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Abstract

In recent years, several studies of human predictive learning demonstrated better learning

about outcomes that have previously been experienced as consistently predictable com-

pared to outcomes previously experienced as less predictable, namely the outcome predict-

ability effect. As this effect may have wide-reaching implications for current theories of

associative learning, the present study aimed to examine the generality of the effect with a

human goal-tracking paradigm, employing three different designs to manipulate the predict-

ability of outcomes in an initial training phase. In contrast to the previous studies, learning in

a subsequent phase, when every outcome was equally predictable by novel cues, was not

reliably affected by the outcomes’ predictability in the first phase. This lack of an outcome

predictability effect provides insights into the parameters of the effect and its underlying

mechanisms.

Introduction

Learning about the relationship between stimuli and events is a fundamental ability of humans

and other animals that enables organisms to prepare for future events and adapt to their envi-

ronment. A classic example of this ability is Pavlovian conditioning [1]. When a stimulus (the

conditioned stimulus, CS, or cue) is repeatedly paired with a significant event (the uncondi-

tioned stimulus, US, or outcome), it comes to elicit a response (the conditioned response, CR)

that is appropriate for the imminent delivery of the outcome. Many contemporary theories

assume that the CR reflects the organism’s prediction of the outcome based on the accumula-

tion of knowledge about the sequential structure of its environment during Pavlovian condi-

tioning [2 for a review]. Associative learning models assume that this knowledge takes the

form of associations between mental representations of events, and that learning results in

changes to the association between the cue and the outcome (ΔV) [3]. According to the

Rescorla-Wagner model, learning is determined by the discrepancy between the outcome

experienced, and the outcome predicted by the associations between cues and outcomes (i.e.,

the prediction error is minimized during learning).
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Moreover, the Rescorla-Wagner theory includes two fixed parameters that alter the rate of

learning and reflect the associability of the cue (α) and the associability of the outcome (β).

According to Rescorla and Wagner, these associabilities are both considered a function of

physical characteristics of the cue and outcome respectively, and not subject to changes during

learning [4]. However, Mackintosh [5] proposed that the associability of a cue (α) can be influ-

enced by its prior learning history. There is now considerable evidence that this is the case. For

instance, the learned predictiveness effect is a phenomenon in which people learn more rapidly

about cues that have previously been experienced as good predictors of an outcome, when

they enter into new associations with a novel outcome [6–11]. In contrast, there is little

research addressing how the associability of the outcome (β) is affected by prior learning.

Recently, several studies in human predictive learning have begun to approach this issue,

demonstrating that the extent to which an outcome has been consistently predicted by a set of

cues, that is its previous predictability, influences new learning about that outcome [12–15, see

16 for a review]. A study conducted by Griffiths, Mitchell, Bethmont and Lovibond [13] first

demonstrated an influence of the outcomes’ predictability on later learning with new stimuli

in a human causal learning task. Participants were required to learn about the causal relation-

ships between cues (foods) and outcomes (allergic reactions) in a hypothetical scenario (i.e. a

fictitious patient) and predict the outcome’s occurrence based on the cues present. Participants

who had correctly learned contingencies in Phase 1 learned more rapidly about novel relation-

ships involving previously predictable outcomes than relationships involving previously less

predictable outcomes in Phase 2. This outcome predictability effect has subsequently been

observed in a visual cued search task [12] and in a serial letter-prediction task [14] (see General

Discussion for details of these studies). All authors argued that the outcome predictability

effect occurs in a manner consistent with the learned predictiveness effect for cues. Hence, the

authors suggested that similar mechanisms to those proposed by the Mackintosh model [5]

might underlie the outcome predictability effect. In particular, an outcome’s associability (β)

may vary based on its previous predictability.

It is noteworthy that such an effect of outcome predictability differs from those captured in

calculations of prediction error, which form part of the Rescorla-Wagner theory and many

others like it [3, 17–20]. Prediction error is determined by the cues that are present when an

outcome occurs. Thus, its influence is confined to situations where these cues, or at least simi-

lar cues that support strong generalization, are present and the association has been re-acti-

vated. It reflects how well an outcome is predicted on a specific trial by a specific cue
configuration. In contrast, we discuss a general influence of the outcome’s predictability on

changes to the processing of the outcome itself, independent of the presence of other cues,

which will therefore transfer to all new learning situations in which the outcome is present.

The outcome predictability effect therefore constitutes a challenge to the assumptions of many

traditional associative models of learning and offers new understanding about the role of out-

come-processing in associative learning.

Considering the potential theoretical significance of the outcome predictability effect, the

present experiments aimed to demonstrate and investigate the effect in a new experimental

paradigm, a relatively novel human goal-tracking task [21]. Cue associability effects, in partic-

ular the learned predictiveness effect, have been demonstrated in a wide variety of learning

paradigms, for example human causal learning [8, 10], but also goal-tracking tasks in animals

[6, 7, 9, 11]. If both effects rely on a similar mechanism, we would expect that the outcome

predictability effect would also be observed in a wide variety of learning paradigms. The pres-

ent series of six experiments adapted a goal-tracking task for human participants. Goal-track-

ing tasks are widely used in animal conditioning studies, [e.g., 22–27], in which animals learn

to check (by poking their nose into) a magazine in anticipation of the food outcome when a
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cue signaling food delivery is presented. Goal-tracking is thought to be representative of the

associative structure between the cue and an explicit representation of the outcome, which

results in behavior specific to the properties of the outcome, such as its spatial location [28].

Further, it has been shown that goal-tracking behavior is particularly sensitive to the updated

value of the outcome and its relationship to the cue [26, 27, 29].

In the following experiments, we measured human participants’ gaze at a certain goal area

in anticipation of a task-relevant outcome. It is well known that eye movements are influenced

by predictions and both anticipatory and smooth pursuit eye-movements have been actively

investigated in research addressing sequence and motion learning, as well in action and motor

control [30, 31]. Koenig and Lachnit [32] reported how the trajectories of saccadic eye move-

ments are affected by memory interference acquired during associative learning. In the present

experiments, overt attention was used as an indicator for discrimination learning about cue-

outcome relationships where cues preceded different outcomes and predicted their location,

identity and timing. The experiments were presented to the participants as a computer game.

Participants were instructed that their primary task was to earn points for “fishing” by clicking

on the fish that appeared in a river on the left side of the screen (see Fig 1). The secondary task,

which was the actual conditioning task, asked participants to feed multiple animals living in

several caves on the right side of the screen. The animals could only be fed when their eyes

appeared in the mouth of the cave, and participants were required to click on the relevant cave

to feed the animal to earn points. The outcome in this case was the appearance of the animal’s

eyes in the mouth of the cave, while each cue was a salient audiovisual stimulus that appeared

(with varying predictiveness) just before the outcome. For example, the river would turn red

before eyes appeared in the top cave, or yellow before eyes appeared in the bottom cave. Out-

comes in our study are not inherently significant, but rather acquire control of behavior during
training by virtue of their task relevance, as participants learned clicking on them would gain

Fig 1. Visual stimuli used in the experiments. Note that not all stimuli shown were present at the same time during the actual experiment.

https://doi.org/10.1371/journal.pone.0243434.g001
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game credit. It has been shown in the literature that the two sources of significance have a sim-

ilar effect on behavior control [33, 34]. Thus, it is reasonable to predict that the outcome with

acquired significance are capable of exerting a similar effect as those traditionally used in con-

ditioning research. The appearance of the eyes lasted for only about a second and was difficult

to detect using peripheral vision alone, making overt monitoring necessary for performing the

task efficiently. Since participants were unable to attend the river and the caves at the same

time, learning about the cue-outcome relationship could be determined by their gaze at a spe-

cific cave’s entrance in anticipation of an outcome during the corresponding cue.

In every experiment, the outcomes differed in their predictability during initial training in

Phase 1. In Phase 2, each outcome became fully predictable by novel cues. In this way, all the

properties of the cues and outcomes (cue predictiveness, current outcome predictability and

all other aspects of the relationships between the cues and outcomes) were identical. Hence, if

learning about the prior predictable and the prior less predictable outcome differed from each

other in Phase 2, it should be attributed only to the different predictability of the outcomes

learned in Phase 1.

The present study employed three different designs to manipulate outcome predictability

during Phase 1 (for an overview see Table 1). In the first three experiments, outcome o1 was

consistently preceded by cue A, while the other two outcomes o2 and o3 were each preceded

by cue C half of the time, and cue D the other half (Design 1). In this way, o1 was fully predict-

able, while o2 and o3 were less predictable. Experiment 4 to 6 examined Designs 2 and 3. In

Design 2, a partial reinforcement procedure was applied to reduce the predictability of one

outcome in initial training. In particular, outcome o2 appeared only half of the time when cue

C was presented in Phase 1, and therefore was regarded as partly predictable, while o1 was

fully predictable by cue A. In Design 3, outcome o2 was less predictable in the first training

phase because it was preceded by cue C half of the time and presented without any cue the

other half of the time, while o1 was fully predictable by cue A. From prior studies, there is no

indication that these different ways of manipulating outcome predictability should affect its

influence on subsequent learning. We therefore expected similar outcome predictability effects

in all designs.

Experiment 1

Experiment 1 aimed to demonstrate the outcome predictability effect in our human goal-

tracking paradigm. In Phase 1, three outcomes differed in their predictability; outcome o1 was

consistently predictable and the other outcomes o2 and o3 were only partly predictable

(A!o1, A!o1, B!Ø, B!Ø, C!o2, C!o3, D!o2, D!o3). Cue B in Phase 1 as well as cue

Z in Phase 2 predicted the absence of any outcome to ensure that participants did not simply

shift their attention to the caves at the onset of any discrete cue, without learning about the

particular relationships between cues and outcomes. In Phase 2, each outcome was fully pre-

dictable by a novel cue (W!o1, X!o2, Y!o3, Z!Ø). If the different predictability of

Table 1. Manipulations of outcome predictability in all experiments.

Experiment Manipulation of outcome predictability in Phase 1

Exp. 1–3 Design 1: A!o1, A!o1, C!o2, C!o3, D!o2, D!o3

Exp. 4 (Group Outcome-absent), Exp. 5 Design 2: A!o1, C!o2, C!Ø
Exp. 4 (Group Cue-absent), Exp. 6 Design 3: A!o1, A!o1, C!o2, Ø!o2

Note. Letters A, C and D denote cues that were always followed by one outcome, donated as o1, o2 and o3. The

absence of the stimuli is denoted as Ø. Outcome o1 is fully predictable with all three designs.

https://doi.org/10.1371/journal.pone.0243434.t001
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outcomes learned in Phase 1 impacts later learning, then learning about o1 should differ from

learning about o2 and o3 in Phase 2.

Methods

Participants. Through an a priori power analysis, a sample size of 18 was suggested by

G�Power [35] to be sufficient for Design 1 (F = 4.54) to detect a medium size effect of outcome

predictability (Cohen’s f = .39 [36]) with 80% power (α = .05, two conditions for the within-

subjects factor outcome predictability, three groups due to the counterbalancing factor, corre-

lation between repeated measures = .5 as default, no sphericity correction).

Twenty-four undergraduate students from Philipps-Universität Marburg, Germany actu-

ally participated in this experiment (Mage = 23.38 years, age range 19–48 years) in exchange for

course credit or payment (EUR € 7). They were allocated equally to the counterbalancing con-

ditions (described below) as they arrived in the experimental room. The studies were approved

on the 19 December 2013 by the local ethics committee of the department of psychology, Phi-

lipps-Universität Marburg. All participants received a complete description of the experiment

and signed a written informed consent form prior to data collection.

Exclusion criteria were (a) missing or invalid gaze data for more than 10% of the total mea-

surements across all training trials and (b) participants who did not gaze at one of the three

outcome areas at all during the corresponding cues. Data from two additional participants

were excluded based on these criteria.

Apparatus and stimuli. All written instructions and visual stimuli were presented on a

23” computer screen and the auditory stimuli were presented with two stereo loud speakers.

The experiments were written in Matlab with Psychophysics Toolbox extensions [37]. A Tobii

TX300 Eye Tracker measured eye fixations with a frame rate of 300 Hz for both eyes. We used

the Tobii Analytics SDK to operate the eye tracker.

Presentation of stimuli on the screen during the learning tasks is illustrated in Fig 1. Color

changes of the river from blue to another (red, yellow, green or white) served as visual cues

and different sound effects (white noise, pure tone, clicking ringtone, and pulsating "wah-wah"

sound) served as auditory cues. Within each learning phase the cues were from the same

modality. Assignment of the visual and auditory stimuli to the cues was randomized for each

participant. The order of the two modalities was counterbalanced.

Different pairs of symbols (“oo”, “xx” or “++”), representing the eyes of different animals

(pig, dog, rabbit) were used as outcomes. The allocation of eye symbols and animal types to

outcomes were randomized across participants. The position of the predictable outcome was

counterbalanced, resulting in three experimental conditions (see Table 2).

Procedure. Participants were informed that the experiment was going to examine their

eye movements during a computer game. After successful calibration and validation of the eye

tracking, participants were informed that they had to accomplish two tasks to earn game

points: (1) Catching fish by clicking on them with the mouse and (2) feeding the animals when

Table 2. Cave conditions in Exp. 1.

Cave Condition Top Cave Middle Cave Bottom Cave

1 o1 o2 o3

2 o2 o3 o1

3 o3 o1 o2

Note. Each outcome was presented in one of three caves (top cave, middle cave and bottom cave). Position of

predictable outcome o1 was counterbalanced across participants.

https://doi.org/10.1371/journal.pone.0243434.t002
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they awake from sleeping by clicking on the eyes that appear on the cave’s entrance. The

appearance of the eyes was signaled by visual or auditory cues, such as a change in the color of

the river or a certain sound. Participants would gain 2 points for each fish they caught, and

would lose 1 point for each fish they missed. Further, participants earned 100 points each time

they succeeded in feeding the animal. However, if they missed, they would lose 100 points.

During the entire experiment, two blue fish were always present simultaneously in ran-

domly chosen positions for a maximum of 1.5 seconds. If participants clicked on a fish during

its presentation, it would turn white and remain on the screen for 0.83 second. Otherwise, it

would disappear and a new blue fish would appear in a new position. The start and end of each

learning trial was not explicitly signaled as each trial began with an ITI that varied between 10

and 15 seconds. The cues were then presented for a randomly selected duration between 3.66

to 4.66 seconds, and the outcome (eyes of the animal) appeared during the final second of cue

presentation. When participants successfully clicked on the eyes, cartoon images of an animal

were shown in animation running from the cave to the river, while the sound of running foot-

steps was played. If the participant failed to release the animal, the image of a fence appeared

above the cave and fell down on the cave, accompanied by the sound of a slamming door. The

game score was displayed above the basket of fish and was a constantly updated throughout

the experiment.

The experiment consisted of 132 trials. Phase 1 trials were arranged into 12 blocks of eight

trials and Phase 2 contained 36 trials grouped into nine blocks. The trial order was randomized

within every three blocks and no more than three trials in a row had the same outcome. A drift

check controlled the validity of the eye-tracking calibration after each training phase.

Data analysis. Only gaze measurements for which both eyes were tracked and identified,

were considered as valid. The measurements for the left and right eyes were averaged to obtain

the final gaze position. Three goal areas of interest (AOI) were defined as a rectangle around

each cave measuring 384 pixels long and 302 pixels wide, centered on the location of the ani-

mal’s eyes (the outcome). We then calculated the proportion of valid measurements during a

specific time window for which the eye gaze fell within a certain goal area (relative dwell time).

Consistent with magazine training experiments [e.g. 38, 39], we compared this response

rate during the presentation of a cue with the response rate immediately before its presenta-

tion. The final dependent variable used in the statistical analyses was the proportion of time

participants spent looking at the correct goal area during the cue presentation before outcome

onset (cue interval) minus the gaze time at the same goal area during an equally long interval

before cue onset (pre-cue interval). This measurement is henceforth referred as “dwell time”.

Results of additional analyses, in which gaze time during the cue and the pre-cue interval were

analyzed separately, can be found in the S1 File.

ANOVAs included the counterbalancing factor “cave condition” as between-subject factor,

in order to reduce error variance and increase sensitivity for an effect of outcome predictabil-

ity. As effects and interactions of this factor are not of interest for the current research ques-

tion, the corresponding statistical results are reported in S1 File.

Whenever the main analysis revealed non-significant statistics for an outcome predictabil-

ity effect, a Bayesian method to ANOVA designs was applied to establish the strength of sup-

port for the null hypothesis [40]. Bayes factors (BF01) were computed based on a Baws method

proposed by Mathôt [41], using the software platform JASP for the main effects and interac-

tions of special interest. These “Baws” factors indicate the weight of evidence for all candidate

models including the effect of interest, compared to the weight of evidence for all candidate

models without the effect of interest. According to Jeffreys [42], a BF01 between one and three

provides anecdotal evidence in favor of the candidate model, which in our analyses is always

the null hypothesis without the outcome predictability effect. Moreover, a BF01 between three
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and ten provides substantial evidence, between 10 and 30 provides strong evidence, between

30 and 100 very strong evidence, and above 100 decisive evidence in favor of the null

hypothesis.

Results and discussion

Phase 1. Trials were grouped according to their outcome, resulting in different trial types

(e.g. o1-trial, o2-trial or o3-trial), and dwell time in each trial type was averaged within each

block. Fig 2A shows that dwell time towards the o1 area in o1 trials increased across blocks,

while the correct responses to the cues associated with o2 and o3 remained relatively low. A 3

(outcome: o1 vs. o2 vs. o3) × 3 (cave condition) × 12 (block) mixed design ANOVA was con-

ducted, in which outcome and block were within-subjects factors. The test revealed a main

effect of outcome, F(2,42) = 7.74, p = .001, η2p = .269, with significant contrasts regarding the

comparison between o1 and both o2 and o3 trials, but not o2 versus o3 (Fo1vs.o2 = 11.03, p =

.003, Fo1vs.o3 = 8.92, p = .007, Fo2vs.o3<1). Notably, a significant outcome × block interaction

reflected that dwell time increased more rapidly in o1 trials than in o2 or o3 trials, F(22,462) =

2.31, p = .022, η2p = .099. Further, the main effect of block was significant F(11,231) = 3.39, p =

.007, η2p = .139. None of the other main effects and interactions of interest were significant

(largest F = 1.26, corresponding p = .264).

Phase 2. Dwell time was averaged within each block based on the outcome’s predictability

during Phase 1, resulting in two trial types (trials involving prior predictable outcome and tri-

als involving prior less predictable outcomes). As Fig 2B shows, the anticipatory gaze towards

the cave of the previously predictable outcome o1 increased more rapidly across the first four

blocks and remained higher than the average dwell time towards the caves of the previously

less predictable outcomes. A 2 (outcome predictability: prior predictable vs. prior less predict-

able) × 3 (cave condition) × 9 (block) mixed design ANOVA was conducted, in which out-

come and block were within-subjects factors. The test of dwell time across all nine blocks

revealed a non-significant main effect of outcome predictability, F(1,21) = 4.12, p = .055, η2p =

.164. Only the main effect of block was significant F(8,168) = 6.35, p< .001, η2p = .232. None

of the other main effects and interactions were significant (largest F = 1.49, corresponding p =

.166). On the other hand, the figure shows that maximum anticipation of the outcomes based

on their respective cues was already reached within the first half of Phase 2, since the

Fig 2. . Panel A and B represent the mean proportion of gaze time in Experiment 1 that participants looked at the correct outcome’s cave during the cue (CI)

and the pre-cue interval (PCI) respectively in each phase (A) Mean gaze time across the 12 blocks in Phase 1. (B) Mean gaze time across the nine blocks in Phase 2.

Note that gaze time in Phase 2 was averaged based on the predictability of each trial’s outcome in Phase 1. Panel C represents the mean dwell time (i.e. differences in

gaze time during the cue and the pre-cue interval) towards the outcome areas during the cues that had not signaled them across nine blocks in Phase 2 (i.e. looking at

the o1 cave when Cue X and Y present, looking at o3 cave when X present and at the o2 cave when Y present).

https://doi.org/10.1371/journal.pone.0243434.g002
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anticipatory responses of both trial types reached the peak in Block 4. As the outcome predict-

ability effect should be strongest while learning was still proceeding, we decided to additionally

analyze dwell time across the first half of Phase 2 (Block 1 to 5). This time, the ANOVA dem-

onstrated a significant main effect of outcome predictability, F(1,21) = 5.83, p = .025, η2p =

.217. Moreover, the main effect of block was significant F(4,84) = 12.83, p< .001, η2p = .379.

None of the other main effects or interactions were significant (largest F = 1.17, corresponding

p = .329).

As expected from the outcome predictability effect, participants exhibited overall longer

dwell time in anticipation of the prior predictable than the prior less predictable outcome dur-

ing the corresponding cue. However, one would also expect this result if participants had

developed a general preference for the o1 cave, independently of learning about the novel rela-

tionship. To exclude this possibility, we compared the dwell time toward the three caves during

cue Z which signaled the absence of any outcome in Phase 2. If a general preference was the

reason for the different dwell times in Phase 2, we would anticipate a difference in dwell time

between o1 and o2/o3 during Z. A 3 (outcome) × 3 (cave condition) × 9 (block) mixed design

ANOVA was conducted. Neither the main effect of outcome, F(2,42)<1, nor its interaction

with block, F<1, was significant, showing no general bias towards any outcome. We observed

a significant effect of block, F(8,168) = 9.61, p< .001, η2p = .314. No further main effects or

interactions were significant (largest F = 1.11, corresponding p = .349).

To further discover whether participants had other systematic biases towards a particular

outcome, we analyzed the dwell time towards caves o1, o2, and o3 during the cue which did

not precede them. In particular, we tested whether participants would prefer caves o3 and o2

to cave o1 during cues X and Y, while learning that the latter predicted o2 and o3, respectively

(Fig 2C). Such a systematic bias could suggest that participants grouped the outcomes based

on the previous predictability, which might impede learning about them as a single outcome

in Phase 2. A 2 (cue: X vs. Y) × 2 (previous predictability: o1 vs. o2/o3) × 3 (cave condition) ×
9 (block) mixed design ANOVA was conducted. The factor previous predictability yielded a

non-significant difference between dwell time towards the area of o1 and o2/o3 during the cue

that was not associated with them, F(1,21) = 4.08, p = .056, η2p = .163. The main effect of block

was significant, F(8,168) = 3.85, p = .004, η2p = .155. No further main effects or interactions

were significant (largest F = 2.77, corresponding p = .111). In sum, participants did not show

any systematic preference for one previously less predictable outcome when learning about the

other less predictable outcome in Phase 2.

The present experiment demonstrated that participants successfully learned the cue-out-

come relationships in Phase 1, when outcomes differed in their predictability. During the first

half of Phase 2, even though all outcomes were completely predictable, participants gazed

more at the location of the previously predictable outcome o1 in anticipation of the outcome

than the locations of the previously less predictable outcomes (o2 and o3), suggesting that the

previously predictable outcome was more readily associated with a novel cue compared to the

previously less predictable outcomes (o2 and o3).

We interpret this finding as representing the effect of outcome predictability on later learn-

ing. If the effect relies on similar mechanisms to those proposed by Mackintosh [5] and

thought to underlie the learned predictiveness effect, our data may indicate that a higher

predictability of an outcome can increase its associability and, hence, accelerate learning about

its relationship with novel cues in subsequent learning.

It is notable that the effect appeared only in the first half of Phase 2. In particular, a differ-

ence in dwell time between two trial types firstly increased and then declined. A possible expla-

nation is that learning about the novel relationships in Phase 2 was completed within the first

half of the phase. Afterwards, some participants started to delay switching eye gaze from the
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distractor task (i.e. fishing) to the goal area (i.e. cave), as they had learned to optimize their

motor responses, estimate how long they would need for it and when the outcome would

appear at the earliest. The duration of cue-presentation was set between 3.66 to 4.66 seconds

based on a pilot study and another learning study [21]. This time span ensures that most par-

ticipants are able to acquire the cue-outcome associations. However, individual differences

still have potential to interfere with the anticipated effect.

If the outcome predictability effect is comparable to a similar learned predictiveness effect

anticipated by the Mackintosh model [5], it is reasonable to expect that the effect of outcome

predictability would appear during the process of learning, but not necessarily after completing

acquisition. If associability β of the prior predictable outcome is greater than β of the prior less

predictable outcome due to Phase 1 learning, this would lead to a rapid increment of its associ-

ations. In this fashion, the response to the cue associated with the prior predictable outcome

will be greater than to the cue associated with the prior less predictable outcomes during learn-

ing. After learning, the associations with all outcomes should be approaching asymptote, so

that the difference in response is no longer necessarily evident. Nevertheless, we note the lack

of observation of an interaction between outcome predictability and block during Phase 2

learning. One possibility is that the lack of the interaction may be due to early reach of asymp-

tote or a ceiling effect.

An alternative explanation of the observed effect of outcome predictability in the present

experiment can be attributed to a blocking effect caused by associations between the context

and the outcomes rather than a change in processing of the outcomes themselves. In particu-

lar, the presented layout contained many elements forming a context that could also be associ-

ated with each outcome. The context therefore has potential to compete for learning in Phase

2. Because o1 was consistently predicted by a cue in Phase 1, the cue is a much stronger predic-

tor of the outcome than is the context, and the contextual association with o1 should therefore

be relatively weak. In contrast, o2 and o3 were less predictable in Phase 1, and thus the cues

that preceded those outcomes are only marginally more predictive than the context and are far

less informative than the cue paired with o1. Therefore, a stronger association between the

context and each of those two less predictable outcomes may be established in Phase 1 and

then transfer to Phase 2 and preferentially block learning about the novel relationships with o2

or o3. This possibility suggests that the outcome predictability effect might be highly context-

specific and motivated the design of Experiment 2, which included a context switch for the

experimental groups. That is, if context associations drive the outcome predictability effect,

then switching the context between phases should inhibit transfer of context associations, and

reduce the effect.

The cave condition interacted significantly with other factors (see S1 File), suggesting a gen-

eral preference for the outcome in the middle cave. Such a preference cannot explain our key

finding, since the predictable outcome o1 occupied the middle cave for only a third of partici-

pants and thus if anything, this preference would have worked against observing the effect.

Nevertheless, the general preference for the middle cave suggests that the paradigm could be

improved in future experiments.

Experiment 2

The present experiment aimed to replicate the findings observed in Experiment 1 and, further,

investigate whether the effect is context-dependent. Design 1 was applied again to manipulate

outcome predictability. The two experimental groups (Shift-3cave and Shift-2cave) included a

context shift between the two training phases (Layout “summer” versus “winter”, see Fig 3 for

the layout winter with two caves), whereas the two control groups (NoShift-3cave and NoShift-
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2cave) maintained the same context (i.e. summer layout) present in two phases. In order to

minimize the interference of the middle cave advantage, one less predictable outcome (o3) was

consistently presented in the middle cave in Phase 1 and this outcome as well as the middle

cave were removed in Phase 2 in two of the groups (Shift-2cave and NoShift-2cave).

Methods

Only changes to Experiment 1 are described.

Participants. Ninety-six undergraduate students from the Philipps-Universität Marburg,

Germany (70 females, 26 males; Mage = 22.28 years, age range 18–31 years; 24 in each group)

participated in the experiment. Data from ten additional participants were excluded from anal-

ysis based on the exclusion criteria.

Design, apparatus and stimuli. The stimuli used in Experiment 2 were very similar to

those in Experiment 1 with a few exceptions: First, in the Shift conditions, a “winter” layout

(Fig 3) was displayed during Phase 1, and a “summer” layout was presented in Phase 2, creat-

ing a context shift. Second, for the 2cave conditions, outcome o3 was consistently shown in the

middle cave in Phase 1 and both o3 and the cave where it appeared were omitted in Phase 2,

leaving two caves and their respective outcomes. Crossing the shift and cave conditions, there

were four groups (Shift-3cave, Shift-2cave, NoShift-3cave, and NoShift-2cave). Third, auditory

stimuli were presented (via ear phones) in Phase 1 for all participants to reduce the number of

the counterbalancing conditions. Because we did not observe any statistically significant influ-

ence of the cue’s modality in Experiment 1, this manipulation should not impact the demon-

stration of the outcome predictability effect. Some researchers have suggested that responses

to auditory stimuli are faster than to visual stimuli [43, 44]. But even if that were the case, par-

ticipants should show better learning of all Phase 1 pairings.

Fig 3. Context “winter” with two caves. Note that the context “Winter” for Shift-3cave had three caves. Contexts differed between the two

phases (“summer” vs. “winter”) in Shift-2cave and Shift-3cave.

https://doi.org/10.1371/journal.pone.0243434.g003
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Procedure. In Phase 2, the 3cave conditions received the same pairings as those in Experi-

ment 1 (W!o1, X!o2, Y!o3, Z!Ø). Each participant in these conditions completed 96 tri-

als grouped into 12 blocks in Phase 1 and 48 trials grouped into 12 blocks in Phase 2. For the

2cave conditions, additional cues were paired with outcomes to slow down the learning pro-

cess (X!o1, R!o1, Y!o2, S!o2, Z!Ø, T!Ø). In these conditions, there were 96 trials

grouped into 12 blocks in Phase 1 and 72 trials grouped into 12 blocks in Phase 2. Moreover,

we were concerned that the trial type present on Trial 1 in Phase 2 would affect subsequent

learning, if participants learned the cue-outcome relationship in Phase 2 very quickly. Thus,

the trial type of the first trial of Phase 2 was counterbalanced across participants.

Results and discussion

Phase 1. In Phase 1, all four groups showed longer anticipatory gaze time towards the

location of the predictable outcome than the less predictable outcome (Fig 4, top row). Nota-

bly, higher responses during o3 trials shown by NoShift-2cave and Shift-2cave confirmed the

bias towards the middle cave, since o3 was always presented in the middle cave. Hence, the

o3-trial was not included in the analyses for these two groups.

Each group was analyzed individually to determine whether the outcome’s predictability

was successfully learned. A 3 (outcome) × 3 (cave condition) × 12 (block) mixed design

ANOVA was conducted for the 3cave conditions, while a 2 (outcome) × 2 (cave condition) ×
12 (blocks) mixed design ANOVA was conducted for the 2cave conditions. All four groups

gazed significantly longer towards the area of o1 than o2 (and o3) during the corresponding

cues (NoShift-3cave: F(2,42) = 9.08, p = .001, η2p = .302, Fo1 vs. o2 = 9.10, p = .007, Fo1 vs. o3 =

12.43, p = .002, Fo2 vs. o3<1; NoShift-2cave: F(1,22) = 28.07, p< .001, η2p = .561; Shift-3cave:

Fig 4. Panel A to H represent the mean proportion of gaze time in Experiment 2 that participants looked at the correct outcome’s cave during the cue (CI) and

the pre-cue interval (PCI) respectively in each phase. (A) Mean gaze time of NoShift-3cave across the 12 blocks in Phase 1. (B) Mean gaze time of NoShift-3cave

across the 12 blocks in Phase 2. (C) Mean gaze time of Shift-3cave across the 12 blocks in Phase 1. (D) Mean gaze time of Shift-3cave across the 12 blocks in Phase 2.

(E) Mean gaze time of NoShift-2cave across the 12 blocks in Phase 1. (F) Mean gaze time of NoShift-2cave across the 12 blocks in Phase 2. (G) Mean gaze time of Shift-

2cave across the 12 blocks in Phase 1. (H) Mean gaze time of Shift-2cave across the 12 blocks in Phase 2. Note that i) gaze time in Phase 2 was averaged based on the

predictability of each trial’s outcome in Phase 1, and ii) o3 as well as the middle cave were not presented in Phase 2 in NoShift-2cave and Shift-2cave.

https://doi.org/10.1371/journal.pone.0243434.g004
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F(2,42) = 12.47, p< .001, η2p = .373, Fo1 vs. o2 = 7.66, p = .012, Fo1 vs. o3 = 30.13, p< .001, Fo2 vs.

o3 = 3.59, p = .072; Shift-2cave: F(1,22) = 32.58, p< .001, η2p = .597). The test also revealed a

significant main effect of block, (NoShift-3cave: F(11,231) = 5.58, p< .001, η2p = .210;

NoShift-2cave: F(11,242) = 2.84, p = .027, η2p = .114; Shift-3cave: F(11,231) = 6.98, p< .001,

η2p = .249; Shift-2cave: F(11,242) = 5.78, p< .001, η2p = .208). Moreover, the two-way interac-

tion between outcome and block was significant for NoShift-3cave, NoShift-2cave and Shift-

3cave, confirming that dwell time towards the area of o1 increased more rapidly than dwell

time towards o2 (and o3) across blocks in these groups (NoShift-3cave: F(22,462) = 2.40,

p = .014, η2p = .103; NoShift-2cave: F(11,242) = 4.80, p< .001, η2p = .179; Shift-3cave: F(22,462)

= 2.43, p = .017, η2p = .104). No further main effects or interactions of interest in each group

reached significance (the largest F- and the corresponding p-value across all groups: F = 4.21,

p = .052).

Phase 2. According to the Fig 4B, 4D, 4F, and 4H, none of the four groups showed a dif-

ference in dwell time between the trials involving the prior predictable outcome and the trials

with the prior less predictable outcomes in Phase 2.

As NoShift-3cave and Shift-3cave, as well as NoShift-2cave and Shift-2cave respectively,

contained the same counterbalancing condition and differed only in the application of the

context switch, two pairs of groups were compared (NoShift-3cave vs. Shift-3cave, NoShift-

2cave vs. Shift-2cave). A 2 (outcome predictability) × 2 (Group Shift vs. NoShift) × 3 (cave con-

dition) × 12 (block) mixed design ANOVA was conducted for the 3cave conditions, while a 2

(outcome predictability) × 2 (Group Shift vs. NoShift) × 2 (cave condition) × 12 (block) mixed

design ANOVA for the 2cave conditions. Neither the analysis of NoShift-3cave and Shift-

3cave nor the analysis of NoShift-2cave and Shift-2cave demonstrated a difference in dwell

time based on the prior predictability of outcomes in Phase 1. Further, neither of the two anal-

yses showed a difference between groups based on the prior predictability of outcomes but

only the main effects of block were significant (NoShift-3cave &. Shift-3cave: F(11,451) = 7.02,

p< .001, η2p = .146; NoShift-2cave &. Shift-2cave: F(11,484) = 6.73, p< .001, η2p = .133).

None of other main effects and interactions of interest in two analyses reached significance

(the largest F- and the corresponding p-value across two analyses: F = 2.02, p = .057).

Further, the Bayes factors were calculated to assess the non-significant main effect and

interactions. For the 3cave conditions, our results provided strong evidence in favor of the

models without the main effect of outcome predictability (BF01 = 13.33), substantial evidence

for the models without the outcome predictability × group interaction (BF01 = 3.13), and deci-

sive evidence for the models without the outcome predictability × block interaction (BF01 =

250). Very strong evidence was found in favor of the models without the three-way interaction

(BF01 = 33.33). For the 2cave conditions, the results substantially supported the models with-

out the main effect of outcome predictability (BF01 = 8.93) and the models without the out-

come predictability × group interaction (BF01 = 4.17). We also observed decisive evidence for

the models without the outcome predictability × block interaction (BF01 = 333.33), and very

strong evidence for the models without the three-way interactions (BF01 = 52.63).

Although participants in all groups successfully learned the different predictability of out-

comes in Phase 1, none of the four groups demonstrated a difference in Phase 2 learning based

on the prior predictability of outcomes. It is noteworthy that even the control groups did not

replicate the key finding from Experiment 1. Such a result raises the question whether the

effect observed in Experiment 1 is reliable. Regarding this matter, it is pointless to discuss the

impact of context or the outcome removal if the reliability of the effect remains open. Hence,

the next experiment removed the additional manipulations applied in the present experiment,

which might be influential on preferential gaze behavior, and aimed to determine whether the

effect observed in Experiment 1 is replicable.
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Experiment 3

Since Experiment 2 did not demonstrate the effect of outcome predictability on subsequent

learning, we considered the possibility that the effect might not be reliable. Possibly, some

additional manipulations applied in Experiment 2, such as the counterbalancing of the out-

come presentation in Phase 2, or the change in the number of outcomes might be responsible

for the failed observation. Thus, the present experiment is a close replication of Experiment 1.

Methods

Participants. Twenty-four undergraduate students from the Philipps-Universität Mar-

burg, Germany (17 females, 7 males; Mage = 22.88 years, age range 19–28) participated in this

experiment. Data from four additional participants were excluded from analysis.

Stimuli and design. The stimuli and design used in Experiment 3 were the same as in

Experiment 1 with only two exceptions: First, the visual cues were shown for Phase 2 across all

participants. Second, a drift check was performed after Phase 2 training.

Results and discussion

Phase 1. A 3 (outcome) × 3 (cave condition) × 12 (block) mixed design ANOVA was con-

ducted. In line with the illustration in Fig 5A, dwell time towards the area of the predictable

outcome o1 was longer than the area of the less predictable outcomes o2 and o3 (main effect of

outcome: F(2,42) = 21.22, p< .001, η2p = .503, Fo1vs.o2 = 19.68, p< .001, Fo1vs.o3 = 28.41, p<
.001, Fo2vs.o3 = 2.55, p = .125), and this difference increased more rapidly across blocks

(outcome × block interaction: F(22,462) = 2.81, p = .007, η2p = .118). Further, the test also

revealed a significant main effect of block F(11,231) = 4.49, p = .004, η2p = .176. None of the

other main effects and interactions of interest were significant (largest F = 1.42, corresponding

p = .143).

Fig 5. Panel A and B represent the mean proportion of gaze time in Experiment 3 that participants looked at the correct outcome’s cave during the cue (CI)

and the pre-cue interval (PCI) respectively in each phase. (A) Mean gaze time across the 12 blocks in Phase 1. (B) Mean gaze time across the nine blocks in Phase 2.

Note that gaze time in Phase 2 was averaged based on the predictability of each trial’s outcome in Phase 1.

https://doi.org/10.1371/journal.pone.0243434.g005
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Phase 2. A 2 (outcome predictability) × 3 (cave condition) × 9 (block) mixed design

ANOVA was conducted. According to Fig 5B, dwell time towards the cave of the prior predict-

able outcome o1 seems to be higher than towards the caves of the prior less predictable out-

comes. However, neither the main effect of outcome predictability, F(1,21) = 1.04, p = .320,

nor its interaction with block, F(8,168)<1, reached significance. The main effect of block was

significant, F(8,168) = 7.05, p< .001, η2p = .251. None of the other main effects and interac-

tions of interest were significant (largest F = 2.05, corresponding p = .154). A BF01 of 3.62 pro-

vided substantial evidence in favor of the models without the main effect of outcome

predictability and decisive evidence for the models without the outcome predictability × block

interaction (BF01 = 125). In line with Experiment 1, we additionally analyzed dwell time dur-

ing the first half phase (Block 1 to 5), but the effect of outcome predictability did not reach sig-

nificance, F(1,21)<1, p = .436.

In line with Experiment 2, the present experiment did not demonstrate an effect of the

manipulation of the outcome predictability on subsequent learning. Thus, it seems that the

results of Experiment 1 are not robust. Considering that the outcome predictability effect can

be reliably demonstrated in other studies using different paradigms and designs [12–15], it is

possible that the present design (Design 1) might not be conducive to observing the effect. We

consistently observed that participants generally favored the outcome present in the middle

cave (see S1 File). Although the duration of cue- and outcome-presentation, which was deter-

mined by a pilot study, ensures that participants cannot look at three caves in turn within one

second (i.e. outcome-presentation) or detect the cave areas in peripheral vision when focusing

on the fishing task, it is possible that they look at the middle cave and detect the other two

caves in peripheral vision. Since the middle cave was the location of a less predictable outcome

for the majority (two thirds) of participants, a robust demonstration of the outcome predict-

ability effect might be impaired. Thus, we further assessed two different designs in the next

experiments, presenting only two outcomes and no middle cave in both Phase 1 and Phase 2,

to determine whether or not the outcome predictability effect can be reliably produced in the

present paradigm.

Experiment 4

According to the first three experiments, it seems that the manipulation of outcome predict-

ability with Design 1 cannot reliably demonstrate an effect on subsequent learning. Thus, we

developed two further designs (Design 2 and 3, see also Table 1), each degrading the contin-

gency between cue C and outcome o2 in a different way in Phase 1 (Design 2 for Group Out-
come-absent: A!o1, C!o2, C!Ø; Design 3 for Group Cue-absent: A!o1, A!o1, C!o2,

Ø!o2) and examined their potential influences on Phase 2 learning (for both groups: X!o1,

Y!o2, Z!Ø).

In addition, since the less predictable outcome o2 was presented without any cue half of the

time in Phase 1 in Design 3 (Cue-absent condition), the contextual stimuli may provide some

information about the imminent presentation of o2 and, thus, should be associated with o2

across Phase 1 training. Considering that the context in Phase 2 remained the same as in Phase

1, the context-o2 association formed in Phase 1 may transfer to Phase 2 learning and preferen-

tially block learning about the novel cue associated with o2, as described above. In contrast, in

Design 2 (Outcome-absent), although cue C was less predictive than cue A, it is still more

informative than the contextual cue to predict o2 and, thus, can more effectively inhibit an

association between the context and o2. In this manner, Phase 2 learning in Design 2 should

be less likely to be influenced by any contextual association formed in Phase 1. Based on these

considerations, if the outcome predictability effect is due to a change in the outcome’s
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associability, we expect an outcome predictability effect to occur in the outcome-absent Design

2, in particular. In contrast, if the effect relies on an influence of context associations rather

than a change in the outcome’s associability, the effect should be observed in the cue-absent

Design 3.

Methods

Participants. Through an a priori power analysis, a sample size of 16 was suggested by

G�Power [35] to be sufficient for Design 2 and 3 (F = 4.60) to detect a medium size effect of

outcome predictability (Cohen’s f = .39 [36]) with 80% power (α = .05, two conditions for the

within-subjects factor outcome predictability, two groups, correlation between repeated mea-

sures = .5 as default, no sphericity correction). Sixty-four undergraduate students from the

Philipps-Universität Marburg, Germany (45 females, 19 males; Mage = 22.84 years, age range

19–47 years; 32 in each group) actually participated in the experiment. Data from seven addi-

tional participants were excluded from analysis.

Apparatus and stimuli. Only two outcomes (and their respective caves) were presented

to participants during both training phases. The positions of two outcomes were counterbal-

anced, resulting in two cave conditions (o1 either in the top or the bottom cave). The cues

within one learning phase were from the same modalities and the order of the two modalities

(auditory vs. visual) was counterbalanced.

Design and procedure. Participants in the Outcome-absent group completed 96 trials

grouped into 24 blocks (A!o1, B!Ø, C!o2, C!Ø) in Phase 1 and 36 trials grouped into 12

blocks (X!o1, Y!o2, Z!Ø) in Phase 2. For the Cue-absent group, Phase 1 training con-

tained 90 trials grouped into 15 blocks (A!o1, A!o1, B!Ø, B!Ø, C!o2, Ø!o2) and 36

trials were arranged into 12 blocks in Phase 2 (X!o1, Y!o2, Z!Ø). The trial order was ran-

domized within every three blocks. However, the sequence of outcome presentation during

the first two trials in Phase 2 was counterbalanced.

Results and discussion

Phase 1. Panel A and C of Fig 6 display the dwell times in Phase 1 for Group Outcome-

absent and Cue-absent, respectively.

Statistical analyses were conducted for each group separately. For Group Outcome-absent

data, responses to cue C were averaged across the two trials within each block (C!o2 and

C!Ø) and referred to as o2-trial. As participants of Group Cue-absent could not respond to a

Fig 6. Panel A to D represent the mean proportion of gaze time in Experiment 4 that participants looked at the correct outcome’s cave during the cue (CI) and

the pre-cue (PCI) interval respectively in each phase. (A) Mean gaze time of Group Outcome-absent across the 24 blocks in Phase 1. (B) Mean gaze time of Group

Outcome-absent across the 12 blocks in Phase 2. (C) Mean gaze time of Group Cue-absent across the 15 blocks in Phase 1. (D) Mean gaze time of Group Cue-absent

across the 12 blocks in Phase 2. Note that i) gaze time of Group Outcome-absent in responses to cue C in Phase 1 was averaged within each block, and ii) gaze behavior

of Group Cue-outcome on the trials without signaling (Ø!o2) in Phase 1 was not presented in the figure.

https://doi.org/10.1371/journal.pone.0243434.g006
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cue during the Ø!o2 trial, those trials were not entered into analyses. Two 2 (outcome) × 2

(cave condition) × 12 (block) mixed design ANOVAs revealed that both groups demonstrated

longer dwell times in anticipation of the predictable outcome o1 as compared to the less pre-

dictable outcome o2 (Group Outcome-absent: F(1,30) = 8.97, p = .005, η2p = .230, Group Cue-

absent: F(1,30) = 11.00, p = .002, η2p = .268). We also found a significant main effect of block

in both groups (Group Outcome-absent: F(23,690) = 7.04, p< .001, η2p = .190, Group Cue-

absent: F(14,420) = 8.49, p< .001, η2p = .220). No other main factors or interactions of interest

reached significance (the largest F- and the corresponding p-value across both groups:

F = 1.31, p = .261).

Phase 2. Dwell time between two groups was compared to determine if Phase 2 learning

differed due to different manipulations of outcome predictability (Fig 6, Panel B and D). A 2

(outcome predictability) × 2 (group) × 2 (cave condition) × 12 (block) mixed design ANOVA

revealed a non-significant difference in dwell time towards the o1 area and towards the o2 area

across groups, F(1,60) = 3.21, p = .078. None of the other main effects and interactions reached

significance (largest F = 3.80, corresponding p = .056). When analyzing dwell time for each

group in two ANOVAs with the factors outcome predictability, cave condition and block sepa-

rately, Group Outcome-absent demonstrated a significant main effect of outcome predictabil-

ity, F(1,30) = 6.66, p = .015, η2p = .182. We also found a significant main effect of block in both

groups (Group Outcome-absent: F(11,330) = 7.88, p< .001, η2p = .208; Group Cue-absent: F
(11,330) = 8.53, p< .001, η2p = .221). No further main effects or interactions reached signifi-

cance (the largest F- and p-value across both groups: F = 3.53, p = .070). Moreover, strong evi-

dence in favor of the models without the main effect of outcome predictability was shown in

Group Cue-absent (BF01 = 12.2), as well as decisive evidence for the models without the

outcome × block interaction (BF01 = 250).

In the present experiment, both groups successfully discriminated the different predictabil-

ity between two outcomes in Phase 1. Further analyses examining gaze behavior during the

cue and the pre-cue interval separately (see S1 File) showed that presenting the outcome with-

out a cue in half of the trials in Group Cue-absent (Design 3) increased dwell time towards the

location of o2 during the pre-cue interval. Given that the context was consistently presented

throughout the experiment, this may be regarded as a learned response to the context.

During Phase 2, Group Outcome-absent demonstrated better learning about the novel cue

associated with the prior predictable outcome o1 compared to the prior less predictable out-

come o2, while Group Cue-absent showed no difference in learning between the two trial

types. Although Group Outcome-absent showed an outcome predictability effect, the addi-

tional analyses found that the effect observed in this group was based on longer gaze time

towards the area of o2 than o1 during the pre-cue interval only. One possible interpretation is

that participants were more strongly motivated to gaze at o2 in Phase 2 when they had experi-

enced that o2 was less likely to be predicted in Phase 1. But if so, it is unclear why this bias was

only evident during the pre-cue interval and why such an attentional preference did not bene-

fit learning about the novel relationship with o2 in Phase 2. Another possible interpretation is

that this bias indicates a stronger association between the context and o2 which blocked learn-

ing of a novel association with o2. However, we did not observe stronger contextual associa-

tion with o2 in Phase 1, which would be evident by gaze behavior in the pre-cue interval in

Phase 1. Thus, it remains open why such a strong context-o2 association suddenly manifested

in Phase 2 training. Based on those considerations, the results of Group Outcome-absent

require further replication (Experiment 5).

For Group Cue-absent, the additional analyses suggest that participants did not show pref-

erential gazing towards the o2 area during the pre-cue interval in Phase 2, even though this

was evident in Phase 1. One possibility of the missing effect is that Phase 2 learning reached
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asymptote too fast, as responses for both trial types reached the peak in Block 2. Moreover, it

has been shown in the literature that the boundaries between phases is one factor of many fail-

ures to obtain other learning effects that rely on transfer of knowledge between two phases, for

example, the Kamin blocking effect with human subjects [45]. If outcome predictability effects

can be caused by transfer of contextual associations between phases, we should see greater

effects if the experimental manipulation encourages this transfer (Experiment 6).

Experiment 5

Having observed an effect of outcome predictability with Design 2 (A!o1, C!o2, C!Ø) on

subsequent learning in Group Outcome-absent of Experiment 4, the present experiment

aimed to replicate the effect and examined the potential influence of cognitive control on the

outcome predictability effect. Given that some studies suggest that the learned predictiveness

effect can be affected by manipulating participants’ beliefs about cue predictiveness between

phases [46–48], we applied an instructional manipulation. For the Continuity group, partici-

pants were informed prior to Phase 2 that the predictable outcomes shown in Phase 1 were

very likely to also be predictable in Phase 2. Since the instruction is consistent with the manip-

ulation of predictability, it should encourage an outcome predictability effect. In contrast, the

Reversal group were informed that the predictable outcomes shown in Phase 1 were unlikely

to be predictable in Phase 2, which contradicted the actual design used in the experiment.

Thus, we expected an observation of the outcome predictability effect in Group Continuity

and a difference in Phase 2 learning between groups, if the effect is under cognitive control.

Methods

Participants. Sixty-four undergraduate students from Philipps-Universität Marburg, Ger-

many participated in this experiment (41 females, 23 males,Mage = 24.92 years, age range 19–

39 years, 32 participants in each group). Data from three additional participants were excluded

from analysis.

Design and procedure. The stimuli in the present experiment and design were the same

as for Group Outcome-absent of Experiment 4. The additional instructions were presented

prior to Phase 2 learning: Participants in Group Continuity were told that it was very likely
that the awakening of the animal which had been predictable, would be predictable in the fol-

lowing phase. In contrast, Group Reversal received instructions that it was very unlikely that

the previous predictable animal would be predictable in the next phase.

Results and discussion

Phase 1. In order to examine if each group had successfully learned the discrimination,

two 2 (outcome) × 2 (cave condition) × 12 (block) mixed design ANOVAs were conducted. In

line with the illustrations of Fig 7A and 7C, only Group Continuity showed longer dwell time

in anticipation of o1 than o2 across blocks (main effect of outcome: F(1,29) = 5.39, p = .027,

η2p = .357; outcome × block interaction, F(23,667) = 1.94, p = .032, η2p = .063). A significant

main effect of block was shown in both groups (Continuity: F(23,667) = 9.24, p< .001, η2p =

.242, Reversal: F(23,690) = 10.36, p< .001, η2p = .257). None of the other main effects or inter-

actions reached significance (the largest F- and the corresponding p-value across both groups:

F = 2.62, p = .116).

Phase 2. A comparison of two groups was estimated with a 2 (outcome predictability) × 2

(group) × 2 (cave condition) × 12 (block) mixed design ANOVA. The main analysis did not

show any difference in Phase 2 learning between groups based on the prior predictability of

outcomes. We found a significant main effect of block, F(11,660) = 19.24, p< .001, η2p = .243,
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and a significant group × block interaction, F(11,660) = 2.11, p = .039, η2p = .034. No other

main effects or interactions of interest reached significance (largest F = 3.80, corresponding p
= .056). Further, we found strong evidence in favor of the models without the main effect of

outcome predictability (BF01 = 15.38), anecdotal evidence for the models without the outcome

predictability × group interaction (BF01 = 1.91), and decisive evidence for the models without

the outcome predictability × block interaction (BF01 = 4222.97). Moreover, decisive evidence

was shown in favor of the models without the three-way interaction (BF01 = 500).

In the present experiment, only Group Continuity successfully discriminated the difference

in the outcomes’ predictability in Phase 1 and, in line with our expectation, the difference was

based on stronger responses to the cue associated with the predictable outcome o1 as com-

pared to the cue with the less predictable outcome o2 during the cue interval (see analyses in

S1 File). However, participants in Group Continuity did not demonstrate the outcome predict-

ability effect, even though participants were explicitly informed about the outcome’s predict-

ability prior to Phase 2 training. The results suggest that the effect observed in Experiment 4 is

either unreliable, or is so fragile that merely highlighting the presence of these relationships

causes the effect to disappear. As a point of contrast, the learned predictiveness effect is known

to be substantially more robust after similar explicit instructions [e.g. 46–48].

For Group Reversal, contrary to our expectation, learning about the predictable and the less

predictable outcome in Phase 1 did not differ from each other, even though both groups were

treated identically in Phase 1. Because of the results of Phase 1 learning, it is impossible to

determine whether the failure to observe the outcome predictability effect in Phase 2 was due

to the unsuccessful discrimination of the outcome’s predictability in Phase 1 or the instruc-

tional manipulation.

Experiment 6

Experiment 6 returned to the Cue-absent condition used in Experiment 4 to further explore

the possibility of context blocking. In this group in Experiment 4, implementing a stronger

contextual association with the less predictable outcome o2 formed in Phase 1 (Design 3:

A!o1, A!o1, C!o2, Ø!o2) did not actually block learning about o2’s novel relationship in

Phase 2. We hypothesized that the boundaries between phases may prevent the blocking effect

[45]. Thus, the present experiment aimed to enhance the transfer of strong contextual associa-

tions learned in Phase 1, to determine whether these associations will produce an outcome

predictability effect in Phase 2. For this purpose, we removed the break between two phases.

Fig 7. Panel A to D represent the mean proportion of gaze time in Experiment 5 that participants looked at the correct outcome’s cave during the cue (CI) and

the pre-cue interval (PCI) respectively in each phase. (A) Mean gaze time of Group Continuity across the 24 blocks in Phase 1. (B) Mean gaze time of Group

Continuity across the 12 blocks in Phase 2. (C) Mean gaze time of Group Reversal across the 24 blocks in Phase 1. (D) Mean gaze time of Group Reversal across the 12

blocks in Phase 2. Note that gaze time of both groups in responses to cue C in Phase 1 was averaged within each block.

https://doi.org/10.1371/journal.pone.0243434.g007
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Moreover, we included an additional transit block (A-o1 and Ø-o2) between the phases to

remind participants of the different predictability of o1 and o2 shortly prior to Phase 2

training.

Methods

Participants. Thirty-two undergraduate students from the University of Sydney (25

females, 7 males; Mage = 18.23 years, age range 17–22 years) participated in this experiment.

All participants received a complete description of the experiment and were asked to sign a

written informed consent prior to data collection. Data from five additional participants were

excluded from analysis.

Stimuli, design and procedure. The stimuli and design were the same as Experiment 4

with three exceptions. First, the modality of cues was not counterbalanced to reduce the num-

ber of the counterbalancing conditions: Auditory cues were presented in Phase 1 and visual

cues in Phase 2. Second, the X-o1 trial was introduced on the first trial of Phase 2 for half of

the participants while the Y-o2 trial for the other half. Third, Phase 1 training contained 84 tri-

als grouped into 14 blocks (A!o1, A!o1, B!Ø, B!Ø, C!o2, Ø!o2) and two additional

trials as Block 15 (A!o1, Ø!o2). In Phase 2, 60 trials were arranged into 10 blocks (X!o1,

Y!o2, Z!Ø, R!o1, S!o2, T!Ø). The trial order was randomized within every two blocks.

The order of two trials in Block 15 was counterbalanced. A short break was introduced after

the first ten blocks in Phase 1 and a drift check was performed after Phase 2 training.

Results and discussion

Phase 1. Fig 8A displays dwell times during Phase 1. Since participants could not respond

to a cue during the Ø!o2 trials, the gaze behavior of these trials could not be analyzed. A 2

Fig 8. Panel A and B represent the mean proportion of gaze time in Experiment 6 that participants looked at the correct outcome’s cave during the cue (CI) and the

pre-cue interval (PCI) respectively in each phase. (A) Mean gaze time across the 14 blocks in Phase 1. (B) Mean gaze time across the ten blocks in Phase 2. Note that i)

gaze behavior on the trials without signaling (Ø!o2) in Phase 1 was not presented in the figure, and ii) gaze time in Phase 2 was averaged based on the predictability

of each trial’s outcome in Phase 1.

https://doi.org/10.1371/journal.pone.0243434.g008
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(outcome) × 2 (cave condition) × 14 (block) mixed design ANOVA was conducted. The main

analysis yielded a significant main effect of outcome, F(1,29) = 9.37, p = .005, η2p = .244, a

main effect of block, F(13,377) = 6.20, p< .001, η2p = .176, as well as an interaction with cave

condition. No further main effects or interactions of interest were significant (largest F = 2.73,

corresponding p = .109).

Phase 2. Dwell time was averaged within each block based on the outcome’s predictability

during Phase 1, resulting in two trial types (trials involving prior predictable outcomes vs. trials

involving prior less predictable outcomes). A 2 (outcome predictability) × 2 (cave condition) ×
10 (block) mixed design ANOVA was conducted. In line with Fig 8B, the main analysis did

not reveal a difference in dwell time between the two trial types. We only observed a significant

main effect of block, F(9,270) = 5.71, p< .001, η2p = .160. No other main effects or interactions

of interest reached significance (largest F = 3.27, corresponding p = .081). Moreover, substan-

tial evidence was provided in favor of the models without the main effect of outcome predict-

ability (BF01 = 7.69), as well as decisive evidence for the models without the

predictability × block interaction (BF01 = 250).

In line with our expectations, participants showed slightly better learning about the predict-

able outcome o1 than the less predictable outcome o2 in Phase 1. Additional analyses also con-

firmed a preference for the o2 area over o1 during the pre-cue interval, indicating a stronger

context-o2 association elicited across training (see S1 File). However, the manipulation of out-

come predictability in Phase 1 did not bias learning about the novel relationships with o1 and

o2 in Phase 2. In addition, we noted that the strong context-o2 association shown in Phase 1

did not manifest in Phase 2. Possibly, participants might immediately realize the new patterns

would be present, once a novel cue appeared, and are therefore less likely to be influenced by

their previous experience.

General discussion and conclusion

In recent years, the question has been raised as to whether the associative history of outcomes

plays a role in subsequent learning about novel cue-outcome associations, beyond its influence

in calculations of prediction error [16 for a review, see also 49]. In six experiments, we manipu-

lated outcome predictability using three different designs, and investigated whether this

manipulation would bias subsequent learning about the outcomes, when each of them became

fully predictable by novel cues (for a summary of the results in all experiments see Table 3).

Although data from all experiments confirmed that each design mostly succeeded in distin-

guishing the outcomes’ predictability in the first training phase, we did not demonstrate a reli-

able outcome predictability effect in our goal-tracking task, as the effect was only observed in

two of six experiments (i.e. Experiment 1 and the Outcome-absent group of Experiment 4).

Considering the nonsignificant findings in most of the experiments, the first concern is

whether the present study is under-powered. We discuss three different approaches to answer

this question: A priori analyses of sample size and power, confidence intervals for the esti-

mated population effect sizes, and Bayes factors. For analyses of sample sizes, results from the

study by Griffiths et al (2015) were considered for the estimations of effect size, as at that time

of the first data collection the outcome predictability effect had been only reported by this

study [13]. As their observed effect sizes fell into a range from medium to large, we assumed a

medium size effect of outcome predictability (Cohen’s f = .39 [36]) to be observed. However,

we need to note the limitation of basing an effect size on a single study and, further, the distinc-

tion between our procedure and that used by Griffiths and colleagues [13, see also below]. Tak-

ing consideration of publication bias [50–52], it is arguable that the true effect size might be

smaller than a medium size that we initially assumed. Moreover, the a priori analyses of power
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was done using a simplified design as the estimation of power for complex mixed design ANO-

VAs is non-trivial [53, 54]. Most power and/or sample size methods, e.g., G�Power, have been

restricted to those designs involving a single within-subjects variable and two-way mixed

designs [35]. In tools that are available for two-factor repeated measure design, the number of

levels for each factor is restricted [e.g., 55]. Therefore, and in addition to justified questions

about the appropriate estimate of the effect size as well as assumptions about the correlations

between repeated measures, the results of our initial analyses of sample sizes and power have

to be interpreted cautiously. Calculating confidence intervals around the estimated effect, η2p,
can help determine whether a nonsignificant result indicates the true absence of an effect

rather than a lack of power [56], as the true value of the population effect lies within this inter-

val [57]. The lower bound for most of the experiments includes values of zero and therefore no

effect at all (Table 4, [58, 59]), which is in line with null hypothesis significance testing of the

ANOVAs. However, the confidence intervals also indicate a rather low precision of the esti-

mate of plausible values for the population effect, with the upper bound including medium

effects for most of the experiments. The strongest support for a true absence of effects therefore

stems from the Bayesian statistics [40]. The Bayes factors provided substantial evidence [42]

for the null hypothesis in the conditions that did not demonstrate the outcome predictability

effect. Considering all different approaches and results across the six experiments, we would

Table 3. Summary of predictions and results.

Exp. Group Prediction Results

1 - Demonstration of OP effect with Design 1 Effect

observation

2 NoShift-3cave Replication of the effect observed in Exp.1 No observation

NoShift-2cave Effect replication with elimination of the interference of the middle cave preference No observation

Shift-3cave Effect observation is expected, if it is context-independent. No observation

Shift-2cave Effect observation with a manipulation to eliminate the middle cave preference is expected, if it is context-independent. No observation

3 - Replication of Exp.1 No observation

4 Outcome-

absent

demonstration of OP effect with Design 2 Effect

observation

Cue-absent demonstration of OP effect with Design 3 No observation

5 Continuity Replication of the effect observed in Group Outcome-absent (Design 2) of Exp.4 with an instructional manipulation No observation

Reversal Demonstration of OP effect with a reversed instructional manipulation is expected, if it is not affected by a higher cognitive

control.

No observation

6 - Demonstration of OP effect with Design 3 by applying a manipulation to strengthen the transfer of contextual associations

between phases

No observation

Note. OP effect is the abbreviation of the outcome predictability effect.

https://doi.org/10.1371/journal.pone.0243434.t003

Table 4. Observed effect size and confidence interval.

Exp1. Exp.2 Exp3 Combi. Exp1&3 Exp4 Exp5 Exp6

nine blocks five blocks NoShift-3cave - Outcome-absent Cue-Absent Conti-nuity -

η2p .164 .217� .008 .047 .103� .182� .0004 .031 .007

CI [0, .377] [.016, .427] [0, .148] [0, .237] [.004, .255] [.021, .366] [0, .016] [0, .178] [0, .117]

Note. Effect sizes were represented by the partial eta squared for the main effect of outcome predictability in Phase 2 learning. CI denotes 90% confidence interval,

corresponding to α = .05, on the effect size η2p [58]. For Exp. 2 and 5 with a multi-group design, only the replication group was reported. Combi. Exp.1&3 represents

combined data set of Experiment 1 and 3, and the results reported in the table were based on the analyses of dwell time across all nine blocks in Phase 2.

�: the main effect of outcome predictability was significant in the experiment (p < .05).

https://doi.org/10.1371/journal.pone.0243434.t004
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argue that, even though we cannot rule out the possibility that the studies were underpowered

to detect the effect, it is unlikely that a simple lack power can account for the repeatedly non-

significant results in the present study.

A general preference to gaze at the middle cave, which was more often the location of the

less predictable outcome, may have worked against the observation of an outcome predictabil-

ity effect in Experiment 2 and 3. However, the effect was also not reliably observed when this

factor was removed in Experiment 4–6. It is therefore unlikely that this is the only factor relat-

ing to our failure to demonstrate the outcome predictability effect.

Another notable result of the present study is the failed demonstration of the outcome

predictability effect with Design 3 (Cue-absent). The idea that inducing a contextual associa-

tion with the less predictable outcome could block subsequent learning with that outcome, can

be related to the so-called US pre-exposure effect [60–62]. When subjects are exposed to an

outcome alone prior to cue-outcome pairing (i.e. the outcome is experienced as less predict-

able), subsequent learning about the cue-outcome relationship is impaired. Based on an asso-

ciative account, the common explanation of the effect is that an association between the

outcome and contextual stimuli formed during the pre-exposure phase blocks learning about

the relationship between a novel cue and this outcome [63–66]. Although the context blocking

effect is thought to be relatively robust, we did not find the effect in the present study. In par-

ticular, Experiment 6 successfully induced strong contextual associations in Phase 1, but still

failed to exert any effect on learning in Phase 2. One possibility is that the outcome predictabil-

ity effect does not rely on a blocking effect caused by context. However, an alternative is that

transfer of contextual associations between phases is not established in the present paradigm.

It appears that participants are specifically sensitive to a change in pattern [67], such as the

sudden presentation of novel stimuli or a change in the cue-outcome contingencies. As soon

as they notice the new pattern present in Phase 2, the experience from the prior phase would

be ignored.

Other demonstrations of the outcome predictability effect have now been reported in four

articles using three different protocols [12–15]. The effect was produced using a human causal

learning allergist task [12, 15], a visual cued search task [13] and a serial letter-prediction task

[14]. Considering the diverse designs and methods used in these studies compared to ours,

careful consideration of the data from all related studies is essential to detect contributing fac-

tors in our unreliable observation of the effect.

Comparing the procedure used in the present experiment with other related studies, a dis-

tinction is evident between our study and Griffiths et al., which uses a causal learning allergist

task [13]. Participants in our study were not required to make an explicit outcome prediction

and were only confronted with one outcome in each trial. In comparison, their study pre-

sented outcomes with different (previous) predictability in compound and asked participants

to recall explicit causal knowledge regarding the cues and the outcomes. In this way, partici-

pants might experience greater subjective discrepancy in the outcome’s predictability than

would be the case with the single outcome presentation used in this study. Moreover, we ana-

lyzed data from accurate responses during the process of learning. In contrast, their main find-

ings were observed via likelihood rating in a distinct test of explicit knowledge that occurred

only once learning was complete. In this manner, their critical data represent a bias in causal

reasoning during the test phase, while measures in the present study captured changes in accu-

rate responses to represent changes in associative formation during learning. Hence, it seems

that two paradigms measure learning and performance in distinctly different ways, possibly

contributing to the difference in observations of the effect in these studies.

However, other existing studies about the outcome predictability effect used a paradigm

more similar to the current goal-tracking task [12, 14], and have confirmed that the effect
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occurs using a single-outcome design and capturing responses during learning. Therefore,

none of these factors can be the sole reason for the current failure to observe the effect. How-

ever, there are still several methodological differences. Perhaps the most obvious one concerns

the dependent variable as both Griffiths et al. [12] and Quigley, et al. [14] measured response

latency to indicate learning. It might simply be the case that the effect is only observed during

training when participants are put under time pressure to respond. In the current paradigm,

participants performed more efficiently if they not only learned which cue predicted which

outcome but also to delay responding (depending on how fast they could move the mouse

from the rive to the cave) as the outcome would only appear 3.66 to 4.66 sec after the cue

onset.

In the study using the visual cued search task by Griffiths et al. [12], participants were asked

to respond as soon as possible based on the orientation of a presented arrow which could

occur in one of eight locations. They manipulated the locations (i.e. outcome) of the array

present in Phase 1 to indicate whether it can be perfectly predicted by a given cue (for Experi-

ment 2: A!o1, B!o2, C!o3/o4, D!o3/o4, E!o1/o2/. . ./o8). In Phase 2, the novel cues

were all fully predictive of the locations of the arrow (F!o1, G!o2, H!o3, I!o4, J!o1/o2/

. . ./o8, invalid cue E in Phase 1 and cue J in Phase 2 preceded the target appearing equally

often in all of the 8 possible locations). Therefore, participants experienced a wider range of

outcome predictability and cue predictiveness in both phases of this design compared to the

design in the current study, where only two amounts of predictability and predictiveness were

used in Phase 1 and all outcomes were predictable in Phase 2. In contrast to our data, they

demonstrated a reliable effect of outcome predictability on Phase 2 learning. Interestingly, this

effect depended on the cue as they observed faster responses for prior predictable than less pre-

dictable outcome locations only following a valid cue (e.g., F!o1) whereas responses was

faster for prior less predictable than predictable locations following the invalid cue (e.g.

J!o3). Such an observation is not completely consistent with an expectation based on Mack-

intosh-like process. If the associability of o1 became greater than o3 after Phase 1, it should not

only be more readily associated with F but also with J. Instead, Griffiths et al. [12, 13, see 16 for

a review] suggested that participants may establish a model which contains the information

about the degree of cue predictiveness and outcome predictability in Phase 1 [68 for a view of

causal model, see also 69], and then in Phase 2 preferentially link the cues with outcomes

which match in this manner (i.e. linking the previous predictable outcome to the predictive

cues and the previous less predictable outcome to the non-predictive cue). If this explanation

of the results is correct, the fact that participants experienced only two kinds of predictiveness

and predictability in Phase 1 and only predictable outcomes in Phase 2 might reduce the moti-

vation or ability to both establish a model of predictability in Phase 1 and use it to match it to

the new cues in Phase 2. Relating to the present study, since we did not provide an additional

less predictable outcome in Phase 2 to be associated with novel cues, it is unnecessary for par-

ticipants to exhaust all learned experience in the past, including previous predictability of out-

comes, to find a better match.

In the study by Quigley, et al. [14], participants were required to learn about the relation-

ships between letters, and correspondingly press target buttons X and Z. In a modified design

for Experiment 2, outcome X and Z differed in their predictability in Phase 1 (e.g., P!X, F/G/

W!Z/G/W). Also, the two letters S and H that served as cues to predict outcome X and Z in

Phase 2 (e.g., H!X, S!Z), were already present in Phase 1 (H!S, S!H). In a final test

phase, participants were required to give likelihood rating for the target stimuli. An effect of

outcome predictability was observed in Phase 2 learning as well as in the test phase. Notably,

all Phase 1 pairings were also presented in Phase 2 (e.g., P!X, F/G/W!Z/G/W), except the

pairings between H and S. We note that these manipulations might be critical to for
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demonstrating the outcome predictability effect in their study. At the very least, they invite

other interpretations of the results besides an indication of change in β suggested by the

authors. First, if a stronger contextual association was elicited with the less predictable out-

come Z in Phase 1, the context-Z association might be transferred to Phase 2 and block learn-

ing about the novel S-Z relationship. Second, although Z is fully predictable to when S occurs

in Phase 2, it is still less predictable than X in a general manner considering all other Z-pairings

present in Phase 2 (e.g., F/G/W!Z/G/W). Consequently, the difference in responding for X

and Z could rely on either previous or current predictability, the latter of which could be due

to well-established contingency learning mechanisms. Any difference in learning about X and

Z that is due to differences in their predictability in Phase 2 does not necessitate any conclu-

sion about a change in their processing as a consequence of learning their predictabilities in

Phase 1. Third, given that H and S were consistently paired with each other in Phase 1, their

processing may change as a consequence of always being either predictive or predictable (for

instance S might be encoded as being “good for prediction” because of a combination of its

predictiveness and predictability). In Phase 2, if Z was encoded as “less predictable” relative to

all stimuli, then S might be less readily linked to Z as they did not match each other in their

predictive properties. This account is in line with the arguments about linking cues and out-

comes based on their (previous) predictiveness and predictability proposed by Griffiths et al.

[12, 13]. In summary, even though their experiments investigated the same research question,

their very specific manipulations make it difficult to conclude whether we should have

expected the same effects in the present study.

Overall, data from the six experiments in the present study did not reliably demonstrate an

effect of outcome predictability on subsequent learning in our goal-tracking paradigm. We

have reviewed all existing related studies [12–14] and found methodological distinctions that

may contribute to differences in the effect. This leads to several observations that need to be

investigated in future research. (1) The outcome predictability effect is not reliably demon-

strated in a human conditioning paradigm with goal-tracking. If this turns out to be true of

other conditioning-like paradigms, it suggests the outcome predictability effect is not general-

izable in the same way as other related and widely observed phenomena such as the learned

predictiveness effect. (2) The effect observed in different paradigms might not have a single

cause. It is unclear at this point whether the existing demonstrations are all caused by a change

in the associability of the outcome, for instance. Further investigations are required to gain

greater understanding of the effect and the role of outcome-processing in associative learning.
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