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Abstract

In this paper, the authors use survey data from over 800 households to examine the impact

of demonstration plots and associated activities (distribution of small packs of agricultural

inputs) on smallholder farmers’ decisions to buy agricultural inputs in Tanzania. Using pro-

pensity score matching and inverse probability-weighted adjustment models, the authors

estimated the effect of access to demonstration plots alone and demonstration plots com-

bined with small packs of agricultural inputs on a household’s decision to purchase improved

inputs. The results indicate that access to demonstration plots and demonstration plots with

small packs increased the probability of purchasing improved inputs by 13–17 percentage

points. This paper suggests that demonstration plots and demonstration plots with small

packs are an effective model for enhancing improved technology adoption and are further

increased when those inputs are available within a 5km radius. The results point to the

importance of strengthening farmers’ organizations and last-mile agricultural input suppliers

in order to enhance and facilitate access to information, appropriate production techniques,

and improved inputs. The results also indicate the importance of investing in infrastructure

to reduce transportation costs that limit market efficiency for appropriate technologies.

1. Introduction

1.1 Background

Despite some progress over the past years, agricultural productivity in sub-Saharan Africa is

still low and far below potential [1]. In Tanzania, smallholder agriculture is the main source of

livelihoods for most of the population, employing over 70% of the population and contributing

25% to the Gross Domestic Product [2]. The fact that most of the population contribute only

25% of GDP is indicative of the low productivity and therefore high vulnerability to food and

income insecurity. The main factors that limit the productivity of smallholder agriculture in
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the country include land degradation and poor soil fertility; climate variability; crop pests and

diseases; low adoption of improved agronomic practices as a result of inadequate access to

information and unreliable agro-input supply systems and institutional barriers such as poor

markets for inputs and farm products; and poor farmer organization [3].

The Government of Tanzania and its development partners have developed and imple-

mented several policies and programs aimed at improving agricultural productivity and nutri-

tion as summarized by [4]. These include the Tanzania Development Vision (TDV 2025),

CAADP country strategy, which translates into the Food Security Development Plan (TAF-

SIP– 2016/17–2020/21); Agricultural Sector Development Plan II (2016/17–2020/21); the

National Multi-Sectoral Nutrition Action Plan (NMNAP– 2016/17–2020/21), District Agricul-

tural Development Plans (DADPs), and the Southern Agricultural Growth Corridor of Tanza-

nia (SAGCOT). Efforts of these plans have realized some results but more still needs to be

done. At the global level, in 2010, the United States government launched a hunger and food

security initiative, Feed the Future (FtF), which is designed to harmonize regional hunger- and

poverty-fighting efforts in countries with chronic food insecurity and insufficient production

of staple crops. Tanzania was one of the beneficiary countries as part of this initiative. The FtF

initiative was designed to thrive on leveraging of partnerships, innovation and host govern-

ment leadership [5].

One of the FtF investments in Tanzania was the NAFAKA staple value chain project led

by ACDI/VOCA. The first phase of the activity (project) was commissioned in 2011 and ran

through 2016 with a goal of sustainably reducing poverty and hunger by improving the produc-

tivity and competitiveness of maize and rice value chains that offer job and income opportuni-

ties for rural households in Tanzania [6]. A second phase of the NAFAKA project focusing on

market systems development (NAFAKA II) was launched in September 2016 and will close

activities in October 2021. The NAFAKA project partnered with another FtF initiative, the

Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) led by

the International Institute of Tropical Agriculture (IITA). This project also had a focus on creat-

ing opportunities for smallholder farm households to move out of hunger and poverty through

sustainably intensified farming systems that improve food, nutrition, and income security, par-

ticularly for women and children, and conserve or enhance the natural resource base.

Given the centrality of agricultural extension and advisory services for addressing rural

poverty and food insecurity [7], the two interventions made investments in this component.

Particularly, demonstrations plots were used in conjunction with other extension methods

and techniques given their role in enabling farmers to learn first-hand about improved tech-

nologies [8] and then complemented with small packs of agro-inputs and extension training

activities to stimulate farmers’ trial and experimentation before making adoption decisions as

suggested by [9]. The objective of this study is therefore to assess whether these influence farm-

ers’ decisions to adopt agro-inputs when compared to farmers in non-project locations.

1.2 Study context and related literature

Our study focuses on activities related to maize production in Tanzania, the largest producer

in East Africa. Maize is also the main staple crop in Tanzania, in addition to rice which

NAFAKA and Africa RISING projects also work with in the country. Both crops are grown

by over 90% of farmers in the country. The implementation approach for the NAFAKA and

Africa RISING projects involved developing a network of rural-based extension service pro-

viders (volunteer and government staff), group and association capacity building and enhanc-

ing access to agro-inputs through agro-input supply networks. NAFAKA has additional
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unique approaches to expanding market and trade and engaging with public and private

sectors to play active roles in enhancing smallholder livelihoods across the value chain.

The intervention further focuses on the establishment of demonstration plots for farmer

learning and experimentation, thereby providing an opportunity for them to observe the bene-

fits of crop varieties, good agronomic practices (GAPs) and natural resource management.

The plots are managed by the village-based extension staff and lead farmers who use them to

provide direct training to farmers with technical support from NAFAKA and Africa RISING

scientists. Another utility of the demonstration plot model is that it is anticipated to stimulate

farmers’ purchase of agro-inputs after observing clear benefits of the technologies at the plots.

Demonstration plots, and later farmer field schools have been a cornerstone of agricultural

extension services in Tanzania [8, 10, 11]. Demonstration plots, when well planned, designed

and implemented, provide an opportunity for beneficiaries to, among others, see the technolo-

gies together with their benefits as well as interact with the scientists, extension staff and other

actors in development and research. The beneficiaries are also able to have key questions

answered and doubts cleared thereby providing further reinforcement on their decisions to

adopt the demonstration technologies. Several studies related to demonstration plots and cere-

als production have been conducted in East Africa. For instance, [12–14], analyzed the impact

of demonstration plots and other factors on farming practices, while [15, 16], and specifically

focused on the impact of demonstration plots on cereals farming in East Africa.

Results of these studies show different benefits of demonstration plots on household

income and investment. Notably [12], concludes that an extension program featuring demon-

stration plots contributed to statistically significant increases in household income and invest-

ment. Likewise [13], found a highly statistically significant increase in farm income for farmers

attending Farmer Training Centers and demonstration plots. In contrast [14], showed that

although training programs featuring demonstration plots were linked to adoption decisions,

the impact was limited by capital constraints. However, to our knowledge, very few studies

explicitly focused on the extent to which demonstration plots, either in isolation or in combi-

nation with other activities influenced farmers’ decisions to purchase and use inputs associated

with the demonstration technologies. We aim to contribute to the growing literature on agri-

cultural extension by assessing the effect of demonstration plots and demonstration plots

combined with small packs of inputs on the purchase of improved agricultural inputs using

a unique and recent household-level data. Precisely, we use the propensity score matching

(PSM) and the doubly robust inverse probability weighted regression adjustment (IPWRA)

models to estimate the average treatment effects. The IPWRA provides efficient estimates by

allowing the modelling of both the outcome and the treatment equations and requires that

only one of the two models are correctly specified to consistently estimate the impact [17].

The rest of the paper is organized as follows. In the next section, we present the sampling

strategy and data collection procedure. Section 3 lays out the empirical framework whereas

section 4 presents the results and discussion. The last section draws conclusions and

recommendations.

2. Materials and methods

2.1 Sampling and data collection

The study was conducted in: (i) districts where NAFAKA/Africa RISING was operational

from the inception of the projects in 2012 (i.e. Kongwa and Mvomero districts); (ii) districts

where NAFAKA/Africa RISING started operating in 2016 (i.e. Iringa Rural and Kilolo dis-

tricts). These districts are shown in Fig 1. As the first stage of the sampling procedure, these

districts were selected purposively. Specifically, Kongwa and Iringa districts were selected to
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participate in the Africa RISING/NAFAKA projects because they had some of the most food-

insecure villages in Tanzania. There are parts of these districts that are semi-arid with unreli-

able and unevenly distributed rainfall associated with frequent cycles of drought and flooding

pushing agro-pastoral and smallholder farming households over the edge. Without the benefit

of modern farming technologies, farmers typically rely on low-yielding practices and crop

varieties. Contrary to Kongwa and Iringa, Mvomero and Kilolo districts have stable and reli-

able rains but the farming communities typically own small land sizes and most are remote

and thus far from markets. Also, they face threats of land degradation and diminishing farm

outputs although they are using improved seeds and fertilizers.

In the second stage, sets of villages were selected as “treatment” villages and “control” vil-

lages from each district. Treatment villages are those where NAFAKA/Africa RISING had

interventions and control villages are those that did not receive any project intervention. The

control villages were identified in the same agroecological zone as treatment villages. Farmers

in these villages rely exclusively on public extension services provided by village agricultural

extension officers (VAEOs). The VAEOs operate in a challenging work environment with lim-

ited travel and logistical support, limited training on new technologies and minimum supervi-

sion. There were no established demonstration plots in the control villages at the time of

conducting this study.

VAEOs were engaged by the projects through additional GAP trainings. Each VAEO was

also tasked to establish a demonstration plot in collaboration with existing farmer groups in

Fig 1. Districts where the study was conducted.

https://doi.org/10.1371/journal.pone.0243896.g001
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his or her village of operation. Besides working with community members, the treatment vil-

lages also benefited from the ACDI/VOCA Village-Based Agricultural Agents (VBAAs). These

agents were selected by community members to complement the VAEOs’ work and provide

immediate GAP knowledge in the villages after completing a series of training sessions con-

ducted by the projects. In addition to co-managing the demonstration plots, the VBAAs also

provided small packs of agro-inputs to farmers and, where supported, established agricultural

input shops thereby increasing farmers access to these inputs.

In each of the four NAFAKA/Africa RISING districts, five treatment villages and five con-

trol villages were randomly selected for the survey using probability proportional to size sam-

pling (PPS). It is also noteworthy that the study focused on only maize production locations.

Finally based on a sample size calculation considering the total number of NAFAKA/Africa

RISING farmers, 400 farmers each were selected from the treatment and control villages to

create a total sample size of 800 respondents. However, to account for the non-response rate,

more than the minimum target of 20 farmers per village were interviewed in some villages. In

total, 866 respondents were interviewed including 444 respondents from treatment villages

and 422 respondents from control villages. Nevertheless, due to incomplete data from some of

the questionnaires, only 852 households were considered in the analysis.

Data were collected in February 2018 using interviews with respondents from the treatment

and control villages. Specifically, a team of well-trained enumerators used an electronic ques-

tionnaire on the Kobo Toolbox smartphone application to interview the selected survey

respondents. The interviews were conducted in the local language (Swahili) to ensure that the

questions could be easily understood by all respondents. The use of an electronic questionnaire

was very cost-effective and allowed for highly efficient survey enumeration.

2.2 Ethics statement

"The data was collected through household surveys and data were analyzed anonymously. The

participants in the survey were selected from the beneficiaries and non-beneficiaries of the

Africa RISING and NAFAKA project. A clear explanation of the objectives of the survey was

given to the participants and all of them were asked for their verbal informed consent to will-

ingly participate in the study. If the respondents declined to be interviewed, the reasons for

their refusal were also recorded and no one was forced to participate in the survey."

2.3 Conceptual framework and empirical procedure

In this study, we view the decisions of the farmer to visit a demonstration plot in a given period

to be derived from the maximization of expected utility subject to cash, credit, and other con-

straints [18]. In the spirit of other studies in the vein (e.g. [19–21]), let (UE) represent the utility

to the farmer from accessing a demonstration plot and let (UN) represent the utility from not

visiting a demonstration plot. A farmer will choose to visit a demonstration plot if

D�i ¼ UE � UN > 0. D�i is a latent variable determined by observed characteristics (Zi)

which include group membership, ownership of household assets, livestock, household head

socioeconomic characteristics and average annual rainfall and; the error term (ei) such that:

D�i ¼ bZi þ ei with Di ¼
1 if D�i > 0

0 otherwise

(

ð1Þ

where Di is a binary indicator variable that equals 1 if a farmer visits a demonstration plot and/

or demonstration plot with small packs (hereafter referred to as treated) and zero otherwise

(hereafter referred to as not treated) and β is a vector of parameters to be estimated.
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2.3.1 Propensity score matching. As explained above, we envisage that accessing demon-

stration plots and demonstration plots with small packs will encourage farmers to invest in

improved inputs. To estimate the impact of the demonstration plots and/or demonstration

plots with small packs on the agro-input purchase, we used the propensity score matching

approach [21–23]. Specifically, we used the Average Treatment Effect on the Treated (ATT) to

measure the impact which is the average difference between expected outcome values with and

without treatment for those who had access to demonstration plots and/or demonstration

plots with small packs. Following [24, 25], the ATT can be defined as:

ATT ¼ EðY1i � Y0ijDi ¼ 1Þ

¼ EðY1ijDi ¼ 1Þ � EðY0ijDi ¼ 1Þ
ð2Þ

Where E (.) is the expectation operator, Y1i is the outcome for the treated households, Y0i is the

counterfactual outcome for the same household and Di is as defined as above. One problem

that arises in estimating Eq (2) is that we can only observe either Y1i or Y0i but not both of

them for each household. Using the mean outcome of untreated individuals may lead to selec-

tion bias because it is most likely that components which determine the treatment decision

also determine the outcome variable of interest especially in non-experimental studies [24]. To

address this problem, we use PSM. The PSM uses propensity scores to match every individual

observation of treated households with an observation with similar characteristics from the

non-treated or control group. The propensity score is the conditional probability of assign-

ment to the treatment given a vector of observed covariates [26]. In an ideal situation, random

assignment to treatment is the best way of correcting for selection bias because all beneficiaries

would have an equal chance of being assigned to each treatment [27]. However, implementing

a randomized experiment is quite expensive and was not feasible in our study. Other methods

of correcting for selection bias due to both observed and unobserved characteristics such as

Instrumental Variable (IV) techniques impose distributional and functional form assump-

tions, such as linearity on the outcome equation and extrapolating over regions of no common

support, where no similar treated and non-treated observations exist [21]. Although PSM does

not correct for selection bias due to unobservables, it does not impose distributional assump-

tions. Incorporating propensity scores in Eq (2) leads to:

ATT ¼ E½Di ¼ 1; pðXiÞ� � E½Di ¼ 0; pðXiÞ� ð3Þ

Where p(Xi) are the propensity scores estimated from Eq (1) and defined as:

pðXiÞ ¼ PrðDi ¼ 1jXÞ ¼ FfhðXÞg ¼ EðDijXÞ ð4Þ

where X is a vector of covariates based on observed characteristics (i.e. the same as Zi in Eq

(1)) and F{.} is a normal cumulative distribution function. In the estimation of the ATT, we

used the nearest neighbour and kernel-based matching algorithms.

PSM estimation relies on two important assumptions; the conditional independence and

overlap assumptions. The conditional independence assumption (CIA) states that the treat-

ment assignment is essentially randomized when we condition on a rich set of covariates. It

suggests that that systematic differences in outcomes between treated and comparison house-

holds with the same values for covariates are attributable to treatment [25]. The CIA assump-

tion cannot be tested and only relies on conditioning on a rich set of observed covariates. The

overlap assumption on the other hand states that conditioning on a set of covariates, everyone

has a positive probability of receiving treatment (also known as the overlap assumption). We

test this assumption in the subsequent sections.
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2.3.2 Inverse probability weighted regression adjustment. As a robustness check,

we also estimated the ATT using the inverse probability weighted regression adjustment

(IPWRA) which is sometimes referred to as a doubly robust estimator [17, 28]. Like propensity

score matching (PSM), the IPWRA only accounts for observed and does not control for unob-

served heterogeneity. One of the drawbacks of the PSM method is that biased estimates may

be obtained if the propensity score model is misspecified [28]. Unlike PSM, the IPWRA

method provides efficient estimates by allowing the modelling of both the outcome and the

treatment equations and requires that only one of the two models are correctly specified to

consistently estimate the impact. It combines the inverse probability weighting (treatment

model) with regression adjustment (outcome model) to achieve this. The ATT for the IPWRA

can be specified as:

ATTIPWRA ¼ N � 1
XN

i¼1
½ða�

1
þ b

�

1
XiÞ � ða

�

0
þ b

�

0
XiÞ�

¼ ½ða�
1
� a�

0
Þ þ �X1ðb

�

1
� b

�

0
Þ�

ð5Þ

Where ða�
1
; b
�

1
Þ are attained from the inverse probability-weighted least squares problem for

the treated group

mina1b1

XN

i¼1

ðyi � a
�
1
� b

�

1
X1Þ

2

p̂ðX; ĝÞ
ð6Þ

and ða�
0
; b
�

0
Þ are attained from the inverse probability-weighted least squares problem for non-

treated

mina0b0

XN

i¼0

ðyi � a
�
0
� b

�

0
X0Þ

2

1 � p̂ðX; ĝÞ
ð7Þ

The � on the estimated parameters α, β, and X describes the double robustness result;

p̂ ¼ ðX; ĝÞ are the estimated propensity scores. Note that the X’s are defined as above.

3. Results and discussion

3.1 Descriptive results

Table 1 shows the outcome and explanatory variables considered in the study, drawn from the

extensive literature on agricultural extension (e.g. [7, 29–31]). On average, 33% of the house-

holds purchased improved agricultural inputs. The improved inputs include fertilizers, crop

protectants, and improved seeds. Accordingly, ‘improved inputs’ as used in this study is a pur-

chase of the combination of improved seeds, fertilizers and crop protectants. A household was

considered to have purchased improved inputs if they bought any one or a combination of the

inputs. Results in Table 1 also show that about 37% of the households had access to demonstra-

tion plots while 33% had access to demonstration plots and received a small pack of improved

inputs. Demonstration plots are farmer-owned and farmer-managed plots of land used by vil-

lage-based extension agents (VBAA), village agricultural extension officers (VAEOS) or Lead

Farmers as a platform for training farmers on GAPs. They are designed to facilitate positive

changes in farmer practices through the integration of core behaviours in their farm activities

such as proper land preparation, proper spacing, use of fertilizer and improved seeds, soil and

water management, pest and disease control, and pre-harvest/harvest/post-harvest practices.

Such practical training in the demonstration plots is the initial step towards developing knowl-

edge and skills for farmers to build their capacity to adopt improved practices and, in turn,
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increase marginal sales and yields. Farmers were asked whether they have ever accessed the

project demonstrations at least once for purposes of accessing knowledge and skills which they

transfer to their farm operations.

In contrast, small packs represent agro-inputs marketing approach designed to remove bar-

riers to smallholder farmers’ adoption of improved seeds and fertilizers in rural and remote

areas suffering from the prevalence of expired and counterfeit inputs, particularly seed, leading

to low confidence among farmers that improved seeds and fertilizers justify their investment

costs. It involves packs of seed or fertilizer ranging from 50 to 250 grams being distributed for

free to farmers by VBAAs for them to try out for purposes of eliminating doubt, increasing

awareness, and generating interest in purchasing these inputs.

To capture household capital endowments, we include household size, education and

wealth. The size of the household is usually a proxy of household labour availability and previ-

ous studies have shown that larger households are more likely to adopt improved agricultural

technologies [32]. We expect access to demonstration plots to increase with education because

generally, education broadens interest in access to information and services, supporting inno-

vation. We proxy for wealth using a wealth index constructed using principal component anal-

ysis (PCA). The wealth index includes variables measuring various dwelling characteristics:

access to electricity, toilet quality, roof quality, floor quality, and the number of rooms. Besides,

mobile phone ownership and livestock ownership are included in our models but are not part

of the constructed wealth index. It is expected that wealthier households are more likely to

access demonstration plots and use improved agricultural inputs because, in most cases,

improved agricultural inputs are expensive.

Social capital is important in not only facilitating access to improved agriculture technolo-

gies but also in mitigating against production and net returns risks. We measure social capital

in terms of farmer and lender group membership. Group membership indicates the intensity

of contacts with other farmers, hence farmers who do not have contacts with extension agents

Table 1. Descriptive statistics and the definition of variables.

Variable Definition Mean SD

Outcome variable
Improved inputs = 1 if household purchased improved inputs, 0 otherwise 0.33 0.47

Treatment variables
Demonstration plots = 1 if a household had access to a demonstration plot, 0 otherwise 0.37 0.48

Demonstration plots with small

packs

= 1 if a household had access to a demonstration plot and received small packs of agricultural inputs, 0

otherwise

0.33 0.47

Explanatory variables
Household size = Total household size (number) 5.19 2.19

Household head education = Household head education (rank) 1.88 1.11

Household head sex = 1 if household head is male, 0 otherwise 0.22 0.42

Household head youth = 1 if household head is a youth, 0 otherwise 0.25 0.43

Farm size = Land owned by households (ha)

Livestock ownership = Livestock ownership measured in Tropical Livestock Units (TLU) 2.51 12.23

Wealth index = Household wealth index 0.00 1.575

Phone ownership = 1 if household owned a mobile phone, 0 otherwise 0.82 0.38

Bicycle = 1 if a household uses a bicycle as a means of transport 0.34 0.47

Farmer group = 1 if a household is a member of a farmer group, 0 otherwise 0.58 0.49

Lending group = 1 if a household is a member of a lending group, 0 otherwise 0.20 0.4

Tarmac road = 1 if a household has access to a tarmac road 0.02 0.14

Average rainfall Average rainfall (mm) 703.8 263.1

https://doi.org/10.1371/journal.pone.0243896.t001
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may still be informed about new technologies by their colleagues [33]. Results indicate that

about 58% of the sample households were members of a farmer group.

Finally, most countries in sub-Saharan Africa, including Tanzania are subject to environ-

mental problems such as droughts and uneven distribution of rainfall and may also affect the

decision to purchase improved agricultural inputs. We capture the variability in rainfall by

including a rainfall variable which measures the amount of rainfall that was received in the

2016–17 farming season.

Table 2 shows the descriptive statistics disaggregated by access to demonstration plots.

There is a statistically significant difference between the two groups for several variables nota-

bly, households which accessed demonstrations had significantly higher means for several var-

iables related to improved inputs, wealth and access to resources.

3.2 Empirical results

A logit model was used to estimate the probability of access to demonstration plots and demon-

stration plots with small packs. Table 3 shows the marginal effects, with standard errors clustered

at the village level for the results in columns 2 and 4. Even though the main objective of the study

was to examine the impact of extension (i.e. access to demonstration plots and demonstration

plots with small packs) on the purchase of improved inputs, we briefly discuss the results in

Table 3. The results indicate that female-headed households were 8% and 7% less likely to access

demonstration plots and demonstration plots with small packs and these results are in line with

the findings of [34]. Consistent with previous studies on extension [e.g. 35], we found that house-

holds with larger farms were less likely to access demonstration plots with small packs. This is

plausible because most extension agents are more likely to target smallholder farmers. The results

also show that access to demonstration plots and demonstration plots with small packs increased

Table 2. Descriptive statistics by access to demonstration plots.

Variables Accessed demonstration plots Did not access demonstration plots Mean difference

Outcome variable
Improved inputs 0.42 0.28 0.13���

Explanatory variables
Household head education 1.94 1.84 0.10

Household head sex 0.77 0.78 - 0.01

Household head youth 0.22 0.27 -0.05�

Household size 5.33 5.11 0.22

Farm size 2.54 2.43 0.11

Livestock ownership 2.92 2.28 0.64

Wealth index 0.15 -0.09 0.24��

Phone ownership 0.87 0.80 0.08���

Bicycle 0.45 0.27 0.17���

Farmer group 0.21 0.07 0.13���

Lending group 0.27 0.16 0.11���

Average rainfall 692.50 710.40 -17.91

Tarmac road 0.041 0.01 0.04���

Note:

� p<0.10,

�� p<0.05,

��� p<0. 001.

The difference is measured by the two-sample t-test with equal variances.

https://doi.org/10.1371/journal.pone.0243896.t002
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with livestock ownership and wealth index. Wealthier households are usually in a better position

to bear the possible risks and costs associated with accessing demonstration plots and may

have the ability to finance the purchase of inputs. The results also indicate that mobile phones

increased the likelihood of accessing demonstration plots by 8%, which is likely because mobile

phones are an important information access tool allowing farmers to exchange information

regarding the location of the demonstration plots for instance.

Similar to the results found by [36, 37], results in Table 3 indicate that access to demonstra-

tion plots and demonstration plots with small packs increased with membership in farmer and

lending groups by between 12%–25%. Bicycle ownership and access to a tarred road are prox-

ies for transport equipment and transaction costs associated with accessing information

through demonstration plots. Specifically, the results show that the probability of accessing

demonstration plots increased by 39% and that of demonstration plots with small packs by

34%. Accessing a tarred road also increased the propensity to access demonstration plots and

demonstration plots with small packs by 34%, suggesting that farmers who are located near a

tarred road were more are likely to access extension services [37].

Finally, district dummies reflect the agro-ecological and resource differences in the four dis-

tricts. Relative to Kongwa district, farmers in Kilolo and Mvomero districts were less likely to

have access to demonstration plots and demonstration plots with small packs.

3.3 PSM estimates of the impact of access to demonstration plots and

demonstration plots with small packs on the purchase of improved inputs

The logit model results presented above (with standard errors clustered at village level) were

used to generate propensity scores upon which the observed characteristics were balanced

Table 3. Determinants of demonstration plots and demonstration plots with small packs.

Variables Demonstration plots Demonstration plots with small packs

With village cluster std errors Without village cluster std errors With village cluster std errors Without village cluster std errors

Household head education 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01)

Household head sex -0.08� (0.04) -0.08�� (0.04) -0.07� (0.04) -0.07� (0.04)

Household head youth -0.03 (0.04) -0.03 (0.04) -0.05 (0.04) -0.05 (0.04)

Household size -0.00 (0.01) -0.00 (0.01) -0.00 (0.01) -0.00 (0.01)

Farm size -0.01 (0.01) -0.01� (0.01) -0.02�� (0.01) -0.02�� (0.01)

Livestock ownership 0.00�� (0.00) 0.00�� (0.00) 0.00�� (0.00) 0.00�� (0.00)

Wealth index 0.03 (0.02) 0.03�� (0.01) 0.03� (0.02) 0.03�� (0.01)

Phone ownership 0.08� (0.05) 0.08� (0.05) 0.05 (0.04) 0.05 (0.04)

Farmer group 0.25��� (0.06) 0.25��� (0.04) 0.23��� (0.06) 0.23��� (0.04)

Lending group 0.12�� (0.05) 0.12��� (0.04) 0.13�� (0.05) 0.13��� (0.04)

Average rainfall 0.00�� (0.00) 0.00��� (0.00) 0.00�� (0.00) 0.00��� (0.00)

Tarmac road 0.39�� (0.12) 0.39�� (0.13) 0.34��� (0.09) 0.34�� (0.11)

Bicycle 0.10�� (0.04) 0.10�� (0.03) 0.10�� (0.04) 0.10�� (0.03)

Kilolo district -0.41�� (0.16) -0.41��� (0.05) -0.42�� (0.16) -0.42��� (0.05)

Iringa district -0.00 (0.17) -0.00 (0.04) 0.02 (0.14) 0.02 (0.04)

Mvomero district -0.51�� (0.20) -0.51��� (0.07) -0.46�� (0.19) -0.46��� (0.07)

Observations 852 852 852 852

Note: Standard errors in parentheses.

� p<0.10,

�� p<0.05,

��� p<0.001.

https://doi.org/10.1371/journal.pone.0243896.t003

PLOS ONE Impact of demonstration plots on improved agricultural input purchase in Tanzania

PLOS ONE | https://doi.org/10.1371/journal.pone.0243896 January 15, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0243896.t003
https://doi.org/10.1371/journal.pone.0243896


across the treated and non-treated households. Before estimating the causal effects of demon-

stration plots and demonstration plots with small packs on the purchase of improved inputs,

we first tested whether the overlap assumption was satisfied and accessed the quality of match-

ing on propensity scores. Fig 2 shows the propensity score distribution and common support

for propensity score estimation. The results show that the common support condition is satis-

fied as there is substantial overlap in the distribution of the propensity scores of the treated

and non-treated groups.

Since PSM relies on conditioning on propensity scores and not on all the covariates, it must

be checked if the matching procedure can balance the distribution of the relevant variables in

the control and treatment groups [25]. Table 4 presents the results from covariate balancing

tests before and after matching. The reduction in the mean absolute standardized bias between

the matched and unmatched models was used to assess the balancing of covariates. The bal-

ancing tests in Table 4 showed a substantial reduction in the mean absolute bias between the

matched and unmatched models, with no significant differences after matching. The total bias

reduction ranged from 71–76% and this indicates that PSM was successful in reducing selec-

tion bias due to observed characteristics.

Table 4. Matching quality indicators before and after matching.

Treatment (Matching

algorithm)

Pseudo R2

Before

matching

Pseudo R2

after matching

LR X2 (p-value)

Before matching

LR X2 (p-value)

After matching

Mean standardized

bias before matching

Mean standardized

bias after matching

Total% |bias|

reduction

Demonstration plots

(NNM)

0.14 0.007 160.82 (p = 0.00) 6.12 (p = 0.96) 17.8 4.70 73.60

Demonstration plots

with small packs (NNM)

0.16 0.01 169.86 (p = 0.00) 10.14 (p = 0.86) 18.5 5.30 71.35

Demonstration plots

(KBM)

0.14 0.01 160.82 (p = 0.00) 5.43 (p = 0.99) 17.80 4.30 75.84

Demonstration plots

with small packs (KBM)

0.16 0.01 169.86 (p = 0.00) 8.86 (p = 0.92) 18.5 5.40 70.81

1NNM = three neighbours matching and common support.
2KBM = kernel-based matching (Epanechnikov) with bandwidth 0.03 and common support.

https://doi.org/10.1371/journal.pone.0243896.t004

Fig 2. Propensity score distribution and common support for propensity score estimation. Note: ‘‘Treated: on support”

indicates the observations in the treated group (demonstration plots and demonstration plots with small packs) have a suitable

comparison. ‘‘Treated: off support” indicates the observations in the treated group that do not have a suitable comparison.

https://doi.org/10.1371/journal.pone.0243896.g002
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The effects of demonstration plots and demonstration plots with small packs on the pur-

chase of improved inputs estimated with the nearest neighbour (NNM) and kernel-based

matching (KBM) models are presented in Table 5. The results from the two models are similar

(albeit with different treatment effects magnitudes) and they indicate that the probability of

purchasing improved inputs increased with access to demonstration plots and demonstration

plots with small packs. In the NNM model, visiting a demonstration plot increased the proba-

bility of acquiring inputs by 13 percentage points. The households that received small packs in

combination with access to demonstration plots were also likely to procure improved inputs

by 15 percentage points as compared to the non-treated households (Table 5). The results for

the KBM matching algorithm can be interpreted similarly.

3.4 Sensitivity analysis and robustness checks

3.4.1 Sensitivity analysis with Rosenbaum bounds. Since the estimation of treatment

effects with PSM is based on observed characteristics, a hidden bias may arise if treated and

non-treated individuals differ on unobserved variables which simultaneously affect assignment

into treatment and the outcome variable. Using the bounding approach suggested by [38], we

assess how strongly an unobserved factor may influence the selection process to invalidate the

results of PSM analysis [25]. Considering that our outcome variable is binary, we use the Man-

tel-Haenszel (MH) bound proposed by [39]. The results in Table 6 indicate that the treatment

effects were quite robust to the presence of hidden bias at different critical levels of hidden bias

(Γ). Across the different treatment variables, the level at which we start to question our conclu-

sion of a positive effect of demonstration plots and demonstration plots with small packs on

improved inputs purchase ranges from Γ = 1.4–1.6. This implies individuals differ in their

odds of treatment by a factor of 40–60%, in terms of unobserved covariates. These values or

bounds reflect “worst-case scenarios” and hence do not indicate the presence of selection bias

but only tell us how strong the selection bias should be to invalidate our conclusions [25].

3.4.2 IPWRA estimates of the impact of access to demonstration plots and demonstra-

tion plots with small packs on the purchase of improved inputs. As a key robustness check

for the PSM results, we also estimated the IPWRA model and the results are presented in

Table 7. The first and second stage results from the IPWRA are presented in Table A1 in S1

Appendix. The first stage results (treatment equation) shows the determinants of access to

demonstration plots and demonstration plots with small packs and are like those presented in

Table 3. Since our interest was mainly to compare the impact results with those of the PSM,

we are not going to interpret the results in Table A1 in S1 Appendix. When estimating the

IPWRA model, we also conducted an overidentification test for covariate balance to check

Table 5. Impact of demonstration plots and demonstration plots with small packs on access to improved agricultural inputs (PSM).

Treatment variable Matching algorithm Mean of outcome variables based on matched

observations

Treated Non-treated ATT

Demonstration plots NNM 0.40 0.27 0.13��� (0.04)

Demonstration plots with small packs NNM 0.41 0.26 0.15��� (0.05)

Demonstration plots KBM 0.41 0.27 0.13��� (0.04)

Demonstration plots with small packs KBM 0.41 0.25 0.16 �� (0.04)

Standard errors in parentheses � p<0.10, �� p<0.05, ��� p<0.001.
1NNM = three neighbors matching and common support.
2KBM = kernel-based matching (Epanechnikov) with band width 0.03 and common support.

https://doi.org/10.1371/journal.pone.0243896.t005
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whether the covariates were balanced after propensity score reweighting. The results in

Table A1 in S1 Appendix indicate that we cannot reject the null hypothesis that the covariates

are balanced, implying that there is no evidence that the covariates used remain imbalanced

after propensity score reweighting.

The results show that participating in demonstration increases the probability of house-

holds to purchase improved inputs by 16 percentage points. Similarly, the probability of buy-

ing improved inputs increased by 17 percentage points for the households who accessed

demonstration plots with small packs. The IPWRA results are very similar to the PSM results

which gives credence to our PSM results. The results also suggest that our propensity score

model was not misspecified.

Table 6. Rosenbaum bounds for treatments effects of demonstration plots and demonstration plots with small packs on the purchase of improved inputs.

Treatment variable Gamma (Γ) Q_mh+ Q_mh- p_mh+ p_mh-

Demonstration plots 1 3.27 3.27 0.00 0.00

1.2 2.20 4.35 0.01 0.00

1.4 1.30 5.27 0.10 0.00

1.6 0.52 6.08 0.30 0.00

1.8 -0.01 6.80 0.50 0.00

2 0.61 7.45 0.27 0.00

2.2 1.16 8.05 0.12 0.00

2.4 1.67 8.60 0.05 0.00

2.6 2.14 9.11 0.02 0.00

2.8 2.57 9.59 0.01 0.00

3 2.98 10.04 0.00 0.00

Demonstration plots with small packs 1 3.54 3.54 0.00 0.00

1.2 2.50 4.59 0.01 0.00

1.4 1.62 5.49 0.05 0.00

1.6 0.87 6.27 0.19 0.00

1.8 0.20 6.98 0.42 0.00

2 0.21 7.61 0.42 0.00

2.2 0.75 8.20 0.23 0.00

2.4 1.24 8.74 0.11 0.00

2.6 1.69 9.24 0.05 0.00

2.8 2.11 9.71 0.02 0.00

3 2.51 10.15 0.01 0.00

Notes: N = 852. Gamma is the log odds differential assignment due to unobserved factors. The upper (Q_mh+) and lower (Q_mh-) bounds are Mantel-Haenszel point

estimates and; p_mh+ and p_mh- are the significance levels for the upper and lower bounds point estimates.

https://doi.org/10.1371/journal.pone.0243896.t006

Table 7. Impact of demonstration plots and demonstration plots with small packs on access to improved agricul-

tural inputs (IPWRA).

Treatment variable Mean of outcome variables based on

weighted observations

ATT

Treated Non-treated

Demonstration plots 0.42 0.26 0.16�� (0.05)

Demonstration plots with small packs 0.43 0.26 0.17��� (0.05)

Note: Village cluster robust standard errors in parentheses �� p<0.05 ��� p<0.001.

https://doi.org/10.1371/journal.pone.0243896.t007
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4. Conclusions and recommendations

This article examines the impact of demonstration plots on the use of improved agricultural

inputs in Tanzania. Specifically, we use survey data from more than 800 households and a

combination of propensity score matching and the doubly robust inverse probability weighted

regression models to achieve our objective.

The results indicate that livestock ownership, membership in farmer’s and lending groups,

and access to a tarred road were some of the important determinants of access to demonstra-

tion plots and demonstration plots with small packs. Overall, the empirical results across our

estimation methods used in this study were largely consistent and show increases in input pur-

chase by between 13 percentage points (for demonstration plots) and 17 percentage points (for

the combination of demonstration plots with small packs).

The result suggests that strengthening farmers’ organizations and associations are critical

for potentially enhancing, not only access to and use of agro-inputs, but also facilitating access

to output markets through improved quality, access to information and knowledge as well as

facilitating engagement with policymakers [40, 41].

Though both the control and treatment villages had village agriculture extension officers,

the results from this study revealed that farmers in treatment villages were more likely to buy

improved agricultural inputs, which is the objective of most of the agricultural extension models.

The results point to the need for policies to expand past demonstration plots and encourage

financial investment to adopt the VBAAs, and farmer organizations models to act as agents for

multiple seeds, fertilizers and crop protection companies. Policies that encourage individual

entrepreneurs and farmer organizations that can “certify” themselves through VAEOs or the Tan-

zanian Ministry of Agriculture to act as village agents providing credible GAP knowledge as they

identify marketing opportunities will further increase revenues at the village level. These certifica-

tions should also be provided with an incubation period that allows new agro-input businesses to

increase their cash flow, allowing for an expansion of growth and to establish a customer base.

Furthermore, it is apparent from the results of this study that to enhance smallholder access

to demonstration plots, investing in the rural road infrastructure is important. This is because

roads not only facilitate access to demonstration plots but also reduce the cost of transporta-

tion to the input and output markets.
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