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* onurgu@boun.edu.tr

Abstract

The state-of-the-art systems for most natural language engineering tasks employ machine

learning methods. Despite the improved performances of these systems, there is a lack of

established methods for assessing the quality of their predictions. This work introduces a

method for explaining the predictions of any sequence-based natural language processing

(NLP) task implemented with any model, neural or non-neural. Our method named EXSEQ-

REG introduces the concept of region that links the prediction and features that are poten-

tially important for the model. A region is a list of positions in the input sentence associated

with a single prediction. Many NLP tasks are compatible with the proposed explanation

method as regions can be formed according to the nature of the task. The method models

the prediction probability differences that are induced by careful removal of features used by

the model. The output of the method is a list of importance values. Each value signifies the

impact of the corresponding feature on the prediction. The proposed method is demon-

strated with a neural network based named entity recognition (NER) tagger using Turkish

and Finnish datasets. A qualitative analysis of the explanations is presented. The results are

validated with a procedure based on the mutual information score of each feature. We show

that this method produces reasonable explanations and may be used for i) assessing the

degree of the contribution of features regarding a specific prediction of the model, ii) explor-

ing the features that played a significant role for a trained model when analyzed across the

corpus.

Introduction

In recent years, machine learning methods have been successful in achieving the state-of-the-

art results in many natural language processing tasks (NLP), mainly due to the introduction of

neural models. As such, numerous novel architectures have been proposed for virtually every

task. Although the ability to account for biases or explain the predictions is just as important

as the accuracy, clear and satisfying explanations for the success are often not addressed.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244179 December 30, 2020 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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Various approaches to provide explanations for machine learning predictions have been

proposed [1–5]. One of the promising approaches to explain the outcome of a machine learn-

ing model is Local Interpretable Model-Agnostic Explanations (LIME) [6], which attempts to

explain a model’s prediction based on the model’s features. The given input sample is per-

turbed by randomly removing some features. Consequently, the model’s prediction function is

employed to obtain probabilities corresponding to the perturbed versions of the input sample.

LIME is based on the idea that the prediction probabilities of these perturbed samples can be

modeled by a linear model of features. The solution of this linear model gives a vector of real

values corresponding to the importance of each feature. Such vectors are considered to be

valuable in assessing the quality of a model since they render the insignificant features evident,

which are often the culprits in biased decisions.

In this work, we propose an extended version of LIME to handle any sequence-based NLP

task in which a procedure for transforming the task into a multi-class classification problem

can be constructed. This method utilizes regions which refer to the segments of the inputs that

are directly related to the predictions, e.g. the tokens that cover a named entity in named entity

recognition. The transformation procedure requires the probability of each prediction associ-

ated with a given region. Some models yield these probabilities as a part of their output. In

other cases, access to the internals of the model are required to compute these probabilities.

For example, for the sentiment classification task, typically a vector of class potentials is used

to predict the sentiment of a sentence. This vector is employed to calculate the probability of

each sentiment for the given sentence. For tasks with more complex labels, further computa-

tion may be required to calculate the probability of each prediction. For example, the probabil-

ity of the entity tag for named entity recognition task is computed with the probabilities of

the token-level tags. In the extension we propose for LIME, perturbations are performed by

removing each feature of a region independently as opposed to selecting several features ran-

domly. The prediction probabilities of each label in these perturbed samples are calculated

using the transformation procedure specific to the task as detailed in the Perturbation and Cal-

culating probabilities sections.

The main aim of the proposed method is to provide a vector whose values indicate the

strength and the direction of the impact of each feature. The first step is to observe the proba-

bility differences caused by the removal of each feature due to the perturbations. A linear

regression model is used to relate these differences with the removed features. The solution

of this linear model gives a list of weights corresponding to each feature which can be

regarded as the impact of each feature on the current prediction, which we consider to be an

explanation.

We demonstrate the method on named entity recognition (NER) task by using a NER tag-

ger trained on Turkish and Finnish both of which are morphologically rich languages [7, 8].

The tagger requires all the morphological analyses of each token in the sentence to be provided

to the model. Fig 1 shows a sentence in Turkish with the potential morphological analyses for

the named entity “Ali Sami Yen Stadyumu’nda” (means ‘at the Ali Sami Yen Stadium’ in

English) that covers the tokens from 2nd to 5th position. The model predicts the correct mor-

phological analyses, which it utilizes to recognize the named entities.

In the Analysis section, we provide quantitative and qualitative evaluations of the results of

the explanation method. The quantitative evaluation compares the most influential morpho-

logical features in predictions with those whose mutual information scores are the highest with

respect to entity tags. The qualitative assessment involves an analysis of the morphological tags

relevant to several named entity tags for Turkish and Finnish.

Our contributions can be summarized as:
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1. a general method to explain predictions of any sequence-based NLP task by means of trans-

forming them into multi-class classification problems,

2. a method to assess the impact of perturbations of input samples that relies on probability

differences instead of the typical use of exact probabilities,

3. an encoding that distinguishes whether a feature absent in the perturbed sample was pres-

ent in the original input, thereby capturing the knowledge of a removal operation,

4. a qualitative and quantitative evaluation of the proposed method for the NER task for the

morphologically rich languages Turkish and Finnish, and

5. an open source software resource to replicate all results reported in this work [9].

The remainder of this paper is organized as follows: the Background section provides infor-

mation required to follow the proposed method. After we relate our work to the current litera-

ture in the Related work section, we give the details of the method in the Explaining sequence-

based NLP tasks section. The CAnalysis section details the results of applying our method to

Turkish and Finnish NER datasets. Finally, the Conclusions and Future Directions section

summarizes the main takeaways and contributions of this work along with future directions.

Background

LIME

Local Interpretable Model-Agnostic Explanations (LIME) [6] is a method for explaining the

predictions of any machine learning model and is agnostic to the implementation of the

model. It treats the model as a blackbox that produces a prediction along with an estimated

probability. LIME belongs to the class of methods called additive feature attribution methods

[10]. These methods yield a list of value pairs composed of a feature and its impact on the pre-

diction. This list is regarded as an explanation of the prediction based on the magnitude and

Fig 1. A Turkish sentence (translated as “She/he had not played at the Ali Sami Yen Stadium yet.”) with one named entity tag and the possible

morphological analyses of the tokens in the named entity.

https://doi.org/10.1371/journal.pone.0244179.g001
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the direction of the impact. Typically, these methods learn a linear model of the features to pre-

dict the expected probability of the prediction. The data samples required to train the linear

model are obtained by perturbing the original input sample by randomly removing a feature.

In order to represent the features that are removed or retained during the perturbation, a

binary vector z that is mapped to the original input x with a function h is used. The mapping

depends on the model to be explained. For example, if a model expects the input sentence x to

be in the bag-of-words form, x consists of word and frequency pairs. In this case, the binary

vector z is composed of zis each of which indicate whether or not the ith word is retained. In

other words, if zi is 1, word i’s bag of words frequency value remains the same as the frequency

in the input sentence, otherwise it is set to zero.

Additive feature attribution methods are generally defined as

gðzÞ ¼ �0 þ
X

i¼1

�izi ð1Þ

where zi is the binary value that indicates whether feature i is retained or not, ϕi is a value that

indicates the importance of feature i, and ϕ0 is the bias. The function g(z) is the outcome of the

linear model that estimates the probability f(x) which is obtained from the machine learning

model. The following function is minimized to obtain the importance values ϕi:

argmin
g

Lðf ; g;Pðx; zÞÞ þ OðgÞ

where f is the probability function of the model, P(x, z) is the local weighting function and

O(g) constrains the complexity of g. For example, to explain a text classification model, one

might set P(x, z) to an exponential kernel with cosine distance between x and z. Any func-

tion that satisfies the distance constraints, namely the non-negativity, zero distance if x = z,
symmetry, and the triangle inequality (d(x, z)� d(x, y) + d(y, z)), may be used for P(x, z). A

reasonable choice for O(g) is a function that returns the number of words in the vocabulary.

Accordingly, the loss function L is defined as the sum of the squared errors weighted by

P(x, z):

Lðf ; g;Pðx; zÞÞ ¼
X

x;z¼hðxÞ

Pðx; zÞðf ðxÞ � gðzÞÞ2:

A neural NER tagger model

To demonstrate the method proposed in the Analysis Section, we use a tagger model [7] that

jointly addresses the named entity recognition (NER) and the morphological disambiguation

(MD) tasks. Fig 2 shows this model while processing a sentence fragment. Each word is repre-

sented as a fixed-size vector which is fed to the first layer of the sentence-level Bi-LSTM (bidi-

rectional long short-term memory). A fixed-size vector representation for each possible

morphological analysis of each word i is computed by a separate Bi-LSTM layer (not shown in

the figure). These vectors (depicted as rectangles with a surrounding dashed line) which are

denoted by maij are multiplied with the context vector h1
i which is the output of the first layer

of the sentence-level Bi-LSTM component. The model selects the one that has the maximum

multiplication result, maij� which becomes the disambiguated morphological analysis of the ith

word.

Each level l of the sentence-level Bi-LSTM is fed with the concatenation of the previous lev-

el’s output hl� 1
i and the original word representation. The output of the final layer of the sen-

tence-level Bi-LSTM component �h3
i is concatenated with the most probable morphological
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analysis’ vector maij� and fed into a fully connected (FC) layer to obtain the score vectors for

each word. These score vectors denote the model’s estimated score for each token-level entity

tag to be the correct one for that position. These are then employed by a conditional random

field (CRF) layer to decode the most probable path among all possible paths of token-level

entity tags. Finally, the sequence of token-level entity tags form the output of the NER tagger

for the whole sentence.

IOBES tagging scheme for named entity recognition

Named entities are labeled with types, such as ‘PER’ for person and ‘LOC’ for location. The

IOB (Inside-Outside-Beginning) scheme uses particular prefixes for each token within a

chunk to indicate whether the token is inside (I), outside (O), or beginning (B) of the named

entity [11]. The IOBES scheme extends the IOB scheme to indicate the ending token and the

single tokens with the ‘E’ and ‘S’ prefixes, respectively.

The labels are formed of the position prefix followed by ‘-’ and the type of the entity.

Thus, a named entity of ‘LOC’ type consisting of a single token would be labeled as ‘S-LOC’.

A named entity of ‘LOC’ type that consists of three tokens would be labeled as ‘B-LOC’,

‘I-LOC’, and ‘E-LOC’ in this order. All tokens that are not a part of any named entity are

labeled as ‘O’.

Fig 2. Joint neural NER and MD model processing the sentence fragment “U.N. Officer Ralph Ekeus heads” [7].

https://doi.org/10.1371/journal.pone.0244179.g002
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Morphologically rich languages

In morphologically rich languages, the morphology of words express a significant amount of

grammatical information as opposed to other languages. This is realized by affixing the root

words with morphemes that convey syntactic information. For example, possession is indi-

cated using a suffix in Turkish (such as ‘araba (car) + -ım’, yielding ‘arabam’ meaning ‘my

car’), whereas the same meaning is conveyed by the use of a word in English. Morphologically

rich languages utilize affixes frequently to produce valid word forms, which renders morpho-

logical analysis very significant for such languages.

Various notations have been introduced to analyze the structure of derived words in mor-

phologically rich languages. In our case, we utilize the notation introduced by Oflazer [12] for

Turkish and the Universal Dependencies Project [13] for Finnish.

Related work

There are several approaches to explaining the results of machine learning models. Some

machine learning models are self-explanatory, such as decision trees, rule-based systems, and

linear models. For example, the output of a decision tree model is a sequence of answers to

yes/no questions, which can be considered as explanations. For other models, special mecha-

nisms should be designed to provide explanations. Explanation models aim to provide two

types of explanations: i) model (or global) explanations, and ii) outcome (or local) explana-

tions. Local explanations focus on the outcome resulting from specific input samples, whereas

model explanations reveal information about the machine learning model in question. Expla-

nation models further differ in their explanation methods, the types of machine learning mod-

els that can be explained, and the type of data that can be explained [14]. According to the

classification in [14], the method proposed in this work is a model-agnostic features impor-
tance explainer, since it aims to reveal the importance of each feature given an input sample.

The method proposed in this work (EXSEQREG) is inspired by the LIME approach [6]

which explains the predictions of any model. It achieves this by perturbing the input to assess

how the predictions change. LIME uses a binary vector to indicate whether a feature is per-

turbed, as described in the LIME section. The binary vector (z) indicates the presence or

absence of a feature. One shortcoming of this representation is that it does not convey whether

a feature that is absent in the perturbed version is due to removal, since it may have been

absent in the original input. In other words, a zero value may indicate two states: the feature

does not exist at all or it is perturbed. Since this distinction may be significant in an explana-

tion, we modified this scheme to remedy this. We follow an encoding scheme where we mark

the features that are present but removed with minus one, the features that are present and not

removed with one, and the features that are not present at all with zero. Furthermore, we focus

on the probability differences induced by perturbations as opposed to the exact probabilities

that are utilized by LIME.

A recent approach called LORE [15] learns a decision tree using a local neighborhood of

the input sample. The method then utilizes this decision tree to build an explanation of the

outcome by providing a decision rule to explain the reasons for the decision and a set of coun-

terfactual rules to provide insights about the impacts of the changes in the features.

The method proposed in our work is part of a general class of methods called additive fea-

ture attribution methods [10]. Methods from this family include DeepLIFT [16], layer-wise

relevance propagation method [2], LIME [6], and methods based on classic Shapley value esti-

mation [1, 4, 17]. DeepLIFT aims to model the impact of altering the values assigned to specific

input parts. Layer-wise relevance propagation works similar to DeepLIFT, however, in this

case, the altered values are always set to zero. Shapley value estimation depends on the average
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of prediction differences when the model is trained repeatedly using training sets perturbed by

removing a single feature i from a subset S of all unique features. Sampling methods for effi-

ciently computing Shapley values are also offered [4]. All these methods, including LIME,

depend on solving linear models of binary variables similar to Eq 1.

An explanation method for NER based on LIME has been proposed by [18]. The method

treats input sentences as word sequences and ignores fine-grained features such as part-of-

speech tags which are often attached to words as part of the input. The resulting explanation is

a vector of real numbers that indicate the impact of each word. The method is restricted to

models that are limited to token-level named entity tag prediction. However, every token is

dependent on each other in the named entity recognition task. Many models exploit this

dependency and combine token-level named entity tag prediction probabilities to have a single

named entity prediction probability for the entire token sequence of the entity. Contrary to

this method, in this work, we aim to handle this dependency issue by proposing a special trans-

formation procedure, which is detailed in the Calculating probabilities section for named

entity recognition.

LIME defines a text classification problem conditioned on features that correspond to the

frequency of unique words in the input sentence. To obtain the explanation vector for a given

prediction, the input is perturbed by selecting a random set of words and eliminating all

instances from the input sentence, thus removing the bag-of-words frequency values for the

corresponding words from the input. This causes problems while explaining models that

employ sequence processing constructs like RNN because a bag-of-words feature is devoid of

information about the positions of the words within a sentence. This makes it difficult to relate

a specific feature to a certain portion of the input sentence. Instead, selecting random subse-

quences (or substrings if we ignore tokenization) from the input sentence, designating these as

distinct features, and removing these new features would both perturb the original sentence

and enable specifying the specific position of the perturbation. These position-aware features

are used in another extension of LIME to explain the prediction of such models [19]. In this

work, however, we are only interested in the impact of features in a specific region in the sen-

tence, so it is not required to have position-aware features.

The interpretation of machine learning models for NLP became significant subsequent to

the success achieved by neural model. Although they achieve state-of-the-art results for many

tasks, their black box nature leaves scientist curious about whether these models learn relevant

aspects. For non-neural models, the approach was to provide mechanisms for explanations of

features and their importance. However, the complexity of neural models has rendered expla-

nations for models or specific outcomes very difficult. One approach is to use auxiliary diag-

nostic models to assess the amount of linguistic knowledge that is contained in a given neural

representation [20–24].

Another prominent approach is to exploit attention mechanisms in the models [25, 26] to

explain specific outcomes by attaching importance values to certain input features, like n-

grams, words, or characters that make up the surface forms. Most of these methods modify the

input samples so that they are reflected as changes in the output or the inner variables of the

models. Other works exploit specially created datasets to assess the performance of an NLP

task. For example, a custom dataset derived from a corpus of tasks related to the theory of

mind was used to explore the capacity of a question answering model to understand the first

and second-order beliefs and reason about them [27]. Custom datasets are also used when try-

ing to test whether the semantic properties are contained in word representations by using a

special auxiliary diagnostic task that aims to predict whether the word embedding contains a

semantic property or not [28].
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Finally, approaches have been proposed to explain machine learning models by introducing

latent variables to models [29] or that produce inherently interpretable output such as via

word alignment information in machine translation [30].

Explaining sequence-based NLP tasks

This section introduces a method for explaining specific predictions of models trained for

sequence-based NLP tasks. Essentially, the method provides explanations about which part of

the input impacts the prediction of a given neural model. The method produces an explanation

vector of scores that indicate the impact of the features used by the model. This vector can be

utilized in offering an explanation to the user of the model’s prediction. For example, a model

trained for classifying the sentiment of a sentence may rely on features such as the specific

words that occur in the sentence, the position and the number of punctuation marks in the

sentence, or the content of the fixed-size vector representations pretrained for each word. In

this sentiment classification task, the user should be suspicious of a model if words that have

clear negative sentiment are effective in a positive sentiment prediction.

Defining NLP tasks

We define NLP tasks as processes that transform input consisting of a sequence of tokens along

with a set of features into a sequence of labeled tokens. Fig 3 provides an overview of NLP pro-

cesses. In this work, we denote the input with X, the tokens for input with T and for output

with T0, the number of tokens for input with Nt and for output with No, the output labels with

Y, and the number of output labels with Ny. These processes are implemented by models. Each

model has a prediction function that maps X to T0 and Y. The model architecture determines

the size and the contents of the feature sets F. An example for a type of feature could be the

word embedding that corresponds to a token in T. This is a flexible definition that applies to

nearly all NLP tasks.

Some NLP tasks and their corresponding parameters are shown in Table 1. The sentiment

classification task can be associated with the question: “Is the sentiment of the sentence X posi-

tive?”. The expected output is simply “Yes” or “No”. In this case, there are no token outputs,

thus No = 0 and the cardinality of the label space is two (or |Y| = 2). The word sense disambigu-

ation task can be expressed with the question “What is the sense of the word X?” whose answer

Fig 3. Relations between processes, models, input, and output in this work.

https://doi.org/10.1371/journal.pone.0244179.g003
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is one of the expected word senses. In this case, again, No = 0 while Ny = 1, but the cardinality

of the output label space is the number of possible senses. The NER task can be expressed as a

mapping from each input token to a named entity tag. As such, No = 0, Ny = Nt and the cardi-

nality of the output label space is the number of token tag sequences of length Ny. Machine

translation can also be defined by this scheme by setting Nt> 0, No> 0, Ny = 0, and the cardi-

nality of the output token space to the number of token sequences of length No. In another

case, the task may require both output tokens and output labels, like in morphological disam-

biguation which we give an example in Table 1. This scheme is flexible enough to express mod-

els that employ features concerning the whole sentence. For example, an alternative version of

the example for sentiment classification could have a single feature set for the whole sentence

(e.g. sentence embedding). The parameter configuration for this case would be Nt> 0, Nf = 1,

No = 0, and Ny = 1.

EXSEQREG: Explaining sequence-based NLP tasks with regions

This section describes the proposed framework for explaining neural NLP models. For illustra-

tion purposes, we use a specific NER tagger as a use case. We describe our method using a set

of variables along with the indices i, t, j, and k (see Table 2). These indices are used to refer to

input sentence Xi as the ith sentence in the dataset, feature set Fit corresponding to tth token

in sentence i, and label Yit corresponding to tth token in sentence i. Fig 4 depicts an example

that utilizes these variables. For the NER model, Yit is the token-level named entity tag, e.g.

‘B-PER’, ‘I-PER’, ‘I-LOC’, and similar. The input to the NER tagger consists of the morpholog-

ical analyses, the word embeddings and the surface forms of the tokens. The NER tagger

Table 1. Selected examples of NLP tasks that can be covered by the method.

Task T F T0 Y
Sentiment classification

(model 1)

“Great music!” Nt = 2 A feature set for each

token, Nf = 2

No = 0 ‘YES’ Ny = 1

Sentiment classification

(model 2)

“Great music!” Nt = 2 A feature set for the

whole sentence, Nf = 1

No = 0 ‘YES’ Ny = 1

Word sense disambiguation “We bought gas for the car.” Nt =

6

A feature set for each

token, Nf = 6

No = 0 Sense = automobile Ny = 1

Named Entity Recognition

(in Turkish)

“Henüz Ali Sami Yen Stadyumu

taşınmamıştı.”, Nt = 6

A feature set for each

token, Nf = 6

No = 0 “O B-LOC I-LOC I-LOC E-LOC O”

Ny = Nt = 6

Machine translation (from

Turkish to English)

“Henüz Ali Sami Yen Stadyumu

taşınmamıştı.”, Nt = 6

A feature set for each

token, Nf = 6

“Ali Sami Yen Stadium was not

relocated yet.” No = 8

Ny = 0

Morphological

disambiguation (in Turkish)

“Henüz Ali Sami Yen Stadyumu

taşınmamıştı.”, Nt = 6

A feature set for each

token, Nf = 6

“Henüz Ali Sami Yen Stadyum

+u taşın+ma+mış+tı” No = 6

“Henüz Ali Sami Yen Stadyum+Acc

taşın+Neg+PastPart+Past”, Ny = 6

https://doi.org/10.1371/journal.pone.0244179.t001

Table 2. Summary of variables used by the explanation method.

Variable Description

i, X input sequence index and input sequence

t, T token index and token sequence

f, F feature and set of features

Y label sequence

j, R region index in sentence and set of regions

π, P perturbed sentence and set of perturbed sentences

k, K label k and number of labels

ek?ij explanation vector for region j in sentence i for label k

https://doi.org/10.1371/journal.pone.0244179.t002
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exploits the information conveyed by the morphological tags within the analyses. The details

of the NER tagger can be found in the A neural NER tagger model section.

The method proposes the concept of region, which is used to refer to a specific part of the

input sentence. For example, for the NER task, regions refer to named entities which may span

several consecutive tokens. Regions are used to associate features and predictions related to a

segment of the input. Fig 4 shows a Finnish sentence with two regions marking named entities,

one of type ‘PRODUCT’ and the other of type ‘PERSON’.

Fig 4. Explanation of a NER tagger’s prediction where Nt = 7, Nf = 7, Ny = 7, No = 0. Xi is the ith sentence. Only first seven tokens of the sentence are

shown due to space constraints which is translated as “Jeff Barr, the chief evangelist of Amazon Web Services, says . . .”. Region ri1 is labeled as a ‘PRO’

entity tag. All possible morphological analyses of 1, 2, and 3 tokens (t) in region ri1 that are used to form feature sets Fit are shown. The union of all Fit in

region ri1 yields the set of morphological tags Fi1. ePRO?i1 is the resulting explanation vector.

https://doi.org/10.1371/journal.pone.0244179.g004
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We define an explanation vector ek?ij to explain the prediction of label k for the jth region of

sentence i. This vector’s length equals the number of unique features in the model. The regions

are denoted by a sequence of integers that give the positions of the tokens belonging to the

region. For the NER problem, k is the named entity tag and the number of unique features is

equal to number of unique morphological tags in the model. The values of the dimensions of

ek?ij represent the impact of their corresponding features.

A full example of the NER task is depicted in Fig 4 where Ti is the sequence of words in sen-

tence Xi and Nt is the number of words. There are no output tokens for this task, thus No = 0.

There is a label and a list of morphological analyses corresponding to each input token, making

Ny = Nt = Nf. The regions which contain each named entity are denoted as rij. As shown in the

figure, ri1 spans the first three tokens, ‘Amazon Web Servicesin’, and is labeled with named

entity tag ‘PRO’ which signifies a product name. This can be seen by observing the Yit values

which are the token-level named entity tags. The lower part of the figure lists all possible mor-

phological analyses for each token t and its feature sets Fit originating from these lists. The

union of every Fit in the region ri1 is denoted as Fi1. The explanation vector ePRO?i1 in the lower

right part of the figure contains a real value for each feature in Fi1. The diagram indicates that

‘Case = Nom’ contributes positively to the ‘PRO’ prediction. On the other hand, the presence

of the ‘Number = Sing’ and ‘Case = Gen’ morphological tags is expected to decrease the proba-

bility of the ‘PRO’ named entity tag. This is a simple example where the explanations can be

viewed as the degree to which a morphological tag is responsible for identifying a specific

named entity tag.

The remainder of this section describes the main steps required to calculate ek?ij :

1. Perturbing Xi to obtain a set of sentences Pi (the Perturbation section).

2. Calculating probability changes corresponding to all regions rij of Xi using sentences inPi

(the Calculating probabilities section).

3. Defining and solving a special regression problem corresponding to every region rij in

every perturbed sentence in Pi (the Computing importance values section).

Perturbation

NLP tasks are divided into several classes according to their region types. The widest regions

span entire sentences, such as in the case of sentiment classification. The regions within sen-

tences may be contiguous or not. For example, the NER task is almost always concerned with

contiguous regions but the co-reference resolution task or the multi-word expression detection

task is usually characterized by noncontiguous regions.

In all of these cases, the jth region in sentence i is denoted as rij and represented by a

sequence of integers that correspond to the positions of the tokens in the region. We define Ri
as the set of all regions rij in Xi. For every rij in Ri, we perturb Xi by only modifying the features

that are found in that region. A region rij in the NER task is represented with a sequence of

integers, i.e. (start, . . ., end) where start and end are the first and last position indices of the

words in the region. For example, in the Turkish sentence “Henüz Ali Sami Yen Stadyumu’nda

oynamamıştı”, there exists a single region which spans the words 2 to 5, i.e. (2, 3, 4, 5).

The set of features subject to perturbation in region rij is defined as Fij ¼ [t2rij Fit .
We perturb Xi by independently removing each feature f 2 Fij from Xi to obtain

pij ¼ fremoveðXi; j; f Þ : f 2 Fijg. The expression remove(Xi, j, f) denotes a sentence

originating from sentence Xi where all instances of feature f are removed from all Fit in
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region rij. The unperturbed version of Xi is denoted as p;ij. Fig 5 shows the change in Fij cor-

responding to each perturbed version prij. To form p1
i1, the morphological tag ‘Number =

Sing’ is removed from the morphological analyses of tokens 1, 2, and 3 (e.g. ‘Amazo|�

NOUN�N�Case = Gen|Number = Sing’ to yield ‘Amazo|�NOUN�N�Case = Gen’). The

collection of πij’s results in a set Pi consisting of at most
PjRi j

j0¼1
jFij0 j perturbed sentences,

which is at most |Ri| × |M| where M is the set of unique features in the model. Unlike the

named entity recognition task where M is low, this perturbation strategy might be problem-

atic for other tasks where the number of unique features is very high. For example, the num-

ber of features that are constructed combinatorially from input segments become very large

as sentence lengths increase. In such cases, the feature to be removed could be selected in a

uniformly random manner from F. This is repeated for several times to form a set of per-

turbed samples with a feasible size.

Eventually, a set of perturbed samples πij for each region rij is obtained to be used as input

to the prediction function of the model.

Calculating probabilities

In this step, we seek to obtain a matrix of label prediction probabilities Pij where the rth row

corresponds to the rth perturbed version of Xi in πij, namely prij. Each row of Pij is a vector prij of

length K where each dimension corresponds to a label k of the task at hand. Thus the size of Pij
is |πij| × K.

Depending on the task and the model, prij might be computed by the model itself. For

instance, a sentiment classification model might yield the probability of the positive label

directly. On the other hand, it might be necessary to compute prij using some output of the

model. Some models include a component which indirectly corresponds to the prediction

probability of each label k in a region rij. For example, the model implementing the NER task

(described in the A neural NER tagger model section) does not directly output the probability

of the presence of a named entity in a given region. The model aims to find the contiguous

sequence of tokens referring to named entities in the given sentence. To do this, it assigns a

Fig 5. The change in Fi1 corresponding to every perturbed sentence pr
i1 is depicted. Crossed out morphological tags

are removed from Fi1. Morphological tags which are not already present are not shown.

https://doi.org/10.1371/journal.pone.0244179.g005
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score to each possible IOBES tag attached to each word in the sentence. It then selects the most

probable sequence of tags over all possible sequences of IOBES tags for the sentence. However,

for explanation purposes, we are only interested in the labels of the named entity regions rij.
To provide an explanation for the prediction in region rij for tasks that are not classification

problems, we need a mechanism for transforming them into multi-class classification prob-

lems. For the NER task, the IOBES tags in the region must be transformed to named entity

tags. The transformation procedure selects paths satisfying the following regular expression

“S-TAGTYPE | B-TAGTYPE,[I-TAGTYPE]�,E-TAGTYPE | O+”. The resulting path list is fil-

tered so that it only includes paths with a single entity. We omit paths that result in multiple

entities or paths that are invalid (e.g. starting with a ‘I-’ prefix) in the region as the trained

model consistently attaches very low probabilities to such cases. For other NLP tasks, one

should start with enumerating all the possible prediction outcomes in a given region rij. If the

number of total outcomes in a region is very high, it is advised to omit the outcomes which are

expected to have very low probabilities. After this filtering, each remaining outcome is consid-

ered as a label.

In Fig 6, we present the correct sequence of tags for a Turkish named entity tag ‘LOC’. This

is one of the 134 possible sequences. The total number of possible sequences is calculated by

multiplying the number of possible token-level tags at each token position t. In this case, the

total number of possible sequences is calculated as (4�K + 1)N where K is equal to the number

of entity types and N is the number of tokens.

After this transformation procedure, the NER task which is originally a sequence tagging

problem is reduced to a classification problem with K classes. The NER model involves score

Fig 6. A NER task for a Turkish sentence (meaning “Ali Sami Yen Stadium had not been relocated yet.”). The token-level tag predictions for each

position are shown with their scores st,o. The correct sequence of the token-level named entity tags are marked in red. Single token entities are not

applicable to multiple token entities, thus their scores are N/A.

https://doi.org/10.1371/journal.pone.0244179.g006
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variables st,o which are used to predict IOBES tags (o) for each position t, as depicted in Fig 6.

During normal operation, the NER model feeds these scores to a CRF layer. The CRF layer

treats these scores as token-level log-likelihoods and uses the learned transition likelihoods to

choose the most probable path (see the A neural NER tagger model section). For the purposes

of the explanation method, we define the probability of the sequence corresponding to entity

tag k in named entity region rij as

prijðkÞ ¼ PðkjprijÞ ¼
exp ðscoreðprij; kÞÞ

Zr
ij

where scoreðprij; kÞ is the total score of entity tag k using the score variables (st,o) in the region

and Zr
ij is
P

k0 exp ðscoreðp
r
ij; k

0ÞÞ. We also define the same probability for region rij in the

unperturbed sentence Xi and refer to it as p;ij.

Computing importance values

The previous steps of the method produce a πij and Pij for each region rij. The final step aims to

produce an explanation for every label k for every region rij. An explanation ekij for label k of

region j in sentence Xi is a vector which contains one dimension for each feature in the model.

Each element of ekij indicates the impact of a feature m from M for predicting label k, where M
is the set of features used in the model. Note that a region in a given sentence Xi is not always

related to all features, thus the number of features jFijj related to region rij is usually smaller

than |M|. This guarantees jMj � jFijj dimensions to be zero. For example, for the NER task in

this work, most of the morphological tags are not related to all regions.

We add the original sentence Xi to πij together with jFijj perturbed sentences to obtain a set

of jFijj þ 1 sentences. We first form a matrixCij of size ðjFijj þ 1Þ � jMj where the rth row cor-

responds to prij if r � jFijj. The last row of Cij corresponds to the unperturbed version of Xi.
Every row of Cij is composed of ones, minus ones, and zeros signifying whether the feature

that corresponds to the mth position was i) present and retained, ii) present and removed, and

iii) was not present in input, respectively. We chose this scheme rather than using only ones

and zeros to mark presence and absence because the latter one penalizes the features that were

present but removed by perturbation.

Secondly, we form a matrix DPij of size K � ðjFijj þ 1Þ. The last column is set to~0 as there

is no perturbation in the original sentence, and the rth column of the first jFijj columns is equal

to prij � p
;
ij. In other words, the entry (k, r) of DPij contains the difference induced in the proba-

bility of predicting label k after the perturbation described by the row r of Cij.

The matrices Cij and DPij are then combined in the loss function of ridge regression which

employs regularization on the explanation vector

jjDPijðk; :Þ � Cijekijjj
2

2
þ jjekijjj

2

2 ð2Þ

and minimized with respect to ekij. We use notation A(i,:) to refer to the ith row of matrix A. We

call the corresponding solution as ek?ij . We give the pseudo-code of the method in Algorithm 1.

Let us consider a very simple task, and assume that there are two features Non-emotional
and Emotional. There are three labels Positive, Negative, and Neutral. Thus |M| is 2 and K is 3.

Let’s further assume that the sentence i consists of a single region which spans the whole sen-

tence and both features are present in this region. This gives us a single region ri1 and as there

are two features jFi1j is 2. Thus DPi1 is of size 3 × (2 + 1) and Ci1 is of size (2 + 1) × 2. Let’s
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choose the entries of these matrices so that we observe that the probability of predicting ‘Posi-
tive’ label for the sentence increases when

• feature Non- emotional was present and removed, and

• Emotional was present but not removed.

This is represented in the first row of Ci1 (i.e. [−1, 1]) and in DPi1ð1; 1Þ (i.e. 0.3) in the fol-

lowing equations. We chose the other values so that the probability of predicting ‘Positive’
decreased (i.e. −0.1) when feature ‘Emotional’ was present and removed, and feature ‘Non-
emotional’ was present but not removed.

DPi1ð1; :Þ ¼ ½ 0:3 � 0:1 0 �
T ð3aÞ

Ci1 ¼

� 1 1

1 � 1

1 1

2

6
6
6
4

3

7
7
7
5

ð3bÞ

According to the definitions above, we can define the explanation vector for label Positive
as

e1?
i1 ¼ argmin

e1i1

jjDPi1ð1; :Þ � Ci1e
1

i1jj
2

2
þ jje1

i1jj
2

2
:

ð4Þ

When we solve it, we obtain

e1?
i1 ¼ ½ � 0:08 0:08 �

T ð5Þ

which can be interpreted as feature ‘Non-emotional’ has a negative impact on the prediction of

label ‘Positive’, but ‘Emotional’ has an opposite impact.

Similar to the toy task given above, we can apply the method to the case task by setting up

DP and Cmatrices according to the actual parameters. For example, the Finnish NER dataset

requires K and |M| to be set to 10 and 89, respectively. These values are 3 and 181, respectively,

for the Turkish NER dataset. The method provides the explanation vectors ekij for every entity

tag k in every region rij for every sentence Xi. The values in the mth dimension of this vector

are predictions on how much and in which direction mth morphological tag impacts the pre-

diction of entity tag k in region rij.
Algorithm 1 The explanation method for sequence-based NLP tasks. predict function

relies on the model to obtain the probabilities for each label k.

X set of sentences to be explained

K number of classes

for i = 1 to |X| do

for all region j in sentence Xi do

Fij  set of features in rij
pij ¼ fremoveðXi; j; f Þ : f 2 Fijg [ fXig

for all perturbed sentence prij in πij do

prij  vector of probabilities of all labels using predictðprijÞ

DPij  filled such that rth column is prij � p
;
ij and the last column is~0

Cijðr; :Þ  vector of zeros, minus ones, and ones representing the perturbed sen-

tence prij
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for all label k do

ek?ij ¼ argminjjDPijðk; :Þ � Cijekijjj
2

2
þ jjekijjj

2

2

Analysis

To assess the proposed method, two NER taggers were trained for Turkish and Finnish with

appropriate datasets [7]. A standard training regime was followed as in the paper that intro-

duced the NER tagger model [7]. However, 100 dimensional emdeddings were used instead

of 10.

As the NER tagger jointly models the NER task and the morphological disambiguation

(MD) task, two data sources are required for each language (Table 3). For Finnish, we used a

NER dataset of 15436 sentences for training NER related parts of the model [31, 32]. For MD

related parts, we used 172,788 sentences from the Universal Dependencies dataset [13] using

the modified version [33] of the UdPipe morphological tagger [34] to obtain all possible mor-

phological analyses instead of the most probable morphological analyses provided by the origi-

nal version.

For Turkish, we used the most prevalent NER dataset which includes the correct MD labels,

but, unfortunately, omits the other morphological analyses required for training the model.

The dataset which includes all morphological analyses was obtained from the repository asso-

ciated with the article which introduced the NER tagger [7].

Results

The evaluation of explanation methods remains an active research area. Several approaches

have emerged ranging from manual assessments to qualitative and qualitative methods with

no consensus as of yet [35]. To evaluate the explanation vectors, we utilize three metrics based

on the mean of standardized importance values (m̂k), the distribution of standardized impor-

tance values across the corpus (ÊkðmÞ), and the mutual information gain (MIk;m), which are

defined in the next section.

We evaluate the explanations as follows:

1. As a form of qualitative evaluation, the average importance values for each morphological

tag m (denoted as m̂kðmÞ) are ranked in order of significance. This ranking is compared

with the expected ranking based on our knowledge of the language features.

2. We visually inspect the importance values of the morphological tags using ÊkðmÞ.

3. We determine the morphological tags that are important for all entity tags using m̂kðmÞ.

4. As a quantitative approach, we calculate the mutual information gain between each mor-

phological tag (m) and entity tag (k) denoted as MIk;m and rank the morphological tags

according to this metric to observe the number of matches with the results of the proposed

method.

Table 3. The hyperparameters and region-related statistics for Turkish and Finnish NER datasets.

Lang. M K # regions r per sentence ORG TIT PER TIM LOC DATE PRO MISC EVENT OUTSIDE

Turkish 181 3 22364 1.85 6268 - 9318 - 6778 - - - - -

Finnish 89 10 25578 2.27 9101 631 2229 5148 2040 956 4467 908 93 5

https://doi.org/10.1371/journal.pone.0244179.t003
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5. Finally, we designed an experiment to observe whether removing the higher ranked mor-

phological tags more significantly decreases the performance in comparison to the removal

of lower ranked tags.

These approaches are used to evaluate the computed explanation vectors for Turkish and

Finnish. The code for computing the metrics are shared with the research community on a

public website [9].

Metrics

Two separate NER models are trained for Finnish and Turkish to demonstrate the proposed

method. We process the corpora so that Fit is the union of all morphological tags in all possible

morphological analyses of the tth word in the ith sentence. We then employ the explanation

method given in Algorithm 1 to obtain the explanation vectors ek?ij of size |M| for every named

entity region rij in every sentence Xi by solving Eq 2.

We then calculate

mk ¼

P
i;je

k?
ij

Nk
; ð6aÞ

sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðe

k?
ij � mkÞ

2

Nk

s

; ð6bÞ

êk?ij ¼
ek?ij � mk
sk

ð6cÞ

m̂k ¼

P
i;jê

k?
ij

Nk
: ð6dÞ

where Nk is the number of named entity regions labeled with the named entity k in the corpus.

The μk and σk are vectors of size |M| where each dimension is the mean and variance of the

importance values of the corresponding morphological tag m. The êk?ij is obtained by standard-

izing the values using the mean and variance of ek?ij . The m̂k is the standardized version of μk.
Furthermore, we define

ÊkðmÞ ¼ ½ êk?ij ðmÞ : 8i; j � ð7Þ

as a vector containing all values in the mth dimension of all explanation vectors in all regions rij
with label k. This variable is useful in analyzing the distribution of standardized importance

values across the corpus.

The metric MIk,m is defined to quantify the information given by a morphological tag m to

predict an entity tag k in any given region. To calculate this metric, a pair of vectors (Lk,Fk,m)

are defined. Each vector has N dimensions which correspond to the total number of regions in

the corpus. Each dimension in Lk is set to 1 if the region is labeled with entity tag k, otherwise

to 0. Likewise, each dimension of Fk,m is set to 1 if the region contains morphological tag m,

otherwise to 0. Using these vectors, the mutual information score is computed for each pair of
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k and m:

MIk;m ¼
X1

j¼0

X1

j0¼0

jLkðjÞ \ Fk;mðj0Þj
N

log
NjLkðjÞ \ Fk;mðj0Þj
jLkðjÞjjFk;mðj0Þj

ð8Þ

where Lk(j) and Fk,m(j) denote the set of indices that are set to j.

Using standardized mean importance values

To assess the importance of a morphological tag m for predicting entity tag k across the corpus,

we examine the mth dimension of m̂k. We chose this approach instead of assigning higher

importance to features which are used to explain more instances throughout the corpus as in

the original LIME approach [6]. Our approach avoids falsely marking very common features

as important. For instance, the morphological tag ‘Case = Nom’ which indicates the nominal

case can be found in many words for all entity tags. If we were to assign high importance

according to the frequency across the corpus, we would incorrectly declare this type of features

as important. Using standardized mean importance values in m̂k is better in this regard.

We rank the morphological tags (m) for each entity tag k using m̂kðmÞ. The ranked morpho-

logical tags for Finnish and Turkish can be seen in Tables 4 and 7, respectively. To conserve

space, these tables show only the tags that appear in the top 10 (for Finnish) and top 20 (for

Turkish). Rows in these tables are morphological tags (m) and columns are entity tags (k).

Each cell gives the rank of the corresponding m̂kðmÞ. A high rank (one being the highest) indi-

cates a positive relation, whereas a low rank indicates a negative relation with respect to the

prediction of entity tag k.

Finnish. The five morphological tags with the highest and lowest ranks in a column

exhibit a coherent picture. The highest ones are generally related to the entity tag, while the

lowest ones are either unrelated or are in contradiction with the semantics of the entity tag.

For example, for Finnish, the first seven morphological tags in column ‘LOC’ of Table 4

include five case related tags which indicate the inessive ‘Case = Ine’, genitive ‘Case = Gen’,

elative ‘Case = Ela’, illative ‘Case = Ill’, and adessive ‘Case = Ade’ cases. All of these cases are

related to the locative semantics of the attached word. The column for ‘TIM’ also shows a simi-

lar relation. The essive case marker ‘Case = Ess’ which is related with temporal semantics is in

the top three morphological markers of the Finnish ‘TIM’ entity. Additionally, we observe that

the illative ‘Case = Ill’ and innessive ‘Case = Ine’ cases are among the most negative ones (87th

and 89th) in the column of the ‘DATE’ entity tag. This is expected because these are known to

be related to location expressions. This kind of observations can help in assessing the quality of

a trained model.

In addition to this analysis, we evaluated the importance of the tags with another approach

where we exploited the rule-based NER tagger which was used to validate the Finnish dataset

[31, 32].

The Finnish dataset was created with manual annotations, which were subsequently vali-

dated with the rule-based FINER NER tagger to improve the quality [36]. FINER is a part of

the finnish-tagtools toolkit which contains a morphological analyzer, a tokenizer, a

POS tagger, and a NER tagger for Finnish [36]. The rules of FINER have been specified by lin-

guists and tested on the dataset. As such, the labels produced by them may be considered as

gold labels.

The FINER authors define a rule for each named entity tag that matches every instance of

it. To tag a sentence, it is tokenized and the morphological tags of every word are determined

using a Finnish morphological analyzer. These morphological tags are then disambiguated

using a POS tagger. The output of these tools consists of the surface form, the lemma, the
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Table 4. The ranks of m̂kðmÞ for each entity tag in Finnish.

Morphological Tag ORG TIT PER TIM LOC DATE PRO MISC EVENT OUTSIDE median std. dev.

Number = Sing 89 1 89 89 89 88 89 2 3 89 89 42

Case = Nom 88 89 3 82 88 11 1 89 1 1 3 39

Voice = Act 3 83 5 80 79 6 12 83 84 85 12 30

VerbForm = Fin 6 79 9 61 8 12 8 78 12 86 8 26

Mood = Ind 8 81 70 52 9 14 9 81 16 88 9 27

Number = Plur 4 85 4 86 3 23 78 1 89 75 4 35

Case = Gen 87 87 88 79 2 7 88 13 87 2 87 37

Degree = Pos 2 88 85 2 87 1 82 84 6 3 82 41

Person = 3 20 84 7 54 17 33 76 66 28 83 20 19

Tense = Pres 10 9 16 68 10 13 14 76 14 87 14 32

Case = Par 17 86 87 85 6 86 2 85 7 14 7 28

Style = Coll 14 74 2 9 21 32 16 50 32 22 16 22

VerbForm = Part 23 65 57 76 39 3 33 73 8 36 33 27

Case = Ine 84 15 24 4 1 89 5 87 85 35 24 35

Case = Ill 33 14 77 75 5 87 3 82 31 34 31 29

PartForm = Past 25 69 60 77 74 5 29 65 10 33 29 26

Case = Ela 83 62 68 67 4 19 4 86 42 32 42 24

VerbForm = Inf 13 31 21 49 84 8 84 12 86 77 84 25

Voice = Pass 27 70 56 55 19 4 79 71 27 31 27 25

Person = 1 9 8 73 69 11 26 6 75 29 78 11 28

Case = Ade 86 37 69 66 7 30 11 80 82 4 69 26

Connegative = Yes 22 63 20 7 26 15 23 6 17 84 22 32

Person[psor] = 3 55 34 38 60 76 43 18 3 81 26 55 18

Case = All 54 75 81 65 12 36 13 79 2 23 13 22

Derivation = Minen 31 3 83 83 22 29 15 7 19 20 22 28

NumType = Card 16 68 30 88 82 21 87 77 5 6 30 32

Case = Ess 35 28 55 3 13 2 26 63 34 7 34 23

Case = Tra 53 12 17 51 70 28 43 9 38 8 43 16

Typo = Yes 28 76 64 5 83 24 40 64 13 9 40 29

Mood = Imp 34 23 8 8 25 17 75 16 23 5 25 6

Abbr = Yes 7 5 1 22 78 82 85 74 4 82 7 32

Foreign = Yes 5 11 86 27 23 69 17 5 11 81 17 30

Clitic = Kin 29 18 6 6 81 79 7 8 33 18 29 27

Case = Ins 15 17 79 64 69 9 20 59 24 79 24 27

Derivation = Lainen 41 2 78 71 16 71 22 70 18 62 22 26

NumType = Ord 11 6 75 59 33 84 81 4 9 64 33 32

Derivation = Inen 79 4 71 62 27 34 73 19 21 69 71 24

Derivation = Vs 48 7 44 74 48 75 47 68 69 46 48 25

UNKNOWN� 1 77 84 1 86 85 86 88 83 76 84 32

Tense = Past 12 80 76 21 15 45 10 72 78 12 15 26

PartForm = Pres 50 10 23 20 29 25 41 60 43 13 41 17

Mood = Cnd 77 67 19 23 36 53 39 20 26 10 36 21

InfForm = 2 18 38 35 10 85 10 80 11 15 80 35 27

Clitic = Han 80 49 10 16 20 60 54 48 58 59 54 15

Mood = Pot 39 13 32 32 67 58 27 10 56 40 39 17

The morphological tags that are in the first 10 for at least one entity tag are shown.

https://doi.org/10.1371/journal.pone.0244179.t004
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disambiguated morphological tags, and some extra labels such as proper name indicators. The

rules for each named entity tag are matched using this output. The first successful match desig-

nates the named entity tag. Each rule is a regular expression or a combination of several other

rules, using concatenation, union, or intersection operators in pmatch syntax [37]. For exam-

ple, the rule named PropGeoLocInt in Table 5 matches a single word only if the word’s

morphological tag includes ‘NUM = SG’, one of the three case morphemes ‘CASE = INE’,

‘CASE = ILL’, ‘CASE = ELA’, and the proper noun label ‘PROP = GEO’ (e.g. Finnish word

‘Kiinassa’ which means ‘in China’ matches this rule). In rows 2 and 3 of the table, the simple

rules called ‘Field’ and ‘FSep’ are used to match a string of any length and a tab character,

respectively. In rows 4 and 5 of the table, we see a specific concatenation of these two rules and

several string literals in curly brackets. These pieces make up the rule that matches the surface

form, the lemma, the disambiguated morphological tags, and the extra labels. However, a suc-

cessful match of this rule does not result in a named entity tag. Instead, it is used in more gen-

eral rules as seen in the definition of LocGeneral2 in rows 7-8 of Table 5. It matches the

rule PropGeoGen and the rule PropGeoLocInt in the right context. This hierarchical

structure continues up to the top rule for the ‘Location’ named entity tag, namely the Loca-
tion rule. The morphological tags used in FINER are different from the ones in our paper as

it employs the Omorfi morphological analyzer. However, the mapping is straightforward

except for a few cases such as ‘VerbForm = Fin’ and ‘Mood = Ind’ [38].

We form a graph to evaluate the overlap between the morphological tags output by our

method and those specified in the FINER rules. The internal nodes in the graph correspond to

the rule names and the leaf nodes to the morphological tags. We define an edge from rule A to

rule B if and only if the definition of rule A contains a reference to rule B in the form of concat-

enation, union or intersection operators. We process this graph to produce a subgraph for

each of the nodes that correspond to named entity tags. For this, we start from the node of a

named entity tag and traverse the graph breadth-first for a maximum of four iterations.

Table 5. Three FINER rules are presented in the order of increasing generality.

1 Rule PropGeoLocInt

2 Surface form Field FSep—i.e. any string is allowed

3 Lemma Field FSep—i.e. any string is allowed

4 Morphological tags Field [{NUM = SG} Field {CASE=}[{INE}|{ILL}|{ELA}]] Field FSep

5 Extra labels Field [{PROP = GEO}] Field FSep

6 Rule LocGeneral2

7 Single word PropGeoGen

8 Right context RC(WSep PropGeoLocInt)

9 Rule Location

10 Option 1 Ins(LocGeneral)

11 Option 2 Ins(LocGeogr)

12 Option 3 Ins(LocPolit)

13 Option 4 Ins(LocStreet)

14 Option 5 Ins(LocAstro)

15 Option 6 Ins(LocPlace)

16 Option 7 Ins(LocFictional)

The first one acts on single words. The second applies a rule on a single word and requires the right context to match

another rule. The last one is the top rule for the ‘Location’ tag. Options 1, 2, 3, and 6 can also be seen in Fig 7 as they

lie on paths that reach a morphological tag while other options do not lead to any.

https://doi.org/10.1371/journal.pone.0244179.t005
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Although the resulting subgraph is not strictly a tree, it is highly hierarchical. In Fig 7, we pres-

ent a subgraph for ‘Location’ to demonstrate the hierarchical nature of the FINER rules graph.

In the figure, ‘PropGeoGen’ is referred to by two rules, which themselves are referred to by

‘LocGeneral’. One of them is ‘LocGeneral2’ and the other is ‘LocGeneralColloc1’. In a sub-

graph, we follow every possible path from the root node to the leaf nodes that are composed of

the Omorfi equivalents of the morphological tags from Table 4. If there is at least one such

path, we assume that the morphological tag is related to this named entity tag and thus may be

used to evaluate the list of important tags produced by our method.

Table 6 shows the matching results between the proposed explanation method and the

FINER tagger for the five most-frequently occurring (more than 1000 occurrences) named

entity tags in the dataset. We ignored the morphological tags that are not in the top 10 of the

importance list of the proposed explanation method. This resulted in a set of 19 morphological

tags which was used during the following evaluation. We quantify the rate of matching by

counting the number of successful decisions by our method. When it is concurrently true that

a morphological tag is predicted as important for a named entity tag and there is at least one

path from the named entity to the morphological tag, we regard this as a true positive (TP). If

it is predicted to be important by our method but no paths exist between the named entity tag

and the morphological tag, it is counted as a false positive (FP). For example, all predictions

for ‘Location’ are correct, i.e. all of our predicted morphological tags are reachable from the

Fig 7. A subset of the graph that is formed based on the FINER rules. It shows the nodes and the connections that lie between the

‘Location’ top rule and the morphological tags reachable using the rules. We only show the subgraph reachable from ‘LocGeneral’ in

finer detail, while replacing the other subgraphs with triangles. Morphological tag nodes are represented with a rectangle. Circles

represent the internal rules.

https://doi.org/10.1371/journal.pone.0244179.g007

Table 6. Results of the matching between the proposed explanation method and the FINER tagger for the five most-frequently occurring named entity tags.

TP TN FP FN Precision % Recall % F1-measure %

Location 7 7 0 5 100.00 58.33 73.68

Organization 4 8 1 6 80.00 40.00 53.33

Person 4 8 3 4 57.14 50.00 53.33

Product 2 7 4 6 33.33 25.00 28.57

Time 1 9 7 2 12.50 33.33 18.18

Total 18 49 22 25 45.00 41.86 43.37

https://doi.org/10.1371/journal.pone.0244179.t006
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named entity tag. However, five morphological tags that are predicted as unimportant to

‘Location’ have paths originating from the ‘Location’ named entity tag. These are regarded as

false negative (FN) predictions. Other seven predictions are counted as true negatives (TN).

In Table 6, we see a mostly assuring picture. The precision rates of ‘Location’ and ‘Organi-

zation’ are quite high while that of the ‘Person’ type is lower. This is due to the fact that two of

the three false positives in ‘Person’ (‘Style = Coll’ and ‘Person = 3’) are absent in the FINER

rules. The first one is a tag specific to this dataset and the second one does not exist in FINER

rules although it is a tag found in our corpus. The false positive in ‘Organization’ is also the

‘Person = 3’ tag. The worst recall rate occurs with our predictions for the ‘Product’ named

entity tag. The recall ratio indicates that we miss about 75% of the morphological features

which are important according to the FINER rules. Some of the missed ones are among the

most common morphological tags such as ‘Case = Gen’ and ‘Number = Plur’, which are used

in many basic rules such as ‘PropGeoGen’. These basic rules appear in many paths that start

from any named entity tag. This inevitably results in many paths that end at these morphologi-

cal tags for each named entity tag, thus lowering the recall rate for all. The same observation is

valid for the other four named entity tags also in the sense that these common tags are included

within their false negatives.

Turkish. An inspection of the ‘ORG’, ‘LOC’, and ‘PER’ entity tag columns in Table 7 for

Turkish reveals that the tag that indicates proper nouns (‘Prop’) is the dominant one. This

shows that the model relies on the morphological analyzer’s performance to mark proper

nouns correctly. However, the case of ‘P3sg’ is more interesting. This morpheme is commonly

found in noun clauses which are organization or location names. On the other hand, it is

never attached to person names. The case of ‘P3pl’ is similar. This is reflected in our results;

these morphological tags are not positively related with the ‘PER’ entity tag as seen in the table.

The case of ‘Almost’ is interesting as it is a rare morpheme and is almost never attached to the

correct morphological analysis. These properties should have made it an unimportant tag. On

the contrary, it is regarded as an important tag for ‘ORG’ and ‘LOC’ named entity tags by our

method. One possible explanation is that when ‘Almost’ is removed from the feature sets to

create perturbed sentences, the morphological analyses that contained ‘Almost’ before pertur-

bation is regarded more probable by the tagger, which in turn decreases the probability of the

prediction. This causes the morpheme ‘Almost’ to be considered as an important morphologi-

cal tag with explanatory value.

Importance distributions of morphological tags

The histograms of importance values for various combinations of entity types and morpholog-

ical tags are shown in Fig 8 using the Finnish NER corpus. Each row in Fig 8a is a heatmap

that represents a histogram of values in ÊPERðmÞ, which is a vector that consists of all impor-

tance values of the morphological tag m explaining a ‘PER’ entity tag prediction in a region.

Bin edge positions are determined by −10i/10 and 10i/10 for the negative and positive sides,

respectively, where i 2 {−25, . . ., 13}. The frequency corresponding to each bin is coded with

color tones from white to black. The morphological tags are ordered in descending order from

top to bottom by their mutual information gain MIPER,m. However only the first 20 morpho-

logical tags are shown here due to space constraints. Fig 8b is formed likewise. There is often a

clustering between −0.050 and 0.063 when all morphological tags are considered. This cluster-

ing vanishes when only the first 20 morphological tags are considered. We argue that this is

correlated with high mutual information gain values corresponding to higher ranked morpho-

logical tags.
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Fig 8c and 8d show that the explanation values for the morphological tags ‘Case = Ine’ and

‘Case = Nom’ are distributed in a different way by plotting the histograms of ÊLOCðmÞ where

m is the corresponding dimension. These figures have the same x axis as in Fig 8a and 8b. We

should note that the x axis is in log-space so that the clusters near the center are very close to

zero, whereas the concentration around 7.94 indicates that a significant portion of the impor-

tance values are high.

Table 7. The ranks of m̂kðmÞ for each entity tag in Turkish.

Morphological Tag ORG LOC PER median std. dev.

Noun 176 181 2 89 0

A3sg 2 180 178 90 0

Verb 8 147 173 90 0

Adj 3 170 176 89 0

P3sg 4 2 169 86 0

Pos^DB 17 160 171 94 0

Punc 20 5 7 13 0

Pos 13 16 4 8 0

Prop 1 1 1 1 0

Acc 12 169 174 93 0

Nom^DB 9 166 170 89 0

Loc 19 177 161 90 0

Adverb 46 14 19 32 0

Conj 28 6 18 23 0

Num 21 13 9 15 0

Pass 59 19 17 38 0

P3pl 14 12 70 42 0

Adj^DB 15 172 156 85 0

Past 62 153 14 38 0

Card 36 18 16 26 0

Imp 16 7 6 11 0

A2sg 18 8 5 11 0

Ness 11 150 147 79 0

Aor^DB 32 17 164 98 0

Agt 22 9 172 97 0

With 27 158 10 18 0

P1sg 24 30 8 16 0

Almost 6 4 139 72 0

A2pl 41 28 11 26 0

Opt 51 29 13 32 0

Noun^DB 5 3 138 71 0

Equ 37 15 15 26 0

Ord 26 11 12 19 0

UNKNOWN� 10 165 3 6 0

Pron 56 55 20 38 0

Interj 173 20 32 102 0

The morphological tags that are in the first 20 for at least one entity tag are shown.

https://doi.org/10.1371/journal.pone.0244179.t007
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Importance of morphological tags across the entity tags

To determine the morphological tags that are important across entity tags, we count the

number of times the rank of m̂kðmÞ is in the top or bottom 10 ranks. The morphological tags

are sorted by the sum of these frequencies for the features that are ranked at the top and bot-

tom of the list. The first 10 morphological tags with the highest sum for Finnish are shown

in Table 8 which are the most frequently encountered tags for most languages. They signify

singular or plural, active or passive, and mark the word as nominal, genitive, or inessive

cases.

Fig 8. The histograms of importance values for various entity tag and morphological tag combinations. Darker colors indicate higher frequencies.

Calculated over the training corpus in Finnish. All histograms in the figures share the same bin edges. Edge positions are calculated by −10i/10 and 10i/10

for the negative and positive sides, respectively, where i 2 {−25, . . ., 13}. (a) Each row is a heatmap that represents a histogram of ÊPERðmÞ
corresponding to the morphological tag m. (b) Each row is a heatmap that represents a histogram of ÊLOCðmÞ corresponding to the morphological tag

m. (c) The histogram of ÊLOCðCase ¼ IneÞ which is the 1st row of (b). (d) The histogram of ÊLOCðCase ¼ NomÞ which is the 2nd row of (b).

https://doi.org/10.1371/journal.pone.0244179.g008
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Quantitative validation using mutual information

In order to validate the explanations created by the proposed explanation model, we employ

m̂k (Eq 6d) and MIk;m (Eq 8). We denote the 10 morphological tags (m) with the highest m̂kðmÞ
values as Ik. Independently, we calculate the mutual information gain MIk,m between the prob-

ability of each morphological tag m being in region rij and the probability of entity tag k being

the label of region rij. We call the first 10 morphological tags with the highest mutual informa-

tion score as Jk.
Ik represents the proposed method’s list of globally important morphological tags, whereas

Jk is a list created by information gain independent of any particular model. The degree of

agreement between these lists gives a quantifiable metric to evaluate different explanation

methods. We proceed to take the intersection of Ik and Jk for each entity tag k and report the

common morphological tags in Table 9 for Finnish and Turkish. The number of morphologi-

cal tags that are both in Ik and Jk hints that the proposed explanation method can correctly

predict the morphological tags with high information gain.

Effect of the absence of a morphological tag

After the rankings of the morphological tags using the average importance values m̂kðmÞ are

obtained for each morphological tag m and entity tag k (Tables 4 and 7), we considered ways

of using this knowledge to obtain an improved version of our model. One idea was to modify

the architecture of the NER tagger so that it pays more attention to the higher ranked tags

compared to the other tags. For example, an extra dimension in the morphological tag embed-

ding to represent the rank of the corresponding morphological tag can be exploited by the neu-

ral network. However, as the results of the explanation method are relevant only in the context

of the specific model that is being inspected, this would result in a new model related to the

original model. If the original model was successful in exploiting the morphological features

that are really important to the NER task, this approach would yield successful. On the other

hand, if the original model was not able to exploit the important morphological tags due to

the training regime or the inefficiency of the architecture, our method would falsely indicate

other morphological tags instead of the important tags. This approach would yield a model

with less performance. So, training a model which exploits the higher ranked morphological

tags reported in our study might not result in an improved performance.

Instead, we decided to test the hypothesis that higher ranked morphological tags can

improve the performance for NER by following a corpus-based approach. For the ‘Location’

Table 8. The frequency of ranks that are in the first ten of an entity tag for each morphological tag in Finnish.

Morphological Tag Top Bottom Top+Bottom

Number = Sing 3 7 10

Degree = Pos 5 5 10

Case = Nom 4 5 9

Case = Gen 3 5 8

Case = Par 3 5 8

UNKNOWN� 2 6 8

Number = Plur 4 3 7

Voice = Act 3 4 7

Abbr = Yes 4 3 7

Case = Ine 3 4 7

https://doi.org/10.1371/journal.pone.0244179.t008
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named entity tag in Finnish, we chose the top two ranked morphological tags (‘related tags’)

and eight other randomly selected morphological tags which are not among the first 10 or last

10 ranks (‘unrelated tags’). For each of these 10 tags, we created a modified version of the data-

set so that no morphological analysis contains the corresponding tag. We then trained and

evaluated each of the 10 models separately in two independent runs. We calculated the aver-

ages of the F-measure, precision, and recall metrics for the ‘Location’ named entity tag using

these two runs. Table 10 compares the performance of the ‘related tags’ (‘Case = Ine’ and

‘Case = Gen’) and the ‘unrelated tags’ in terms of the differences in these metrics. For each

combination of two ‘related’ and ‘unrelated’ tags, we subtract the success rate of the model in

which a related tag is removed from the success rate of the model in which an unrelated tag is

removed. The average, minimum, and maximum values of the resulting eight difference values

are shown in the respective columns. A positive difference in the average column indicates

that the removal of the unrelated tags decreases the performance of the model less than the

removal of the related tag, while a negative difference indicates the opposite.

Table 9. Common Finnish and Turkish morphological tags that are both in Ik and Jk.

Finnish

Entity tag Morphological tags Agreement

rate

ORG ‘Case = Gen’, ‘Number = Plur’, ‘Number = Sing’, ‘Case = Nom’, ‘Degree = Pos’,

‘�UNKNOWN�’

0.6

TIT ‘Case = Gen’, ‘Case = Par’, ‘Number = Sing’, ‘Case = Nom’ 0.4

PER ‘Number = Plur’, ‘Number = Sing’, ‘Case = Nom’, ‘Abbr = Yes’, ‘Degree = Pos’ 0.5

TIM ‘Number = Sing’, ‘Case = Ess’, ‘Degree = Pos’, ‘Case = Par’, ‘PronType = Dem’,

‘�UNKNOWN�’

0.6

LOC ‘Number = Plur’, ‘Case = Nom’, ‘Degree = Pos’, ‘Case = Ill’, ‘Case = Ine’,

‘�UNKNOWN�’

0.6

DATE ‘Case = Ess’, ‘Case = Ine’, ‘Degree = Pos’, ‘�UNKNOWN�’ 0.4

PRO ‘Case = Par’, ‘Case = Nom’, ‘Case = Ela’, ‘NumType = Card’ 0.4

MISC ‘Number = Plur’, ‘Number = Sing’, ‘Case = Ela’, ‘Person[psor] = 3’, ‘Degree = Pos’,

‘Case = Par’, ‘�UNKNOWN�’

0.7

EVENT ‘Case = Ine’, ‘Number = Plur’, ‘Voice = Act’ 0.3

OUTSIDE ‘Case = Ade’, ‘Number = Sing’, ‘Case = Nom’, ‘Degree = Pos’ 0.4

Turkish

Entity tag Morphological tags Agreement

rate

ORG ‘Adj’, ‘P3sg’, ‘Prop’, ‘A3pl’, ‘Nom’ 0.5

LOC ‘Loc’, ‘Dat’, ‘P3sg’, ‘Prop’, ‘Nom’, ‘Gen’ 0.6

PER ‘Adj’, ‘Gen’, ‘Dat’, ‘Nom’ 0.4

https://doi.org/10.1371/journal.pone.0244179.t009

Table 10. Comparison between each ‘related tag’ and ‘unrelated tag’ sets using F-measure and Recall metrics.

Unrelated tags

Related tag Metric Average % Difference Min % Difference Max % Difference

Case = Ine Precision 0.31 -1.83 2.86

Recall -2.73 -5.44 -0.39

F-measure -1.31 -3.07 -0.21

Case = Gen Precision -2.34 -4.48 0.21

Recall 0.14 -2.57 2.48

F-measure -1.07 -2.83 0.03

https://doi.org/10.1371/journal.pone.0244179.t010
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The results shown in Table 10 are contrary to our expectations. Our hypothesis that the

related tags contain a stronger signal for the named entity tag and their absence would

decrease the model performance is not verified. This is verified only for the precision metric of

the ‘Case = Ine’ tag and the recall metric of the ‘Case = Gen’ tag. An observation might explain

the failure to reject the null hypothesis. An inspection of the morphological analyses reveals

that ‘unrelated tags’ occur less frequently than ‘related tags’. We know that there are some co-

occurring morphological tags for each tag and the removal of a tag might be compensated by

the co-occurring tags. However, this mechanism might not work for ‘unrelated tags’ as they

have relatively fewer co-occurring morphological tags. This might in turn result in a higher

loss of performance when an ‘unrelated tag’ is removed.

Conclusions and future directions

In this work, we introduced an explanation method which can be employed for any sequence-

based NLP task. We introduce the terminology and a procedure which can be adopted to any

model that implements a sequence-based NLP task and can transform the model’s predictions

to be explained with the proposed explanation method. The case study using a joint NER and

MD tagger shows that the proposed method can be employed to provide explanations for sin-

gle input samples to assess the contribution of features to the prediction. Furthermore, it is

shown that an analysis of these explanations across the corpus can be helpful in assessing the

plausibility of a given trained model.

While forming explanations, we treat each feature in a given region as independent from

each other. However, the features may be related to each other in many ways. Firstly, some

morphological tags in a single morphological analysis of a given word are dependent on each

other. For instance, the presence of one tag may strongly signal the presence of another tag or

the order of appearance in the morpheme sequence may be important. Secondly, this depen-

dence may be observed between features inside and outside the region. For example, named

entities are usually related to the features of the words to the left or to the right of the context,

such as the morphological tags and the characters of the surface forms. In future work, we aim

to consider such relationsby extending our model to permit perturbation across multiple

regions of variable sizes. The dependency between features can be explored better if our

method allows perturbing one or more features either from the region on the left, the region

on the right or the region of the named entity itself.
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