ratio (bottom right) across all combinations of shots and segments. ARKS = autonomous radial k-space sampling, PSF = point spread

function, Nθ = number of radial views, Nq = number of shots.

https://doi.org/10.1371/journal.pone.0244286.g003

Fig 4. Utility of the proposed approach when imaging a patient with arrhythmia. A) The cross-correlation based approach robustly identifies similar

periods in the cardiac cycle in the setting of arrhythmia. B) A high-quality short axis image can be generated with the closed-loop scheme. C) The temporal

projection illustrates the effect of complex rhythm on wall motion. This suggests the close-loop approach could enable multi-shot imaging of patients with

complex rhythms.

https://doi.org/10.1371/journal.pone.0244286.g004
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technical aspects to this investigation. To our knowledge, this was the first implementation of

an autonomous k-space trajectory using ECG and k-space trajectory feedback integrated in a

closed-loop for segmented cine MRI. The algorithm was successfully implemented on a clini-

cal whole-body MRI scanner as embedded and real-time software and its feasibility was shown

in segmented cardiac cine MRI in healthy normal subjects. Our results showed that it enabled

real-time cardiac MRI with good spatial and temporal resolution and reduced radial under-

sampling artifacts compared to conventional open-loop radial acquisitions.

The closed-loop radial trajectory is different from other radial sampling trajectories in that

the view angle are not predetermined. For example, in an acquisition with fixed angular spac-

ing Δθ, the view angles increase from 0˚ to 180˚- Δθ. In a segmented acquisition with ten seg-

ments per heartbeat, the angles 0, Δθ, 2Δθ, . . ., 10Δθ will be repeated for each frame of the first

heartbeat and 11Δθ, 12Δθ, . . ., 20Δθ for the second heartbeat, and so on, until all radial views

are acquired. The total number of radial views N = 180/Δθ, where both the angular spacing Δθ
and number of view angles N is determined before the scan begins. While this approach leads

to the optimal sampling of k-space, the performance is substantially degraded if 1) one or

more segments are not acquired due to arrhythmia rejection or 2) if significant motion–such

as breathing–occurs due to arrythmia rejection causing a prolonged acquisition.

Similarly, in a golden angle trajectory [13], there is a fixed angular spacing Δθ = 111.25˚ and

each new angle is set by a schedule 0, Δθ, 2Δθ, . . ., and so on, before the scan begins. In the

closed-loop trajectory, these view angles were not known in advance, but calculated on-the-fly

using previous physiologic and k-space data. A limitation of predefined trajectories was that

real-time physiologic information from the patient or knowledge about what and when data

was collected was not used to judiciously inform the acquisition of new data. As was shown in

the results, this led to sub-optimal k-space sampling behavior. In particular, golden radial sam-

pling trajectory showed degraded image quality due to sub-optimal uniformity. Of particular

note is the high variability in sampling across multiple cardiac periods (Table 2). The closed-

loop sampling overcomes these limitations and provides improved uniformity and low vari-

ability in k-space sampling, permitting the synthesis of data across multiple cardiac periods for

real-time acquisition and display with high image quality and low temporal footprint.

We observed some important differences between conventional segmented k-space sam-

pling strategies and one that used a closed-loop. In segmented cine MRI, k-space data across

several heartbeats would be combined to make a single dataset showing a single heartbeat.

However, our approach has elements of both segmented and real-time acquisitions. Each

image represented data from the previous 4 heartbeats, similar to how cine MRI would com-

bine data from heartbeats, but the autonomous scan also results in images from every heart

beat such as in a real-time acquisition. Furthermore, segmented cine MRI does not include

closed-loop feedback systems for cardiac physiologic feedback such as from the ECG or from

cardiac navigator signals. While prospective cine MRI certainly uses ECG feedback to provide

synchronization for gating, it is open-loop since Cartesian spin warp imaging marches through

a predefined list of phase encoding gradients [4, 6] and non-Cartesian spatial encoding is per-

formed using a similarly predefined list of view angles or spirals. In retrospectively gated

reconstructions [6], ECG and navigator signals are used to properly bin acquired data into the

correct cardiac or respirator phase, but they do not direct the sequence to update its trajectory

in response to new information. Furthermore, both prospective and retrospectively gated cine

MRI do not measure the output sampling trajectory nor do they maintain a desired setpoint

for maintaining uniformity of k-space sampling across multiple heartbeats.

In real-time, interactive MRI, data is sampled as quickly as possible and images are dis-

played as soon as sufficient data has been collected. However, in many clinical applications, it

is challenging to sample real-time MRI data with sufficient signal-to-noise ratio and spatial
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resolution without compromising temporal resolution. Furthermore, while recent advances in

parallel and sparse scan acceleration techniques enable the collection of 2D images in real-time

with good spatial and temporal resolution [1, 28], image fidelity is degraded in real-time 3D

applications. This framework could be adapted to improve both of these clinical applications.

The ECG is routinely acquired in 1.5T and 3T scanners for cardiac gating and the signals

we used were recorded in a 1.5T scanner. The cross-correlation approach robustly identified

the correct phase of the cardiac cycle despite the known magnetohemodynamic effect on the

signal. Given the pattern-matching nature of the cross-correlation, it seems likely that the

approach could work in the setting of more significant distortions (for example, at 7T) as well

as with other signals such as acoustic waveforms from a stethoscope. Future work could assess

the cross-correlation gating as well as the closed loop imaging at higher fields and with other

signals.

This approach builds on features of other MRI techniques such automatic scanning [29, 30]

and view planning [29, 31–33], inadvertent patient motion correction [5], and respiratory

motion informed k-space sampling [34, 35]. Furthermore, some acquisitions use internal sen-

sors to measure physiologic motion from k-space, image space navigators [5, 36–39] or self-

navigation [40] while other techniques use external sensors to capture motion information

such as radiofrequency coils, ultrasound devices [41] and optical tracking devices [42, 43].

Future work could integrate these physiologic signals into the closed-loop approach we

describe.

While our results demonstrated the feasibility of an adaptive real-time system for cardiovas-

cular MRI, additional work is needed to bring this technology into clinical use. The TR

achieved with our approach was long compared to the clinical standard values. Given the fast

calculation time of the algorithm, this is primarily due to implementation of the approach on

various computer systems with multiple network interfaces. Optimizing these interfaces or

implementing the algorithm directly on the scanner hardware is expected to enable faster TRs.

It is also expected that faster TRs would enable improved uniformity in sampling due to

increase sampling density. Data should be gathered from patients to confirm that the real-time

system provides accurate and reproducible beat-to-beat assessment of left ventricular function.

Comparison of the sequence in patients with reduced ejection fraction or with left ventricular

dyssynchrony should be performed to verify that temporal fidelity is sufficient to characterize

compromised function or ventricular wall motion abnormalities. Further optimization of

radiofrequency and gradient pulse durations is necessary to further reduce the sequence tem-

poral footprint. The system should be integrated with a balanced steady-state free-precession

pulse sequence because of its superior contrast, signal-to-noise ratio, and temporal resolution

compared to spoiled gradient echo pulse sequences at 1.5 T. The cross-correlation algorithm

appears to work well for subjects in sinus rhythms, however the length of the historical ECG

data should be optimized for patients with arrhythmias or for 3D and interventional

applications.

We implemented our technique in the setting of 2D radial k-space sampling for cine imag-

ing since there is a straightforward definition of the optimal angle for subsequent acquisition.

However, Cartesian and 3D sampling trajectories could both benefit from this approach. Fur-

thermore, parametric mapping acquisitions such as T1-, T2-mapping and perfusion imaging

are applications we plan to explore in future work. Lastly, this approach optimized sampling

given past data acquisition without the expectation of future data acquisition. Other applica-

tions may allow for this assumption to be relaxed by modeling future data acquisition and fur-

ther improve performance.
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Conclusions

We present an initial implementation of a closed-loop controller that defines radial k-space

sampling. Based on recordings of ECGs in the MRI as well as 4 in vivo scans, the approach

enables segmented acquisitions with improved sampling uniformity relative to the retrospec-

tive sorting of golden angle data. Furthermore, initial findings for a patient with arrhythmias

suggest the approach would enable scanning of complex rhythms.

Supporting information

S1 Fig. Closed-loop identification of prior cardiac phases. A) (top) A brief portion of ECG

signal is compared to the entire scan ECG signal (bottom) via cross correlation. B) (top)

Cross-correlation output. Local peaks are indicated in red. (bottom) In this segmented acquisi-

tion, MRI data from 4 beats was used for reconstruction. Radial views from shots 1 through 3

(red, blue and gray) as well as the most recent views (yellow) are used to determine the newest

segment (green). The number of radial views obtained from each shot (e.g. 8 views/shot) can

be varied depending on the application.

(TIF)

S2 Fig. Overview of stages of approach. Training mode A consists of TCP/IP reading of new

ECG data, buffer storage of ECG sampled, and other software overhead. Training mode B

occurs once the buffers are populated and includes calculation of the cross correlation to iden-

tify similar periods of ECG signal. During training mode B, the optimal angle is not calculated

since insufficient beats are identified. Active mode occurs after both the buffers are populated

and sufficient number of beats can be identified. It includes calculation of the optimal sam-

pling angle.

(TIF)

S3 Fig. Radial k-space sampling uniformity analysis. A, histogram of adjacent view angle dif-

ference Δθ for uniform (black) and random (red) radial sampling trajectories. The uniform

sampling distribution is a delta function positioned at the π/Nθ. B, cumulative sum (CS) of

uniform (black) and random (red) radial sampling trajectories. The uniformity metric U is the

ratio of the shaded areas.

(TIF)

S1 Movie. ECG sampling, results of the cross-correlation, k-space sampling, and imaging

results over 10 seconds for the patient shown in Fig 2. The ECG vs time is shown on the top

row with the overlay of beats identified using the cross-correlation shown in the right hang

corner. The distribution of angles is shown in the bottom left and demonstrates and increase

in uniformity as the scheme moves from golden-angle to ARKS sampling. Reconstructed

images are shown in the bottom right which show cardiac motion and an improvement with

improved sampling uniformity.

(M4V)

S2 Movie. Comparison of single-shot and ARKS multi-shot imaging. The autonomous tra-

jectory has both elements of a segmented scan and a real-time scan. The first and second col-

umns show single-short approaches with a small temporal footprint (37.2 ms) and long

temporal footprint (285 ms), respectively. As was expected, the image with 6 views showed low

contrast and high noise while the high temporal footprint (46 view) image blurred cardiac

motion (especially as depicted by the projection through the ventricle). The autonomous seg-

mented scan acquired 46 views across 8 heartbeats (6 views per heartbeat) and showed a high-
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quality segmented scan with high temporal fidelity and real-time display.

(M4V)
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