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Abstract

Accurate calculation of the water-filled rut depth is critical for assessing hydroplaning poten-

tial. Nevertheless, due to the difficulty in collecting and calculating the water-filled rut depth,

most transportation agencies do not use i, especially in the case of lateral slopes, although

water-filled rut depth is a key parameter that impacts driving safety. Contributions of this

paper are development of a methodology to reliably compute the water-filled rut depth and

quantitatively evaluate the influence of lateral slope on the water-filled rut depth. The pro-

posed method include: 1) acquisition of the high-resolution 3D point cloud data of rut, 2)

smooth processing of rut profile through moving average method with Matlab programming,

3) water-filled rut depth computation at different lateral slopes with the assistance of key

points based on rut sections. With the variation of water-filled rut depth (ΔWD), its change

rate (δWD), and the calculation error between the rut depth and the water-filled rut depth

(Δn) as evaluation indexes, the variation law of water-filled rut depth under different lateral

slopes is analyzed when considering the severity level and rut shape of the rut profile.

Results show that: 1) the increase in lateral slope leads to the reduction of water-filled rut

depth; 2) the water-filled rut depth is affected by the rut shape, including rut side wall’s slope

and the key points’ elevation. The accurate calculation of the water-filled rut depth can pro-

vide reliable suggestions for safe driving.

1. Introduction

The accumulation of water in the rut road section poses a threat to the safety of vehicles. The

water in the rut will cause part or even all of the friction between the tire and the road surface

to lose, resulting in safety hazards such as vehicle hydroplaning and sliding. For this reason, it

is necessary to measure the water-filled rut depth accurately to ensure the reliability of vehicle

safety analysis. The rut depth measured by the wire method or the straightedge method [1,2] is

the maximum water depth, that is, the depth of the rut in the dry state, and the influence of the

lateral slope (cross slope and super elevation) on the water-filled rut depth is ignored. The

water-filled rut depth is not only determined by the single factor of rut shape. The water-filled

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0243952 December 11, 2020 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yan J, Zhang H, Hui B (2020) Analysis of

the lateral slope’s impact on the calculation of

water-filled rut depth. PLoS ONE 15(12):

e0243952. https://doi.org/10.1371/journal.

pone.0243952

Editor: Feng Chen, Tongii University, CHINA

Received: September 30, 2020

Accepted: November 30, 2020

Published: December 11, 2020

Copyright: © 2020 Yan et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The work described in this paper was

sponsored by the Key Laboratory of Transport

Industry of Management, Control and Cycle Repair

Technology for Traffic Network Facilities in

Ecological Security Barrier Area (Inner Mongolia

Transport Development Research Center), Grant

No. 2019KFJJ-004, Key Research and

Development Program of Shaanxi (Program No.

2020ZDLGY16-01).

https://orcid.org/0000-0002-8349-2981
https://doi.org/10.1371/journal.pone.0243952
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243952&domain=pdf&date_stamp=2020-12-11
https://doi.org/10.1371/journal.pone.0243952
https://doi.org/10.1371/journal.pone.0243952
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rut depth of the same shape varies under different lateral slopes, which leads to the difference

in the rut depth and safety risk. When the rut depth exceeds 7.6 mm, the rut-related accident

rate begins to increase at a significantly greater rate [3]. In addition, every 2.5 mm increase in

the rut depth raises the car crashes by 16%, as reported by Cenek [4] in the United States.

Thus, the accurate measurement of rutting depth’s impact on traffic accidents analysis should

not to be ignored, not to mention the water-filled rutting depth. Therefore, the influencing fac-

tors of water-filled rut depth need to be further investigated.

As an important indicator of road design, lateral slope (cross slope and super elevation)

provides turning centripetal force and affects road cross-section drainage, but it is seldom

mentioned in the standards for rut evaluation and maintenance. Due to the limitations of cur-

rent detection technology, it is hard to detect complete transverse pavement profiles and lateral

slopes on a large scale in the road network level. Most of the previous studies used low inten-

sity, low accuracy Transverse Profilograph or gauges to collect complete transverse pavement

profiles and cross-slopes [5]. In addition, there isn’t a unified method for calculating the

water-filled rut depth. For example, the rut width and the cross-slope angle were used to calcu-

late the water-filled rut depth by sinusoidal calculation [6,7]. This calculation method simpli-

fies the rut profile and is not suitable for various actual rut profiles. Furthermore, the elevation

of the section point was adopted to obtain the distance between the water edge and the lowest

water point, so as to calculate the water-filled rut depth [5,8–10]. This method is reasonable

theoretically, but only the concept of this approach is proposed, and few studies have analyzed

its practical application. Due to the difficulty of cross-slope and rut profile detection, the

water-filled rut depth is rarely used to evaluate rut severity or analyze driving safety.

In addition, although the importance water-filled rut depth is increasingly recognized, the

difference between the water-filled rut depth and the dry rut depth has not been quantitatively

analyzed. Luo [11] calculated the hydroplaning speed and identified the potential hydroplan-

ing road segments by using the water-filled rut depth. From the analysis results, it is known

that the potential hydroplaning road segments divided by the water-filled rutting depth and

non-water-filled rutting depth is not the same, but there is no quantitative analysis. Simpson

[12] reported that the volume of accumulated water is a function of the rut depth, the cross

slope, and the longitudinal slope. This dependency is well understood, however, no method is

provided to calculate the water-filled rut depth.

The above research shows that due to the limitation of detection techniques and the incon-

sistent definition, water-filled rut depth has not been applied to the road network by transpor-

tation departments, despite being considered to be important for driving safety. Furthermore,

the influence of lateral slope on water-filled rut depth is still not quantified. Therefore, by

advanced 3D line laser technology, full-profile rut point cloud elevation can be collected [13],

and the accurate measurement of water-filled rut depth can be obtained. The purpose of this

paper is to explore the influence of lateral slope on water-filled rut depth, and to demonstrate

the necessity of lateral slope detection in rut maintenance.

2. Rut morphology and data collection

2.1 Rut shape and its deterioration

Pavement rutting, also referred to as permanent deformation, is a “contiguous longitudinal

depression deviating from a surface plane defined by transverse cross slope and longitudinal

profile” [1,14,15]. It is a “permanent or unrecoverable traffic-associated deformation within

pavement layers” [16]. It can arise because of the densification effect from repetitive traffic

loading; it can also be caused by design or structural failure of the surface and/or supporting

layers of the pavement, or by construction quality issues.
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Deterioration of pavement rut has been extensively studied, mainly for the purpose of

pavement design. Existing models predict the growth of rut depth over time and cumulative

traffic loading, either empirically by correlating field observations (e.g., traffic configura-

tion, weather conditions, and other surface distresses) with the growth of rut, or mechanis-

tically by deriving theoretical pavement layer responses via structural analysis means and

laboratory tests [16–18].

The impact of lateral slopes (including cross slope and super elevation) on rut deterioration

is analyzed below. As shown in Fig 1, the cross slope is usuallly designed and constructed to be

1–2%, the super elevation on curves are lightly lager, but no bigger than 8% in the expressway

[19]. For straight road sections, the right rut depth is genrally larger than the left (right rud-

der). The wheel track on the outer side of the lane bear a greater load due to the cross slope.

When a car is running on left-turn curved road sections, the wheel track on the outer side of

the lane bears a greater load; at the same time the centripetal force becomes larger. Rut profiles

at different super elevations on curves are different. When lateral slope increases, the required

centripetal force increases, so does the rut depth on the right side.

2.2 Data acquisition and pre-processing

As shown in Fig 2A), the 3D pavement surface data are collected by the 3D laser scanning

vehicular system (3D LSVS). The 3D LSVS is equipped with two laser scanning units and a

high-resolution Distance Measurement Instrument (DMI). Among them, the DMI which is

mounted on the right rear wheel controls the data collection interval between two consecutive

transverse profiles. Two laser scanning units (Gocator 2380) are used to continuously collect

3D transverse pavement profiles. These two laser units are approximately 1.8 m above the

ground. They can acquire profile data from two separated sensors with 1,280 data points cov-

ering a 3.5 m wide lane. The transverse pavement profile consists of two sets of profile data 1

and 2, which constitutes the profile data of the whole lane (Fig 2B).

The 3D LSVS needs to avoid rainy days given that the testing results will be affected by

water and mud, etc. When the driving speed is below 40 km/h, the laser scanning unit, con-

trolled by the DMI, can collect data at 2 mm interval between two 3D transverse profiles in the

driving direction at a scan frequency of 4,500 profiles per second. In addition, the 3D laser

scanning units provide a 2 mm resolution in the transverse direction (X direction) and 2 mm

resolution in the longitudinal direction (Y direction). Laboratory and field tests demonstrated

that the 3D LSVS meets the technical requirements specified in PP70-10 [20] and produces

data for computing rut parameters.

Fig 1. Ruts on straight and curved road sections.

https://doi.org/10.1371/journal.pone.0243952.g001
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During the detection, the lateral slope, tire pressure, pavement surface conditions, vehicle

trajectories, resolution of the data collection triggering device, and other operational and sys-

tematic variation, differences in 3D pavement data collected at different timestamps are

unavoidable [21]. Thus, 3D pavement data need to be registered by a semi-automated method

according to Wang’s research. The vertical elevation of the inner side of left and right lane

marking is zero after the registration.

In order to ensure the accurate calculation of water-filled rut depth, smoothing pretreat-

ment of removing outliers and noise is required for the detected transverse pavement profile.

According to AASHTO PP69 [2], the moving average filter is used to smooth the elevation

point cloud data of rut profile detected by 3D laser (Eq 1).

z0½i� ¼
1

m

Xðm� 1Þ=2

j¼� ðm� 1Þ=2
z½iþj� ð1Þ

Where z[] is the input data, z0
½�

is the filtered output data and m is the size of filtered window

with the length of 50 mm (when calculating the rut depth) and 200 mm (when calculating the

water-filled rut depth) [2]. As shown in Fig 3, rut profiles before and after filtration are illus-

trated by blue and red lines, respectively.

3. Methodology of rut parameters calculation

Fig 4 illustrates the rut parameters calculation methods for different types of rut. Here, the W-

shaped rut refers to rut with a crown in the middle, and the U-shaped rut refers to rut without

a crown. According to the definition of AASHTO PP69 [2], the water-filled rut depth is deter-

mined by the elevation difference between the water spillover point and the lowest elevation

point of section, as is manifested in the vertical distance between the lowest elevation point

Fig 2. 3D laser sensing vehicle of Chang’an University and full-lane detection of rut.

https://doi.org/10.1371/journal.pone.0243952.g002

Fig 3. Rut profile before and after filtration.

https://doi.org/10.1371/journal.pone.0243952.g003
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and water line. Rut depth can be calculated by the straightedge and wireline methods, espe-

cially the straightedge method, two major approaches to derive rut depth from collected trans-

verse profiles [22]. According to the Standard Test Method for Measuring Rut-Depth of
Pavement Surfaces Using a Straightedge, the distance between the bottoms surface of the

straightedge and the pavement after the gauge is measured as the rut depth. Moreover, accord-

ing to the wireline method stipulated in Figure T 0973–3 in JTG E60-2008 Field Test Methods
of Subgrade and Pavement for Highway Engineering [23], the maximum vertical distance

between the wire and the rut profile on both sides is calculated, that is, the rut depth. In this

paper, the wireline method is adopted since its definition is more close to the water-filled rut

depth, especially when U-shaped rut is considered.

Fig 5 is an example for the calculation of rut depth and water-filled rut depth. As is men-

tioned above, the key points with green circle below are identified in the calculation of rut

depth and the water-filled rut depth with the help of auxiliary line (including wire line and

water line). The key points include maximum and minimum points. The former determines

the contact point of the wireline with the rut profile and the edge point with water overflow,

while the latter determines the lowest point of wireline method and the lowest point of accu-

mulated water. Owing to the fluctuation of rut profile, there may be one or more extreme

points. It is therefore necessary to adopt the secondary screening to obtain the maximum value

according to the road partition where the extreme value points are located.

To determine the key points of the rut profile, the road surface is divided into five regions by

defining the wheel track. This paper employs the definition of wheel-track given by Florida

Department of Transportation [24] to divide lanes, as shown in Fig 5. The whole lane is divided

into five areas by the two wheel-tracks with the length of 0.9 m. The distance from the wheel

track to the lane marking is 0.4 m, and the distance between the two wheel tracks is 0.9 m.

The key points of rut are extracted according to the divided rut sections, and the maximum

points are screened twice through the maximum language in Matlab (Eqs 2 and 3). These max-

imum points are located outside the wheel track zone, while the minimum points are in the

section of the wheel track. The maximum points are labelled 1, 2 and 3 from left to right, and

Fig 4. Rut parameters calculation methods.

https://doi.org/10.1371/journal.pone.0243952.g004

Fig 5. Schematic diagram for the calculation of rut parameters and rut section.

https://doi.org/10.1371/journal.pone.0243952.g005
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the minimum points are labelled 4 and 5.

transverse location of the maximum points indtop ¼ findðdiffðsignðdiffðzÞÞÞ ¼¼ � 2Þþ1; ð2Þ

transverse location of the minimum points indbottom ¼ findðdiffðsignðdiffðzÞÞÞ ¼¼ 2Þ þ 1; ð3Þ

Where “z” is the vertical elevation of the laser points on the rut profile.

As shown in Fig 5, the connecting line between point 1 and point 3 is wire line, and the line

extending from point 1 to its right is water line. The left and right rut depths are equal to the

vertical distance from point 4 and point 5 to the wire line respectively. The left and right water-

filled rut depths correspond to the vertical distance from point 4 and point 5 to the water line.

4. Case study

The objective of this paper is to analyze the impact of the single variable lateral slope on water-

filled rut depth. Thus, rut profiles with similar shapes but different lateral slopes on straight

road and curved road respectively need to be collected and compared. This assumption is rea-

sonable because there is such a possibility in large number of rut profiles from the prospective

of road network-level. Neverthelsss, rut on curved road cannot be collected so far.

Due to the limitation of experimental conditions, this paper adopts the rotation method to

obtain the rut profiles with lateral slopes for hypothesis analysis, and attempts to analyze the

difference between the rut depth and the water-filled rut depth at different lateral slopes. This

paper aims at doing feasibility study that trying to arouse the attention of scholars and engi-

neers in analyzing the safety driving states of water-filled rut with lateral slopes.

4.1 Data preparation

The elevation information of continuous adjacent profiles with different rut shapes in the two

straight road sections of 500 meters long in provincial highway can be obtained by Chang’an

University sensing vehicle. Moreover, four profiles of low and high severity levels are selected

for analysis, among which 10–15 mm refers to low-severity rut and 15–25 mm high-severity

rut according to theHighway Performance Assessment Standards [25] of China. Rut A (in Fig

6A and 6C) is a W-shaped rut with the maximum depth of 20.2 mm and Rut B (in Fig 6B and

6D) is a U-shaped rut with the maximum depth of 26.4 mm, which need to be repaired by

maintenance department according to the Technical Specifications for Maintenance of Highway
Asphalt Pavement [26] of China.

In an attempt to analyze the influence of lateral slope on the water-filled rut depth, the rut

profile are rotated by 2%, 4%, 6% and 8% respectively (represented by α) according to Eqs 4

and 5. Then the automatic calculation of the water-filled rut depth at different lateral slopes is

realized with the help of Matlab.

x0k ¼ x1 þ ðxk � x1Þcosaþ yksina ð4Þ

y0k ¼ ðxk � x1Þsina � ykcosa ð5Þ

The vertical elevation difference4H between left and right ends after the rotation of rut

profile is presented in Table 1. RW shows the horizontal distance between left and right end-

points of the rut profile.

DH ¼ RW � tanðaÞ ð6Þ
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4.2 Selected evaluation methods

After comparing the current evaluation indexes [27–31], in the present paper, the impact of

lateral slope on the depth calculation is evaluated by the variation of water-filled rut depth

(ΔWD) and the variation rate of water-filled rut depth (δWD).4WD can quantitatively

respond to the change in accumulated water and has a high correlation with safety. δWD can

intuitively describe the change in accumulated water without considering the influence of rut

severity levels. The equations are expressed as follows.

DWDn¼WDn� WD0 ð7Þ

dWDn ¼ ðWDn� WD0Þ=WD0 ð8Þ

Where WD0 is the water-filled rut depth of the registered rut profile with a lateral slope of 0%,

Table 1. Influence of lateral slope on the elevation difference between ending points.

α 2% 4% 6% 8%

4H(mm) 70 140 210 280

https://doi.org/10.1371/journal.pone.0243952.t001

Fig 6. Characteristic profile of ruts.

https://doi.org/10.1371/journal.pone.0243952.g006
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and WDn denotes the water-filled rut depth with specified lateral slopes. WD0 is the maximum

water-filled rut depth, which is compared with the ruts of other slopes.

In addition, the deviation between the rut depth (RD) and the water-filled rut depth (WD)

is analyzed, denoted by Δn (Eq 9).

Dn¼ RD� WDn ð9Þ

4.3 Results analysis

Table 2 compares the ruts of low and high severity levels, and shows the results of the variation

of water-filled rut depth (ΔWD) and its change rate (δWD) at different lateral slopes.

First, whether the water-filled rut depth will be affected by the change in lateral slope is

studied by sensitivity analysis. Variance analysis is the most commonly used approach for sen-

sitivity analysis [32]. Herein, the one-way variance analysis is employed with lateral slope as

control variable, and variation of accumulated water depth Δ WD as observation variable. The

significance level is 0.05, and the variance analysis results are given in Table 3.

It can be seen from Table 3 that, when only the lateral slope is considered, the obtained F is

6.819 and the corresponding probability p = 0<0.05 (significance level). This indicates that there is

a significant difference in the variation of accumulated water depth under different lateral slopes. It

is thus can be concluded that lateral slope has a great impact on the accumulated water depth.

The water-filled rut depth varies in a range of (-6.1, 25.1) mm. Besides, the difference

between the rut depth and the water-filled rut depth ranges within (0, 26.4) mm. Table 2 also

shows that water-filled rut depth varies considerably regardless of rut severity levels. The wad-

ing test indicates that vehicle hydroplaning will occur when the water film is 3 mm in thickness

[14]; the study conducted by Start shows that the water-filled rut depth of 7.6 mm and the

length of 9.1 m contribute to the occurrence of vehicle hydroplaning; according to Cenek [4],

every 2.5 mm increase in rut depth will raise accident rate by 16%; Norwegian research shows

that every 5–10 mm increase in water-filled rut depth will increase the probability by 5% [4].

This demonstrates that the accurate measurement of water-filled rut depth’s impact on traffic

accidents analysis should not to be ignored.

Taking U-shaped Rut 3 # as an example, Fig 7 presents the variation of water-filled rut

depth with the lateral slope of 2%, 4%, 6% and 8% respectively. It can be found that the accu-

mulated water gradually decreases with the rising lateral slope. With regard to the lateral slope

of 6%, the amount of accumulated water of left ruts is 0 mm, while in the case of lateral slope

of 8%, the water amount of both left and right ruts is reduced to 0 mm. Based on the calcula-

tion above, the water-filled rut depth of all ruts is 0 with the slope of 8% and thus is not

Table 2. Variation of the water-filled rut depth and its change rate.

No. Severity level 0% Lateral slope 2% Lateral slope 4% Lateral slope 6%

WDL0 (mm) WDR0 (mm) 4WDL2 (mm) 4WDR2 (mm) 4WDL4 (mm) 4WDR4 (mm) 4WDL6 (mm) 4WDR6 (mm)

WDL0 (mm) WDR0 (mm) δWDL2 δWDR2 δWDL4 δWDR4 δWDL6 δWDR6

1# Low-U-shape 14.4 12.4 10.4 9.6 13.2 11.3 14.4 12.4

0.73 0.78 0.92 0.91 1 1

2# High-W-shape 13.5 13.2 1 8.8 8.5 10.7 11.6 13.2

0.07 0.67 0.63 0.81 0.86 1

3# High-U-shape 25.1 25.8 19.5 10.8 22.9 20.4 25.1 22

0.78 0.42 0.91 0.79 1 0.85

4# Low-W-shape 5.5 5.2 -6.1 3.3 1.2 5.2 5.5 5.2

-1.11 0.64 0.22 1 1 1

https://doi.org/10.1371/journal.pone.0243952.t002
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presented in Tables 2 and 4. From the variation of accumulated water volume, it can be known

that lateral slope has a large impact on water depth, which lowers the accuracy of results and

finally leads to the mis-grading of rut severity level.

The change rate of water-filled rut depth has little correlation with the rut severity level. For

example, the severity level of rut is 2 # and 4 # respectively with the change rate of 0.85 and

0.77 in terms of low and severe right rut. The rate is indeed closely correlated with the rut

shape. It is obvious that the change rate of W-shaped rut is smaller than that of U-shaped rut,

owing to the large Z value at key point 3, even after rotation. This further indicates that the

ruts without a ridge in the middle are greatly affected by lateral slope. Actually, among all

kinds or ruts, such ruts without ridges account for the largest proportion, leading to the mis-

grading of over 50% of rut severity levels.

Specifically speaking, the change mentioned above is influenced by the key points of 1, 2, 3,

4 and 5. With the lateral slope of 0% and 2% as an example (as shown in Fig 8), the water-filled

rut depth of the left rut is affected by the points 1, 2 and 4. With regard to the right rut, the

water-filled rut depth is influenced by points 3 and 5. Moreover, water is easily discharged

after the rotation of lateral slope with a gentle slope of the side walls. Therefore, whether water

Table 3. Impact of lateral slope on variation of water-filled rut depth.

Quadratic sum df Mean square F Significance

Differences between groups (Combination) 7.913 12 0.659 6.819 0.000

Sums of square Comparison 7.620 1 7.620 78.795 0.000

Deviation 0.293 11 0.027 0.276 0.987

Differences within groups 3.771 39 0.097

Total 11.684 51

https://doi.org/10.1371/journal.pone.0243952.t003

Fig 7. Variation of water-filled rut depth with lateral slope.

https://doi.org/10.1371/journal.pone.0243952.g007

PLOS ONE Lateral slope’s impact on water-filled rutting depth

PLOS ONE | https://doi.org/10.1371/journal.pone.0243952 December 11, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0243952.t003
https://doi.org/10.1371/journal.pone.0243952.g007
https://doi.org/10.1371/journal.pone.0243952


can be accumulated in the rut is determined by the lateral slope of right rut side wall, as well as

the elevation values of points 2 and 3. The larger the cross slope, the greater the vertical eleva-

tions of points 2 and 3 and the stronger the water accumulation capacity.

Based on the assessment, rut shape characteristics, including the position, slope, depth, and

patterns of a rut will impact the water-filled rutting depth calculation accuracy. It should be

noted that the above analyses are all about right-turn curve, so the left side end of the rut pro-

file is higher than the right side end. In addition, drivers on the curve are right rudder. When

these rut profiles are on the left-turn curve, the water-filled rut depth will be influenced by the

left rut side wall and the elevation values of points 1and 2. Additional actual transverse profiles

with different rut shapes on different curves should be further analyzed with regression

Table 4. Comparison of rut depth and water-filled rut depth. (unit: mm).

No. Severity level Rut depth 0% Lateral slope 2% Lateral slope 4% Lateral slope 6%

RDL RDR 4L0 4R0 4L2 4R2 4L4 4R4 4L6 4R6

1# Low 14.6 12.8 0.18 0.36 10.62 9.99 13.41 11.61 13.58 12.78

2# High 20.0 18.8 6.5 5.6 7.5 14.4 15 16.3 18.1 18.8

3# High 25.1 26.4 0 0.6 19.5 11.4 22.9 21 25.1 22.6

4# Low 14.3 12.3 8.8 7.1 2.7 10.4 10 12.3 14.3 12.3

https://doi.org/10.1371/journal.pone.0243952.t004

Fig 8. Change in the water-filled rut depth (taking 0% to 2% change of lateral slope as an example).

https://doi.org/10.1371/journal.pone.0243952.g008
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analysis method, using to quantify the potential errors and further understand the impact of

rut shape on water-filled rutting depth error.

5. Conclusions and recommendations

In an attempt to evaluate the influence of the lateral slope (cross slope and super elevation) on

the water-filled rut depth, the present paper employs 3D laser to obtain the high-resolution

point cloud data and calculates the water-filled rut depth under different lateral slopes. With

the variation of water-filled rut depth (ΔWD), the change rate of water-filled rut depth (δWD),

and the calculation error (Δn) of water-filled rut depth as evaluation indicators, a thorough

analysis is conducted on the variation law of the three indices under different lateral-slope con-

ditions and severity levels.

(1) The increase in lateral slope leads to the decrease in water-filled rut depth. The variation of

water-filled rut depth (ΔWD) and calculation error (Δn) range can be (-6.1, 26.4) mm,

which will cause misjudgment in hydroplaning potential evaluation.

(2) The water-filled rut depth is influenced by rut profile shape, including rut side wall and

the key points’ elevation, which depends on the vertical elevation of key points 2 and 3 and

the slope of the right rut wall.

(3) The rut depth cannot be simply adopted to express the water-filled rut depth, which is of

great significance to pavement rut maintenance decision.

Further research may be carried out on the interaction mechanism between lateral slope

and rut deterioration based on practical data. In addition, the influencing factors of water-

filled rut depth, such as pavement texture, rainfall intensity, and longitudinal grade need to be

further explored. Also, vehicle driving influencing factors like speed needs to be considered in

further research.
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