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Abstract

In recent years, there has been a veritable boost in next-generation sequencing (NGS) of

gene amplicons in biological and medical studies. Huge amounts of data are produced and

need to be analyzed adequately. Various online and offline analysis tools are available; how-

ever, most of them require extensive expertise in computer science or bioinformatics, and

often a Linux-based operating system. Here, we introduce “CoMA–Comparative Micro-

biome Analysis” as a free and intuitive analysis pipeline for amplicon-sequencing data, com-

patible with any common operating system. Moreover, the tool offers various useful

services including data pre-processing, quality checking, clustering to operational taxo-

nomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and

statistical appraisal. The workflow results in highly esthetic and publication-ready graphics,

as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEW-

ICK tree) that can be used for more sophisticated analyses. The CoMA output was validated

by a benchmark test, using three mock communities with different sample characteristics

(primer set, amplicon length, diversity). The performance was compared with that of Mothur,

QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the

functionality of CoMA is demonstrated on a practical example, investigating microbial com-

munities from three different soils (grassland, forest, swamp). All tools performed well in the

benchmark test and were able to reveal the majority of all genera in the mock communities.

Also for the soil samples, the results of CoMA were congruent to those of the other pipelines,

in particular when looking at the key microbial players.

Introduction

Nowadays, many studies in environmental microbiology [1, 2], molecular ecology [3, 4] and

medical diagnostics [5, 6] are either based on or accompanied by next-generation sequencing

(NGS) analyses. Amplicon-sequencing (e.g. 16S rRNA, 18S rRNA, internal transcribed spacer

(ITS), functional genes) is a cost- and effort efficient alternative to metagenomic approaches

and became a mainstream and high-throughput technique for the determination of biological

community structures. The costs have decreased with time and today a sample may be
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analyzed for less than 50 €. Moreover, amplicon-sequencing allows for the simultaneous

screening of hundreds of samples. All these aspects have made amplicon-sequencing

approaches extremely popular and led to a multitude of studies investigating all kinds of habi-

tats. Among them there are the microbiota of humans [7], aquatic ecosystems [8], soils [9],

deadwood [10], wastewater treatment systems [11] and anaerobic digesters [12–14], to name

only a few. Although most of these studies are focused on prokaryotes by targeting the 16S

rRNA genes of bacteria and/or archaea, also other structural genes like 18S rRNA [15], 28S

rRNA [16, 17] and ITS [18], or different functional genes [19, 20] are commonly used.

However, the downside of these high-throughput approaches are enormous amounts of

generated data requiring proper analysis. Modern NGS platforms like Illumina NovaSeq yield

up to 2 x 1010 sequences per run (https://emea.illumina.com/systems/sequencing-platforms.

html), stored in big data files of usually several gigabyte (GB) in size. The typical workflow for

amplicon-sequencing data analysis comprises demultiplexing of the dataset in order to assign

sequences to samples and merging of paired-end reads to obtain single sequences (however,

there are also situations where single-end reads are provided or where merging is not recom-

mended for some reason). Then, trimming off primers, adapter sequences or barcodes and fil-

tering of bad sequences based on quality or sequence length is required. Similar sequences are

clustered into operational taxonomic units (OTUs) using a common similarity cutoff (typically

97%) and OTUs are assigned to a taxonomic reference database such as Greengenes [21] (last

update 2013), RDP [22] (last update: 2016), SILVA [23], PR2 [24], MIDORI [25], ITSoneDB

[26] or UNITE [27], a process called de novo assembling (= sequences clustering before taxo-

nomic assignment). The order can also be reversed resulting in a different strategy for OTU

picking that is called closed-reference or open-reference if it is a combination of both

approaches. However, these picking strategies are rare nowadays and most tools are using de
novo assembling. As an alternative to OTUs, current research is going in the direction of

amplicon sequence variants (ASVs), where sequences are clustered based on differences down

to a single nucleotide [28]. This procedure yields real biological sequences rather than con-

structed clusters, which can be directly compared between different studies. Moreover, ASV

approaches tend to be less time-consuming, and no arbitrary threshold and centroid selections

are needed [29]. On the other hand, OTU clustering algorithms such as USEARCH turned out

to produce particularly reliable results and these tools are applied by multitudes of scientists.

Current publications indicate that both, OTU and ASV approaches yield robust results, which

are well comparable to each other [30, 31]. After OTU/ASV picking, data post-processing,

including singleton removal and data subsampling may be conducted, followed by statistical

appraisal (e.g. alpha-diversity, beta-diversity, hypothesis testing, redundancy analysis) and

data visualization.

A wide range of software solutions is available for computing all these steps. Web-based

applications promise fast and simple solutions for data analysis. Nonetheless, limited upload

capacities and collapsing server speed at peak times often bother the user and may turn online

data processing into a frustrating procedure. Beyond web-based applications, there are also

various offline tools freely available, among them Mothur [32] and “Quantitative Insights Into

Microbial Ecology” (QIIME [33], QIIME2 [34]). Both provide a great variety of different tools

in terms of explorative data analysis, quality control (QC), data processing, statistics and data

visualization, and allow extensive adjustment and fine-tuning of each step. The drawback of

these remarkably wide tool packages and options, however, is that the user needs extensive

knowledge and experience on handling command-line tools and sequence-based data process-

ing. This problem can only be partially addressed by the numerously available online docu-

mentations and interactive user blogs. If the user does not have sufficient experience and

expertise, the complex workflow may be time-consuming and may lead to mistakes and

PLOS ONE CoMA - pipeline for sequencing data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0243241 December 2, 2020 2 / 28

available at the European Nucleotide Archive under

the accession numbers ERS3378910 to

ERS3378921 within study PRJEB32269 (https://

www.ebi.ac.uk/ena/data/view/PRJEB32269).

Funding: This work was supported by the Federal

Ministry of Education, Science and Research

(https://www.bmbwf.gv.at/), and by the University

of Innsbruck (https://www.uibk.ac.at/) within the

scope of the project “MicrobeEnergy”. SH was

further supported by the doctoral fellowship (LFU

Doktoratsstipendium) of the University of

Innsbruck, Austria. MG acknowledges support by

the Programa Ramón y Cajal (RYC-2016-21231;

Ministerio de Economı́a y Competitividad, https://

www.mineco.gob.es/). The publication fees are

sponsored by the "Fonds zur Förderung der

Wissenschaftlichen Forschung" (https://www.fwf.

ac.at/; Project I 989). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://emea.illumina.com/systems/sequencing-platforms.html
https://emea.illumina.com/systems/sequencing-platforms.html
https://doi.org/10.1371/journal.pone.0243241
https://www.ebi.ac.uk/ena/data/view/PRJEB32269
https://www.ebi.ac.uk/ena/data/view/PRJEB32269
https://www.bmbwf.gv.at/
https://www.uibk.ac.at/
https://www.mineco.gob.es/
https://www.mineco.gob.es/
https://www.fwf.ac.at/
https://www.fwf.ac.at/


erroneous conclusions. Moreover, many bioinformatic tools require a Linux operating system

and deep operation skills, often lacked by the users, or requiring a time-consuming training.

An overview on existing software packages is provided in Table 1 showing the most relevant

features as well as drawbacks relative to CoMA.

We developed CoMA (Comparative Microbiome Analysis) as a free pipeline for intuitive

and user-friendly analysis of amplicon-sequencing data, available for all common computer

Table 1. Selection of existing software packages available for amplicon sequencing data analysis.

Tool Important features Drawbacks relative to CoMA

AmpliSAT [35] Set of web-based tools, oriented towards

advanced users, flexible usage, accepts various

different marker genes

difficult to handle for entry-level users,

performance relies on server speed and other

job submissions

BioMaS [36] Web-based application, user-friendly design,

amplicons from Illumina, Ion Torrent and

Roche 454, basic data visualization (pie chart,

tax. tree)

no support for PacBio, no post processing, no

statistics, plain data visualization without

many options, performance relies on server

speed and other job submissions

CloVR-ITS [37] optimized for analyzing fungal communities,

offers data visualization and statistics, supports

cloud computing

limited to ITS primers, limited to Roche 454

! no Illumina data supported

ITScan [38] Web-based application, offers data visualization

and statistics, optimized for analyzing fungal

communities

limited to ITS primers, performance relies on

server speed and other job submissions

LotuS [39] command line-based, more oriented towards

advanced users, flexible usage, amplicons from

Illumina, Ion Torrent, PacBio and Roche 454

no GUI, no post processing, no data

visualization, no statistics

MetaAmp [40] Web-based application, supports ASVs,

moderate complexity, accepts various different

marker genes, output in standardized formats

no post processing, no data visualization,

performance relies on server speed and other

job submissions

MG-RAST [41] Web-based application, also supports other

NGS data analysis apart from AS, moderate

complexity, flexible usage

performance relies on server speed and other

job submissions

MICCA [42] command line-based, single- and paired-end

reads, moderate complexity, amplicons from

Illumina, Ion Torrent and Roche 454

no GUI, no post processing, no data

visualization, no statistics

Microbiome

Analyst [43]

Web-based application, also supports other

NGS data analysis apart from AS, moderate

complexity, flexible usage

performance relies on server speed and other

job submissions

Mothur [32] command line-based, oriented towards

advanced users, very flexible usage with a huge

variety of tools and options

no GUI, difficult to handle for entry-level

users,

PEMA [31] user-friendly operation, OTU and ASV

supported, provides α- and β-diversity analyses

as well as statistics, output in standardized

format

currently limited to 4 different marker genes

(16S, 18S, ITS, COI),

PipeCraft [44] GUI, user-friendly design, flexible usage,

amplicons from Illumina, Ion Torrent, PacBio

and Roche 454

no post processing, no data visualization, no

statistics

PIPITS [45] optimized for analyzing fungal communities,

extraction of an ITS sub region, uses paired-end

reads, amplicons from Illumina

limited to Illumina MiSeq data, limited to ITS

primers, no GUI, no post processing, no data

visualization, no statistics

QIIME [33] command line-based, oriented towards

advanced users, very flexible usage with a huge

variety of tools and options

no GUI, requires a Linux OS, difficult to

handle for entry-level users

QIIME2 [34] command line-based or GUI-based, oriented

towards advanced users, very flexible usage

with a huge variety of tools and options,

supports ASV

requires a Linux OS, difficult to handle for

entry-level users

https://doi.org/10.1371/journal.pone.0243241.t001
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platforms. We used various open-source, third-party tools and combined them into a linear

analysis workflow in the form of a Bash script, starting with the raw input files (in FASTQ for-

mat) and resulting in esthetically pleasing and publication-ready graphics. In addition, output

files in standardized formats, such as a tab-delimited OTU-table, an OTU-table in BIOM for-

mat and a tree file in NEWICK format, are provided. These allow for subsequent secondary

analysis using for example Cytoscape [46], GraPhlAn [47], LEfSe [48], PICRUSt [49] or R [50],

if desired. The operation of this tool is remarkably intuitive and makes it accessible even for

entry-level users. A graphical user interface facilitates the handling, representing a major

advantage compared with command-line based applications. Nevertheless, multiple adjust-

ment parameters and the high degree of automation make CoMA also acceptable for advanced

users who are looking for an efficient and streamlined data analysis. The tool is capable of han-

dling data from today’s most important NGS platforms, including Illumina MiSeq, Illumina

HiSeq, or Illumina NovaSeq, but also from the former 454 pyrosequencing technology, which

was, in fact, terminated in 2016 but data are still around and analysis tools are still needed.

This study focuses on the processing of short rather than long reads, which are produced by

currently emerging third-generation sequencing technologies like PacBio or Nanopore.

Appropriate analysis tools for long reads are not discussed here but are readily available (e.g.

SDip [51]). Three different options for installation are available for CoMA, which can all be

downloaded from the CoMA webpage (https://www.uibk.ac.at/microbiology/services/coma.

html). A detailed manual describes both the installation as well as the usage of the tool.

Here, we present the new CoMA pipeline and benchmark it by analyzing three different,

constructed mock communities. The performance of CoMA is compared with that of Mothur,

QIIME and QIIME2, the currently most popular platforms for NGS data analysis (however,

the support for QIIME ended in 2018 and the developers suggest switching to QIIME2). More-

over, we apply CoMA to a real dataset on the prokaryotic microbiota of three different soils

(forest, grassland, swamp) in order to demonstrate its functionality also on a practical example.

Soil samples were analyzed on an Illumina MiSeq device, using a 16S rRNA amplicon-

sequencing approach. We hypothesize that the CoMA pipeline works well in the benchmark

test, revealing all included genera. We expect CoMA to perform as efficiently and precisely as

Mothur, QIIME and QIIME2, and that the results are stable irrespective of the applied dataset.

In addition, we hypothesize that the results for the soil samples obtained by the different analy-

sis tools are highly comparable, especially when looking at the key microbial players.

Material and methods

Implementation of CoMA

CoMA is implemented as a linear data analysis pipeline ranging from the processing of raw

input files to the computation of results. It comprises four main sections: data pre-processing

and quality checking, OTU clustering and taxonomic assignment, data post-processing, as

well as data visualization and statistical appraisal (Fig 1). All steps, except for the merging of

paired-end reads and OTU clustering/taxonomic assignment, are optional and can be skipped

by the user if desired. Therefore, the tool allows for the (partial) re-calculation of a former,

already completed CoMA run or the continuation of an unfinished or terminated analysis.

CoMA offers a simple user interface, composed of GTK+ dialogs, which guides the user

through the analysis and provides important information on each step of the workflow.

Data pre-processing and quality checking. Data analysis using CoMA requires input

files in FASTQ format (paired-end or single-end, either uncompressed or compressed with

gzip), which is the standard NGS file format provided by all common sequencing platforms. In

case of paired-end reads, forward and reverse reads are first merged at their overlapping
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region, using the open-source tool “Paired-end assembler for DNA sequences” (PANDAseq

[52]). This step is followed by a QC step (an individual quality report is created for each sam-

ple) and a subsequent sequence selection step, both accomplished by the “Preprocessing and

Information of Sequence data” (PRINSEQ [53]) utility. Amplification primers, sequencing

adapters and multiplex identifiers are removed (trimming) and reads are selected based on

Phred quality score (PQS), amplicon length and ambiguous bases. The selection parameters

are different for each specific primer pair and can be adjusted based on the information gained

from QC. A second QC step, checking the success of trimming and sequence selection, finally

completes the data pre-processing workflow.

OTU clustering and taxonomic classification. All steps within this program section are

either part of the “Less OTU scripts” (LotuS [39]) pipeline or the “simple demultiplexer” tool

(sdm [39]). First, an error-correction step is applied, followed by the removal of artificial chi-

meric sequences, resulting from cross-hybridization of DNA fragments during library prepa-

ration. Subsequently, clustering to OTUs is done with the UPARSE-OTU algorithm [54] at a

97% similarity level, following a de-novo assembling approach. OTU sequences are then

aligned/classified with a desired gene reference database using either “Basic Local Alignment

Search Tool” (BLAST [55]), “Local Aligner for Massive Biological Data” (Lambda [56]) or the

“Ribosomal database project” (RDP [57, 58]) classifier. CoMA supports several popular taxo-

nomic databases, including SILVA, Greengenes, RDP, UNITE, HITdb [59], beetax [60], and

PR2, as well as any custom database provided by the user. A custom database needs to be com-

posed of two individual files: a FASTA file with all sequences and a TAX file with the accompa-

nying taxonomic information. The correct structure for both files is provided in the CoMA

manual. It is possible to use multiple databases, where the first serves as primary- and the

Fig 1. Overview of the CoMA pipeline workflow. Different colors represent the four sub-sections of the CoMA

workflow: Data pre-processing and quality checking (orange), clustering of operational taxonomic units (OTUs) and

taxonomic assignment (green), data post-processing (blue) and data visualization and statistical appraisal (yellow).

Labelled arrows demonstrate the order of events and name specific file types that are needed as input for each step.

Taxonomic assignment is done with Blast, Lambda or RDP using either one of the available databases (e.g. Silva [23])

or any custom database provided by the user. Numbers indicate third party tools that are used for the specific CoMA

step: 1 = PANDAseq, 2 = PRINSEQ, 3 = LotuS/sdm, 4 = QIIME, 5 = Mothur. TDOT = Tab-delimited OTU-table.

PER = Paired-end reads. SER = Single-end reads. PCoA = Principal coordinates analysis.

https://doi.org/10.1371/journal.pone.0243241.g001
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other(s) as backup database(s). OTUs that cannot be assigned to the primary database are then

diverted to the backup database(s). This workflow section is completed by the generation of

universally applicable output files (tab-delimited OTU-table, BIOM file, NEWICK tree), allow-

ing for specific subsequent data analysis or individual visualization steps by the user if desired.

Post-processing of data. Data post-processing starts with an initial removal step, where

very rare OTUs can be dropped from analysis (filter_otus_from_otu_table.py, QIIME). OTUs

can be omitted due to a low number of total reads on the one hand or due to rare occurrence

within the samples on the other hand. To assess whether the sequencing effort (i.e. number of

reads per sample) was sufficient, rarefaction curves are computed using Mothur’s rarefaction.

single command. The applied metric can be selected by the user out of the following possibili-

ties: OTUs, Chao1 richness estimator, Shannon-Wiener diversity index, Simpson’s diversity

index and Good’s coverage for OTUs. The output is provided either as text file containing all

raw data or as line plot. Based on rarefaction curve analysis, the dataset can be subsampled to a

unique read count for each sample to bring the data onto a common scale [61]. This step is

done using the single_rarefaction.py script provided by the QIIME platform. The pseudo-ran-

dom number generator used here for subsampling is an implementation of the Mersenne

twister [62]. To facilitate use, CoMA provides the read count for each sample, sorted in

increasing order. The next step allows for renaming sample names; all further results are pre-

sented using the newly assigned names. Finally, metadata can be assigned to the samples.

These metadata can be used in all upcoming steps in order to group the samples.

Data visualization and statistical appraisal. First, summary files, containing the most

abundant taxa of each sample at all taxonomic levels (kingdom, phylum, class, order, family,

genus, and species) are created. The user can compute a report for bacteria, archaea, fungi and

eukaryotes, as well as a general summary. Moreover, a summary report for a specific taxon can

be created. During the next step, publication-ready and highly esthetic bar charts and heat-

maps can be created for each taxonomic level. The user can choose between plots for bacteria,

archaea, fungi, eukaryotes and prokaryotes. Alternatively, plots can be computed for a specific

taxon, including all descendent taxa at the lower taxonomic levels. In addition, this step allows

the user to set a threshold, based on relative abundance, for taxa to be included in the plots and

a decision whether unassigned taxa will be included or excluded from the depictions. More-

over, the user can choose between various popular image file formats (EPS, JPEG, PDF, PNG,

PS, RAW, SVG, TIFF) and adjust the pixel density if a raster graphic format was selected. Sub-

sequently, Venn diagrams can be created to compare detected taxa among given groups for

each taxonomic level. Within the next step, alpha diversity (or within-sample diversity) can be

calculated using various different calculators (observed OTUs, Shannon-Wiener index, Simp-
son’s index, Pielou’s evenness index, Good’s coverage of counts, Chao1 richness estimator, Faith’s
phylogenetic diversity). Every metric has different strengths and limitations—technical discus-

sion of each metric is readily available online and in ecology textbooks. The output is provided

either as raw-data text file or as publication-ready bar chart. Finally, CoMA offers two different

approaches for analyzing beta diversity: ordination and hierarchical cluster analysis. Ordina-

tion can be done using various different metrics (Minkowski, Euclidean,Manhattan, Cosine,
Jaccard, Canberra, Chebyshev, Braycurtis, Dice,Weighted UniFrac, Unweighted UniFrac). After

calculating of a distance matrix, data are visualized in either two- or three-dimensional Princi-

pal coordinates analysis (PCoA) plots. To quantify the strength of the grouping, statistical tests

(ANOSIM, PERMANOVA; 999 permutations) are applied. For cluster analysis, the user can

choose between the following linkage methods for the cluster analysis: Single, Complete, Aver-
age (UPGMA),Weighted (WPGMA), Centroid (UPGMC),Median (WPGMC) andWard.

These methods are used to compute the distance d(s,t) between two clusters s and t, using a

bottom-up approach. In addition, the user can select a suitable metric to determine the
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distance between two individual data points: Euclidean, Cosine, Cityblock, Correlation, Jaccard,

Braycurtis and Dice. Results from cluster analysis are presented as dendrogram plots.

Mock community datasets

All mock community datasets for benchmarking CoMA were taken from the publicmockro-
biota repository [63]. In order to cover different input sequences in terms of variable region,

sequence length and diversity, the three datasetsmock-13 [64],mock-16 [65] andmock-26 [66]

were selected.Mock-13 comprises 21 bacterial strains (18 genera; three replicates) that were

sequenced on an Illumina MiSeq machine (paired-end run) by targeting the V4 region of the

16S rRNA. The same sequencing procedure was also used formock-16; however, this dataset

additionally includes archaea and the overall diversity is with 59 strains (46 genera; three repli-

cates) much higher than inmock-13.Mock-26 includes ITS data from 11 fungal strains (11

genera) that were sequenced with a gx-flx-titanium sequencer (Roche, Switzerland). The whole

dataset comprises over 130 samples, including multiple replicates and different variations of

the community (even abundance, uneven abundance, pure culture). For this work, samples

Mock.81, Mock.92 and Mock.99 were randomly picked out of the evenly distributed samples.

Mock data analysis with CoMA. Mock-13 forward and reverse reads were merged in a

first step and the quality of the joined reads was then determined. Based on QC analysis, reads

were selected due to their sequence length (240–265 bp) and their mean PQS (> 15). The

reads were not trimmed since primers and other sequence appendices were already cut off in

the raw input files. After the second QC step, reads were clustered into OTUs (> 97% similar-

ity) and representative sequences were aligned to the SILVA database (SSU 132) using BLAST.

The same procedure was applied formock-16, however with two minor modifications. Before

quality selection, primers were trimmed off from the forward (19 bp) and reverse end (20 bp).

In addition, the PQS selection was more rigorous (> 30) since the overall quality of the reads

was higher inmock-16 compared withmock-13.

A slightly different protocol was applied formock-26 since the dataset was still multiplexed

and contained single-end reads. Demultiplexing was done with the “demux emp-single” com-

mand within the QIIME2 toolkit since CoMA does not support multiplexed input files in its

current version. Selected files (Mock.81, Mock.92, Mock.99) were then subjected to the CoMA

pipeline, starting with the first QC step. Reads with a maximum length of 500 bp were then

selected. A minimum sequence length was not adjusted since ITS reads typically show a wide

distribution in sequence length and thus a loss of information should be avoided. Since the

overall quality level of the sequences was high, a minimum average PQS> 30 was adjusted.

After the second QC step and the OTU clustering, reads were aligned to the UNITE database

(version 8) using the BLAST algorithm.

Mock data analysis with Mothur. Data analysis ofmock-13 andmock-16 with Mothur (v.

1.39.5) was done according to the standard operating procedure (SOP) for Illumina MiSeq

data, provided at the Mothur homepage (https://www.mothur.org/ wiki/MiSeq_SOP, [32]).

Input forward and reverse reads were merged with “make.contigs”. After checking the quality

with “summary.seqs”, ambiguous bases and reads with a length of> 270 bp (mock-13)

and> 292 bp (mock-16) were removed using “screen.seqs”. A table of unique sequences was

created with “unique.seqs” and a prevailing counting table, providing the occurrences of the

unique sequences in each sample, was created using “count.seqs”. To prepare the SILVA (ver-

sion 132) database, “pcr.seqs” was applied on the database file with the following limit settings:

start = 13,862, end = 23,444. Unique sequences were aligned to the prepared database using

the “align.seqs” tool and outliers were removed with “screen.seqs” (start = 8, end = 9,578

(mock-13) or 9,582 (mock-16), maxhomop = 8). After a sequence filtering step with “filter.
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seqs” (vertical = T, trump =.), reads were again checked for unique sequences using the

“unique.seqs” tool to exclude potential sequence redundancies introduced in course of the

trimming step. For de-noising of data, sequences were pre-clustered with “pre.cluster”

(diffs = 2) and chimeras were removed with “chimera.uchime” and a subsequent “remove.

seqs” step. To get rid of sequencing errors, sequences were classified with “classify.seqs” and

unknown reads (at kingdom level) as well as reads assigned to chloroplasts, mitochondria or

eukaryota were removed with “remove.lineage”. Sequences were then clustered using “cluster.

split” (splitmethod = classify, taxlevel = 4, cutoff = 0.03) and a shared file was created with

“make.shared”. After taxonomic assignment (“classify.otu”), a BIOM file was created (“make.

biom”) and then transformed to a tab-delimited OTU-table using the independent “biom-con-

vert” tool (http://biom-format.org/).

Formock-26, selected files (Mock.81, Mock.92, Mock.99) were imported using “make.file”

and “fastq.info”. Low-quality reads were then excluded (“trim.seqs”; qaverage = 15) and all

individual files were merged to a combined FASTA file (“merge.files”, “make.group”). After

summarizing all data with “summary.seqs”, reads with > 10 ambiguous bases were removed.

A greater tolerance of ambiguous bases compared withmock-13/mock-16 was required since

all sequences constantly contained a considerable number of ambiguous bases. A sequence

length selection was omitted due to the high inconsistency among the ITS data. After finding

the unique sequences (“unique.seqs”) and creating a count table (“count.seqs”), analysis was

continued as described for the other mock communities, starting with the pre clustering step

(“pre.cluster”). The newest Mothur-optimized UNITE release (version 7) was used as reference

database for sequence alignment.

Mock data analysis with QIIME. Data analysis ofmock-13 andmock-16 with QIIME (v.

1.8.0) was done according to the recommendations for Illumina data on the QIIME homepage

(http://qiime.org/tutorials/processing_illumina_data.html, [33]). First, paired-end input reads

(all files in FASTQ format) were merged using the “multiple_join_paired_ends.py” script

within the QIIME toolkit. This is an alternative version of the “join_paired_ends.py” script

and allows the merging of already-demultiplexed FASTQ files. Quality filtering was done with

the “multiple_split_libraries_fastq.py” script and chimeras were removed with “usearch61”

using the “identify_chimeric_seqs.py” and “filter_fasta.py” scripts. Reads were then clustered

into OTUs with the “usearch61” method of “pick_otus.py” and representative (= most abun-

dant) sequences for each OTU were picked using “pick_rep_set.py”. Representatives were then

assigned to the QIIME-optimized Silva SSU database (release 132) with the “assign_taxonomy.

py” script (assignment method: uclust) and the OTU-table was constructed using “make_otu_-

table.py”. The created BIOM file was converted to a tab-delimited OTU-table with the external

“biom-convert” tool as described in the previous chapter.

Selected input files formock-26 (Mock.81, Mock.92, Mock.99) underwent, in a first step, a

quality selection (“split_libraries_fastq.py”), where reads with an average PQS< 15 were

removed. All upcoming steps were done as described above for the other mock communities.

The newest QIIME-optimized UNITE release (version 8, dynamic construction) served as ref-

erence database for sequence alignment (“assign_taxonomy.py”).

Mock data analysis with QIIME2. Data analysis with QIIME2 (v. 2019.10) followed the

“Moving pictures” tutorial, accessible on the program’s webpage (https://docs.qiime2.org/

2019.10/tutorials/moving-pictures/). However,mock-13 andmock-16 required a slightly alter-

native procedure due to their paired-end data structure, and the files from all mock communi-

ties (mock-13,mock-16,mock-26) needed to be imported in a different manner since the data

were already demultiplexed.

First,mock-13 andmock-16 input files were imported using “qiime tools import” with the

settings “SampleData[PairedEndSequencesWithQuality]” as data type and
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“CasavaOneEightSingleLanePer- SampleDirFmt” as input format. After summarizing and qual-

ity-checking the imported data (“qiime demux summarize”), “qiime dada2 denoise-paired”

was applied. This central step calls the DADA2 pipeline and provides several functions, includ-

ing sequence trimming and truncation, quality filtering, removal of phiX reads, chimera

removal, and the construction of a feature table (suitable filtering settings resulted from the

previous quality-checking step). In contrast to all other pipelines used for this study, DADA2

provides ASVs, which are created by grouping unique sequences. ASVs are equivalent to

OTUs at a 100% cutoff level and are discussed to replace customary OTUs (97% cutoff) in the

future. Therefore, QIIME2 always means QIIME2-DADA2 within the context of this publica-

tion since the pipeline also offers other options for sequence clustering (e.g. Deblur) and

results may considerably differ. Formock-16, 19 and 20 bp were trimmed off from the forward

and reverse end, respectively. No trimming was applied formock-13 since all sequence appen-

dices were already removed in the raw input files. Thereafter, taxonomic information was

assigned to the representative sequences using a pre-trained Naive Bayes classifier (Silva 132,

99% OTUs from the 515F/806R inner primer region, available at https://docs.qiime2.org/2019.

10/data-resources/) and the “qiime feature-classifier classify-sklearn” tool. After exporting the

table- and taxonomy QIIME2 artifact with “qiime tools export” and the external “biom-con-

vert” tool, a tab-delimited ASV-table file was created.

Formock-26, selected input files (Mock.81, Mock.92, Mock.99) were imported with “qiime

tools import” (data type: “SampleData[SequencesWithQuality]”, input format: “CasavaO-
neEightSingle-LanePerSampleDirFmt”). Sequence preparation and ASV-table construction was

again done with the DADA2 pipeline; however, in this case with the single-end version of the

plugin (“qiime dada2 denoise-single”). No trimming or sequence truncation was applied. Rep-

resentative sequences were then taxonomically assigned with a pre-trained UNITE classifier

and the “qiime feature-classifier classify-sklearn” plugin. The classifier was trained on the new-

est UNITE database release (version 8, dynamic construction), and the reads were not

trimmed to the ITS primer sites as suggested by the QIIME2 documentation. The final tab-

delimited ASV-table file was created as previously described formock-13 andmock-16.

Soil dataset

The chosen dataset for demonstration of the CoMA pipeline originated from a field experi-

ment conducted at the Department of Microbiology, University of Innsbruck, in autumn

2016. It aimed at investigating the microbial community structure in soils from three different

habitats: forest (F), grassland (GR) and swamp (S), characterized by different nutrient con-

tents, a specific vegetation and different degrees of human influence. However, all sites were

located in close proximity and thus subjected to similar geological and climatic conditions.

Soil sampling. Samples were taken in Trins, Tyrol (Austria; 47˚04059” N, 11˚25000” E) on

November 28, 2016. The annual average temperature is 4˚C and the annual precipitation 770

mm [67]. Samples were taken at the end of the vegetation period, two months after the last fer-

tilization with manure (swamp samples). Details on the sampling sites are given in Table 2.

From each site, four field replicates were taken within an area of approximately 100 m2.

Each field replicate was composed of nine cores (0–10 cm depth, Ø 2 cm) taken in a regular

systematic grid strategy (within a square of 1.4 x 1.4 m). Immediately after the sampling, soil

samples were sieved (< 2 mm) and stored at -20˚C until use. Soil physico-chemical characteri-

zation (S1 Table) was done as described by Fernández-Delgado Juárez et al. [69].

DNA extraction and NGS. Total DNA was extracted using the NucleoSpin Soil kit

(Macherey-Nagel, Düren, Germany) according to the manufacturer’s protocol with minor

adaptations: 0.25 g (fresh weight) of twelve soil samples (stored at -20˚C) were lysed in Lysis
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Buffer 1 (SL1) at room temperature using a horizontal shaker (MM 2000, Retsch, Haan, Ger-

many) at an amplitude of 80% for 5 min. Elution was done in 2x40 μL of Buffer SE. DNA extracts

were checked on a 1.5% agarose gel and DNA concentration was determined via QuantiFluor

dsDNA dye measurement using the Quantus fluorometer (Promega, Mannheim, Germany).

Extracts were stored in low-DNA binding tubes (Axygen, Corning, USA) at -20˚C until sequenc-

ing. Samples were then subjected to NGS amplicon-sequencing (Microsynth AG, Balgach, Swit-

zerland) on an Illumina MiSeq device using a 250 bp paired-end (v2) approach targeting the V4

region of the 16S SSU rRNA gene. The applied primer pair was 515f (5’-GTGCCAGCMGCCGCG
GTAA-3’) and 806r (5’-GGACTACHVGGGTWTCTAAT-3’), as described by Caporaso et al.

[70] and recommended for soil in the Earth Microbiome Project [71].

Soil data analysis with CoMA. Data analysis with CoMA (quality selection, OTU cluster-

ing, taxonomic assignment) was done as previously described formock-13 but with a PQS

cutoff� 30. Rare OTUs with a sum of reads< 50 within all samples were excluded (corre-

sponding ~0.005% of all reads as previously described in other studies [72, 73]) and data was

subsampled to a depth of 92,539 after checking rarefaction curves (S1 Fig). This corresponds

to the lowest read count among all samples and all analysis pipelines (CoMA, Mothur,

QIIME). At this depth, the rarefaction curves of all samples reached a steady state and thus the

sequencing effort was assumed to suffice. Diversity analysis was done using the four provided

diversity indices: number of OTUs, Shannon-Wiener, Chao1 and Simpson. For cluster analy-

sis, UPGMA (CoMA input: “average”) was chosen as method and Braycurtis distance as met-

ric. This combination is suitable for grouping microbial communities and therefore often used

in microbial ecology studies [74].

Soil data analysis with Mothur. Soil samples were analyzed with Mothur following the

same protocol and settings as described formock-13. Removal of rare OTUs (sum of

reads< 50) as well as data subsampling (92,539 reads) was done with CoMA as described

above.

Soil data analysis with QIIME. Soil data analysis was done following the same protocol

and settings as described previously formock-13 andmock-16. OTUs removal and subsam-

pling was again done with CoMA using the same settings.

Statistical analyses

Principal component analysis (PCA) was done with the Canoco 5 software package for multi-

variate data analysis [75]. Microbial families, excluding unassigned taxa, were used as dataset.

Prior to analysis, data were centered and log-transformed. The depiction of Canoco output

Table 2. Sites that were selected for soil analysis in order to demonstrate the functionality of CoMA.

Habitat GPS-coordinates

(WGS 84)

Characteristics

F 47˚04’55" N, 11˚25’47"

E

Conifer forest, mainly Picea abies; Southern slope; soil type: medium-developed

sediment brown earth, Leptic Cambisol.

GR 47˚04’57" N, 11˚25’13"

E

Meadow; not fertilized for > 10 years; cut twice a year; soil type: loose sediment

brown earth, Eutric Cambisol.

S 47˚04’27" N, 11˚24’22"

E

Former swamp, drained in the 1980’s; water level between 5–50 cm, depending

on the season; manure amendment: 2–3 times a year; cut twice a year; soil type:

calcareous extreme gley, Stagnosol.

All areas were located in Gschnitz valley, Tyrol (Austria) near the village of Trins. Information on the soil type was

gained from the Austrian Soils Map of the Austrian Research Centre for Forests (https://bodenkarte.at/) and the

world reference base for soil resources [68]. F = forest. GR = grassland. S = swamp.

https://doi.org/10.1371/journal.pone.0243241.t002
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files was thereafter performed with python. Descriptive statistics, analysis of variance

(ANOVA) and post-hoc tests were done using SPSS Statistics 24 (IBM, New York, USA) and

Excel 2016 (Microsoft, Washington, USA). Post-hoc tests were calculated using the Bonferroni

correction. Venn diagrams and cluster analysis were created with in-house developed Python

scripts. Dendrograms were created with the UPGMA method as bottom-up approach. The

data points were compared either with the Braycurtis distance (to compare different soil

microbiomes) or with the Cosine distance (to compare different analysis platforms). Key

microbial families were defined as those including > 5% of all assigned reads within each sam-

ple. The normality of the data was tested prior to analysis and the significance level was deter-

mined at p� 5%.

Results

Benchmarking with mock communities

Mock-13 comprised 21 bacterial strains that can be classified to 18 different genera: Acineto-
bacter, Actinomyces, Bacillus, Bacteroides, Clostridium, Deinococcus, Enterococcus, Escherichia,

Helicobacter, Lactobacillus, Listeria, Neisseria, Porphyromonas, Propionibacterium, Pseudomo-
nas, Rhodobacter, Staphylococcus (two strains) and Streptococcus (three strains). All strains

were equally distributed and thus each genus corresponded to 4.76% of the total abundance,

except for Staphylococcus (9.52%) and Streptococcus (14.29%). Data analysis with CoMA

revealed 16 out of 18 genera, similar to Mothur and QIIME (Table 3). QIIME2 was able to find

all genera except for Propionibacterium, which was not found with any of the pipelines (Fig 2).

This, however, is a known issue and several other studies were not able to detect Propionibac-
terium in course of mock community tests [76]. The reason for that may be mismatches close

to the 3’ terminus of the 16S rRNA primer, leading to a low abundance or even a complete

missing out of this genus [77]. Apart from Propionibacterium, Actinomyces (CoMA), Bacillus
(Mothur) and Clostridium (QIIME) were not consistently detected. When looking at the aver-

age deviation per taxon, all pipelines performed similarly well. With a mean deviation of

3.11%, Mothur was most precise, closely followed by CoMA (3.27%) and the two QIIME ver-

sions (QIIME: 3.50%, QIIME2: 3.45%). On the other hand, Mothur yielded the highest pro-

portion of erroneously assigned sequences (11.85%), followed by QIIME (9.20%). Both,

CoMA and QIIME2 showed error rates below 1% (0.64% and 0.83%, respectively). Cluster

analysis revealed smallest cosine distance between CoMA and QIIME2 (0.06; S2 Fig). Mothur

and QIIME formed a second cluster, showing a distance of 0.15. All pipelines were closer

related to each other than to the set point with an overall distance of 0.22.

The second 16S mock community included, beside bacterial, also archaeal strains. In total,

mock-16 comprised 59 strains that can be assigned to 46 different genera (archaea: 8, bacteria:

38). All strains were equally distributed, resulting in the following abundances at genus level:

Table 3. Results of the benchmark test for four different analysis platforms.

Dataset Detected Genera Average deviation per genus [%]

CoMA Mothur QIIME QIIME2 CoMA Mothur QIIME QIIME2

mock-13 16/18 16/18 16/18 17/18 3.27 3.11 3.50 3.45

mock-16 43/46 40/46 44/46 34/46 1.22 1.52 1.22 2.09

mock-26 11/11 11/11 11/11 11/11 2.31 2.09 4.01 2.05

mock-13/mock-16/mock-26 70/75 67/75 71/75 62/75 1.89 1.99 2.17 2.41

Numbers of detected genera and accuracy, given as average deviation per genus, are shown (mock-13: 18 bacterial genera (16S rRNA);mock-16: 46 archaeal/bacterial

genera (16S rRNA);mock-26: 11 fungal genera (ITS)).

https://doi.org/10.1371/journal.pone.0243241.t003
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Acidobacterium (1.69%), Akkermansia (1.69%), Anaerocellum (1.69%), Archaeoglobus (1.69%),

Bacteroides (3.39%), Bordetella (1.69%), Burkholderia (1.69%), Caldicellulosiruptor (1.69%),

Chlorobaculum (1.69%), Chlorobium (5.08%), Chloroflexus (1.69%), Clostridium (1.69%), Dei-
nococcus (1.69%), Desulfovibrio (3.39%), Dictyoglomus (1.69%), Enterococcus (1.69%), Erwinia
(1.69%), Fusobacterium (1.69%), Gemmatimonas (1.69%), Herpetosiphon (1.69%), Hydrogeno-
baculum (1.69%), Ignicoccus (1.69%), Leptothrix (1.69%),Methanocaldococcus (1.69%),Metha-
nococcus (3.39%), Nanoarchaeum (1.69%), Nitrosomonas (1.69%), Nostoc (1.69%), Pelodictyon
(1.69%), Persephonella (1.69%), Porphyromonas (1.69%), Pyrobaculum (3.39%), Pyrococcus
(1.69%), Rhodopirellula (1.69%), Rhodospirillum (1.69%), Ruegeria (1.69%), Salinispora
(3.39%), Shewanella (3.39%), Sulfitobacter (3.39%), Sulfolobus (1.69%), Sulfurihydrogenibium
(3.39%), Thermoanaerobacter (1.69%), Thermotoga (5.08%), Thermus (1.69%), Treponema
(3.39%) and Zymomonas (1.69%). With CoMA, 43 out of 46 genera were correctly assigned

(Table 3). QIIME detected 44, whereas Mothur and QIIME2 found 40 and 34, respectively.

None of the pipelines was able to reveal Rhodospirillum, while Clostridium (Mothur) and Rue-
geria (QIIME) were only found with one of the four applied analysis tools (Fig 3). All other

genera were at least detected by two pipelines, 32 of them by all of them. CoMA and QIIME

turned out to be most precise for this dataset, resulting in an average deviation of 1.22% per

taxon. Accuracy rates of Mothur and QIIME2 were 1.52% and 2.09%, respectively. Comparing

the proportion of wrongly assigned or unassigned genera, CoMA was most efficient (3.83%),

followed by QIIME (3.88%). Mothur and QIIME2 both revealed more than one erroneous

Fig 2. Community composition of the mock-13 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected

distribution and serves as reference. The dataset comprised 18 bacterial genera, targeted with 16S rRNA amplicon sequencing.

https://doi.org/10.1371/journal.pone.0243241.g002
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genus out of ten tested sequences (10.53% and 16.31%, respectively). Cluster analysis based on

themock-16 results revealed a cosine distance < 0.01 between CoMA and QIIME, indicating a

very high similarity between these two pipelines (S3 Fig). With a cosine distance of 0.08,

Mothur was closer related to them than to QIIME2. However, as seen before formock-13, all

applied pipelines were much closer related to each other (maximum distance: 0.15) than to the

set point (overall distance: 0.30).

Fig 3. Community composition of the mock-16 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected

distribution and serves as reference. The dataset comprised 46 archaeal and bacterial genera, targeted with 16S rRNA amplicon sequencing.

https://doi.org/10.1371/journal.pone.0243241.g003
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The ITS dataset (mock-26) included 11 fungal strains, assigned to 11 different genera: Ama-
nita, Archaeorhizomyces, Cortinarius, Debaryomyces, Fusarium,Hymenoscyphus,Melampsora,

Mucor, Rhizina, Sistotrema,Umbelopsis. All taxa were equally distributed, resulting in an abun-

dance of 9.09% per genus. Contrary tomock-13 andmock-16, all genera of this dataset were

detected with each of the four pipelines (Table 3, Fig 4). QIIME2 and Mothur showed the high-

est accuracy with an average deviation of 2.05% and 2.09% per taxon, respectively, followed by

CoMA (2.31%) and QIIME (4.01%). QIIME2 was also superior in terms of wrongly assigned

or unassigned sequences at genus level for this dataset (0.44%), slightly lower than CoMA with

an error rate of 0.71%. QIIME and Mothur followed with distinctively higher error rates of

2.62% and 6.17%, respectively. Cluster analysis revealed smallest cosine distance between the

results computed with CoMA and QIIME2 (< 0.01; S4 Fig). Mothur was slightly more distant

(0.02) but still closer related than to the set point with an overall distance of 0.05 to the three

aforementioned pipelines. For themock-26 dataset, QIIME was far distant to the set point as

well as to the other analysis tools (0.10).

Taking all mock communities together, CoMA showed the overall highest accuracy with an

average deviation of 1.89% per taxon (Table 3), compared to Mothur (1.99%), QIIME (2.17%)

and QIIME2 (2.41%). Looking at the hierarchical cluster analysis, CoMA and QIIME2 showed

the smallest cosine distance (0.08; S5 Fig). Mothur followed with a distance of 0.11 and QIIME

with a distance of 0.12. All four pipelines were much closer related to each other than to the

estimated values (overall cosine distance: 0.18).

Fig 4. Community composition of the mock-26 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected

distribution and serves as reference. The dataset comprised 11 fungal genera, targeted with ITS amplicon sequencing.

https://doi.org/10.1371/journal.pone.0243241.g004
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Soil dataset as practical example

In addition to mock communities, also real soil samples were analyzed with CoMA, Mothur

and QIIME. A detailed description of the microbiological characteristics of the investigated

soil samples determined with CoMA can be found in the supplementary material (S1 File). In

the main article, we are focusing on the comparison between the three different analysis tools.

Data analyses with Mothur and QIIME resulted in the same pattern of Shannon-Wiener

diversity (H’, Fig 5), Chao1 diversity, Simpson diversity (D) and OTU richness (S6 Fig) as seen

for the CoMA pipeline (S1 File). However, the level differed between the applied analysis tools.

Mothur generally evoked higher diversity (H’: p = 0.002, Chao: p< 0.001, D: p = 0.009) and

OTU richness (p = 0.004) than CoMA, irrespective of the diversity calculator and the habitat.

QIIME data were statistically neither distinguishable to CoMA nor to Mothur, except for the

Chao index where QIIME resulted in a higher diversity than CoMA (p = 0.029). When looking

at each habitat individually, Shannon-Wiener diversity reached the highest value with Mothur,

followed by QIIME and CoMA in all cases.

Principal component analysis based on microbial families clustered the CoMA and QIIME

samples in close proximity to each other (Fig 6). Data points from grassland and swamp were

located in the third quadrant, showing minor spatial deviation, mainly along the PCA Axis 2.

The first two PCA axes explained 74% of the total variation within the taxonomic data (53%

and 21% for PCA axis 1 and 2, respectively). Forest samples showed a greater distance to the

two other habitats and were located in the second quadrant. Samples analyzed with Mothur

were located in the positive direction of PCA Axis 1 and thus clearly separated from the data

points of CoMA and QIIME. Data points representing the three habitats showed, however, a

similar pattern along PCA Axis 2 as those obtained by the other pipelines.

To dig deeper into the differences/similarities between the three applied analysis pipelines,

numbers of detected taxa were determined for each taxonomic level (Fig 7). Data analysis with

CoMA resulted in the highest number of classes and families (114 and 281, respectively) and

QIIME of phyla and genera (45 and 415, respectively). Mothur analysis always resulted in the

lowest numbers of taxa, irrespective of the taxonomic level. The analysis showed that CoMA

and QIIME detected a similar taxa composition at each level. Mothur, however, did not reveal

common taxa at a comparable rate but detected several taxa that were neither found with

CoMA nor with QIIME. At phylum level, 39 out of 54 taxa (72%) were found with both

CoMA and QIIME. Out of these 39 common taxa, 19 were also detected with Mothur (35%).

Fig 5. Shannon-Wiener diversity (H’) of the three different soils after sequencing data analysis with CoMA, Mothur and QIIME. Four replicates for each habitat

are shown. Letters indicate significant differences across the analysis tools for each habitat. F = forest. GR = grassland. S = swamp.

https://doi.org/10.1371/journal.pone.0243241.g005
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CoMA and QIIME shared 100 (61%) and 98 (60%) out of all detected 164 classes, respectively,

while Mothur found only 27 shared classes (16%) with the other pipelines. The same trend was

observed at order level where CoMA and QIIME detected 183 (68%) and Mothur 50 (19%)

out of 270 taxa, and at family level where CoMA found 243 (70%), QIIME 245 (70%) and

Mothur 88 (25%) out of 349 families. However, at genus level, the percentage of taxa detected

with all three of the analysis tools was much higher compared to the other taxonomic levels,

except for phylum level. CoMA revealed 317 (61%), QIIME 339 (65%) and Mothur 159 (31%)

out of 518 genera. The percentage of taxon overlap for the three analysis tools was higher at

phylum level (35% of all phyla), followed by genus (26%) and family level (24%). At order and

class levels, the percentages of shared taxa were much lower and accounted for only 18% and

15%, respectively. CoMA and QIIME overlapped in 83%, 78%, 82%, 80% and 72% of all com-

monly found taxa at phylum, class, order, family and genus level, respectively.

To compare the general output of the pipelines and evaluate CoMA as an alternative analy-

sis tool, key families (i.e. abundance > 5% of reads) of the three habitats were analyzed. Within

the forest samples, all families determined with QIIME were also found with CoMA (11 out of

16, Table 4). Eight out of these eleven families were also detected with Mothur; however,

Chthoniobacteraceae, Nitrosomonadaceae and Solibacteraceae were not found with Mothur.

On the other hand, Mothur resulted in five unique families (Bradyrhizobiaceae, Comamona-

daceae, Nitrososphaeraceae, Oxalobacteraceae, Planctomycetaceae) that were not caught with

either of the other two tools. In grassland, nine out of 18 key families were identified with all

Fig 6. Principal component analysis based on archaeal and bacterial families of soil samples from three different

habitats: Forest, grassland and swamp. The color code indicates the applied data analysis tool: CoMA, Mothur and QIIME.

Q1—Q4 = quadrants of the coordinate system.

https://doi.org/10.1371/journal.pone.0243241.g006
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pipelines. CoMA and QIIME determined again the same taxa (14 out of 18), but did not

expose Bradyrhizobiaceae, Comamonadaceae, Oxalobacteraceae and Planctomycetaceae,

which were found with Mothur. Mothur, in return, did not detect Burkholderiaceae, Chtho-

niobacteraceae, Nitrosomonadaceae, Solibacteraceae and Xanthobacteraceae in the analyzed

soil samples. The same occurred in the swamp soil. All key families detected by QIIME were

also identified with CoMA (15 out of 19). Ten of them were equally found with Mothur, except

for Burkholderiaceae, Chthoniobacteraceae, Nitrosomonadaceae, Solibacteraceae and

vadinHA17 (order: Bacteroidales). On the other hand, Mothur determined four families (Bra-

dyrhizobiaceae, Comamonadaceae, Oxalobacteraceae, Planctomycetaceae) that were neither

found with CoMA nor with QIIME. Six key families were identified with all of the three analy-

sis tools irrespective of the soil type: Anaerolineaceae, Chitinophagaceae, Flavobacteriaceae,

Gaiellaceae, Mycobacteriaceae and Sphingobacteriaceae.

Irrespective of the soil type, CoMA and QIIME identified more taxa than Mothur

(p = 0.024, p = 0.032), except for the kingdom and species level, where all of the three pipelines

classified 100% and 0–2%, respectively (Table 5). At phylum level, CoMA and QIIME assigned

all reads to known taxa whereas Mothur failed in 7–13%. Generally, the classification percent-

age decreased with lower taxonomic levels (p< 0.001). CoMA and QIIME behaved similarly

at all taxonomic levels; however, CoMA identified slightly more orders and families when

grassland was analyzed (+5% and +3%, respectively; p< 0.001).

Fig 7. Venn plots showing the shared phyla, classes, orders, families and genera found with CoMA, Mothur and QIIME in the soil samples. Data

include all of the three investigated habitats (forest, grassland, swamp).

https://doi.org/10.1371/journal.pone.0243241.g007
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Discussion

Validation of CoMA

The main purpose of this work was to validate CoMA by comparing the results with those of

already established tools. Mothur and QIIME, the two currently most popular analysis tools

for amplicon-sequencing data were chosen as reference for both test assays: a benchmark test

using three different mock communities, covering different variable regions, sequence lengths

and abundances, as well as the analysis of a real soil dataset. For the benchmark test, QIIME2

Table 4. Key microbial families found in three different habitats: Forest, grassland and soil.

Family Forest Grassland Swamp

> 5% CoMA Mothur QIIME CoMA Mothur QIIME CoMA Mothur QIIME

Anaerolineaceae 136 ± 40 53 ± 13 152 ± 35 245 ± 18 118 ± 10 241 ± 26 2,754 ± 678 2,513 ± 580 2,669 ± 643

Bradyrhizobiaceae 4,302 ± 575 744 ± 63 607 ± 134

Burkholderiaceae 1,620 ± 639 869 ± 248 1,642 ± 665 1,836 ± 109 1,764 ± 159 5,685 ± 757 5,939 ± 900

Chitinophagaceae 2,079 ± 746 2,443 ± 988 2,400 ± 979 1,565 ± 266 1,277 ± 210 1,265 ± 213 1,693 ± 212 1,500 ± 171 1,437 ± 163

Chthoniobacteraceae 9,001 ± 3,386 7,983 ± 2,928 926 ± 64 847 ± 43 374 ± 73 356 ± 66

Comamonadaceae 178 ± 150 461 ± 35 2,311 ± 674

Flavobacteriaceae 349 ± 297 282 ± 243 278 ± 239 848 ± 178 784 ± 237 732 ± 183 9,513 ± 1,400 8,816 ± 1,314 7,939 ± 1,259

Gaiellaceae 102 ± 75 1,530 ± 1,232 113 ± 106 2,619 ± 352 7,127 ± 766 2,951 ± 370 430 ± 92 641 ± 150 490 ± 90

Geobacteraceae 89 ± 33 69 ± 26 72 ± 29 2,536 ± 251 2,247 ± 206 2,153 ± 199

Mycobacteriaceae 1,792 ± 772 1,615 ± 714 1,488 ± 647 2,023 ± 245 1,779 ± 205 1,671 ± 183 192 ± 27 172 ± 23 163 ± 15

Nitrosomonadaceae 514 ± 468 640 ± 523 2,262 ± 194 2,433 ± 215 2,656 ± 365 4,386 ± 356

Nitrososphaeraceae 253 ± 305 2,785 ± 411 2,613 ± 422 2,372 ± 342 76 ± 20 74 ± 18 63 ± 11

Oxalobacteraceae 229 ± 99 210 ± 12 2,081 ± 563

Planctomycetaceae 3,650 ± 1,045 1,902 ± 125 1,392 ± 112

Propionibacteriaceae 2,813 ± 268 2,522 ± 234 2,815 ± 259 69 ± 20 62 ± 21 78 ± 19

Solibacteraceae 3,790 ± 994 3,929 ± 1,040 311 ± 19 326 ± 36 709 ± 81 719 ± 43

Sphingobacteriaceae 1,861 ± 847 1,471 ± 674 1,470 ± 697 90 ± 29 62 ± 19 67 ± 19 521 ± 94 436 ± 94 418 ± 75

vadinHA17 3,407 ± 1,095 2,779 ± 892

Xanthobacteraceae 7,373 ± 564 111 ± 77 8,374 ± 749 2,090 ± 138 2,228 ± 147 1,663 ± 151 136 ± 7 1,888 ± 80

Data (means ± standard deviation (n = 4)) were determined with three different analyses tools: CoMA, Mothur and QIIME. Families with a relative abundance < 5%

and unassigned taxa were excluded from the table, and families with a read count < 50 were considered as absent. Differently colored cells indicate the three most

abundant families.

https://doi.org/10.1371/journal.pone.0243241.t004

Table 5. Unclassified reads for each taxonomic level in three different soils: Forest, grassland and swamp.

Unclassified [%] Forest Grassland Swamp

CoMA Mothur QIIME CoMA Mothur QIIME CoMA Mothur QIIME

Kingdom 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Phylum 0 ± 0 7 ± 3 0 ± 0 0 ± 0 13 ± 1 0 ± 0 0 ± 0 13 ± 1 0 ± 0

Class 1 ± 1 10 ± 2 1 ± 1 1 ± 0 19 ± 1 1 ± 0 1 ± 0 21 ± 2 1 ± 0

Order 7 ± 2 33 ± 1 8 ± 2 17 ± 0 35 ± 1 22 ± 1 12 ± 1 41 ± 1 14 ± 2

Family 35 ± 10 69 ± 8 34 ± 10 34 ± 1 62 ± 1 37 ± 1 28 ± 2 60 ± 2 28 ± 2

Genus 55 ± 9 81 ± 7 55 ± 8 63 ± 1 73 ± 1 63 ± 1 56 ± 1 71 ± 2 55 ± 2

Species 98 ± 1 100 ± 0 100 ± 0 99 ± 0 100 ± 0 100 ± 0 99 ± 0 100 ± 0 99 ± 0

Data (means ± standard deviation (n = 4)) were determined with the three data analyses tools CoMA, Mothur and QIIME. All values are presented in percent of total

reads of each sample.

https://doi.org/10.1371/journal.pone.0243241.t005
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was included to compare the OTU-based results also with an ASV approach. ASVs are cur-

rently proposed as an alternative to OTUs [28, 78] and we believe that a proper validation of

CoMA would not be possible if neglecting this progression. For the real dataset, however, anal-

yses focused solely on OTU-based strategies, which are still predominant in soil microbiolog-

ical studies.

Benchmarking with mock communities. The benchmark test showed that all tested pipe-

lines (CoMA, Mothur, QIIME, QIIME2) were able to depict the taxonomy in each of the three

mock communities in a proper way. Irrespective of the dataset, taxa were found with a high

accuracy and a relatively low error rate. However, when looking closer, differences in perfor-

mance were found among the tools depending on the dataset. While the CoMA output was

closely related to that of QIIME2 inmock-13 andmock-26, a considerable distance between

these two tools was seen formock-16, where CoMA was almost identical with QIIME. This

indicates that the accuracy of an analysis highly depends on the dataset and that no general

conclusion for the best performing analysis tool can be drawn when not considering sample

specificities. Decisive characteristics of input data may include the applied primer system (e.g.

16S rRNA, 18S rRNA, ITS, functional genes), the variable region (e.g. V3 or V4 for 16S

rRNA), the sequence length, as well as the taxonomic structure of the sample (e.g. species rich-

ness, evenness). Even though a general conclusion is difficult, CoMA seemed to be the overall

most consistent platform in this test set since it did not show any severe inaccuracies for any of

the three datasets, while the other tools did so for at least one mock community.

When comparing the OTU-based platforms (CoMA, Mothur, QIIME) with QIIME2 com-

puting ASVs, no clear trend was observed. Formock-26, the fungal ITS dataset, QIIME2 per-

formed particularly well and was the most accurate tool for this dataset in terms of mean per-

taxon deviation. Overall, however, QIIME2 was ranked last, what may be explained with the

averagely lowest genus detection rate (< 83%) among all platforms within the test set, espe-

cially seen formock-16. Here, QIIME2 was not able to reveal almost 25% (12 out of 46) of all

bacterial/archaeal genera. These results evoke the question whether ASVs are truly preferable

over OTUs, albeit it needs to be emphasized that this study was not designed to compare

OTUs and ASVs in all its aspects and hence no general conclusion can be drawn. Callahan

et al. [78] suggested a general replacement of OTUs in favor of ASVs for all marker-gene analy-

ses and argued with a higher reproducibility, a finer sequence resolution and the advantage of

comparability between different studies. On the other hand, existing sequencing technologies

often lack precision and hence an accurate resolving of exact sequences appears doubtful.

Choosing the clustering strategy is a tradeoff between lumping taxa on the one hand (OTUs)

and splitting them on the other hand (ASVs), and the decision seems to depend on the ana-

lyzed dataset, particularly in terms of the applied primer system and the length of the inner

primer region. This is also supported by Edgar [79], who tested various OTU cutoff levels and

found optima of 99% for full length 16S rRNA, and 100% for short hypervariable regions (e.g.

V4 of the 16S rRNA). For the next years, we expect a co-existence of OTUs (probably with a

99% cutoff instead of 97%) and ASVs, always depending on the data to analyze. However, as

soon as the sequencing technologies are reaching the next level in terms of precision, ASVs

may be favorable and the field should clearly move in this direction.

Irrespective of the dataset, the results of all pipelines were more closely related to each other

than to the expected values (with one exception: QIIME atmock-26). This indicates that the

inaccuracies in this benchmark test were, to a certain degree, caused by the sequencing process

rather than by the applied analysis tool. Several other authors who reported a systematic dis-

tortion of NGS data [80, 81] drew the same conclusion. Biases occur all over the process, start-

ing with the extraction of DNA, the PCR, and the sequencing procedure itself [82]. According

to the authors, the steps of DNA extraction and PCR are particularly susceptible to errors,
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which further accumulate until the end of the sequencing process. This results in a severe bias

towards some strains, while others are neglected [83]. These aspects always need to be consid-

ered when using amplicon sequencing and we strongly suggest to include samples with a

known composition (= mock community) to the analysis in order to estimate the degree of

introduced inaccuracy.

In all test categories, CoMA satisfied with a good performance in the benchmark test based

on mock communities. It seems to provide proper results, irrespective of the characteristics of

the analyzed dataset. The CoMA pipeline is therefore suggested as highly accurate alternative

to the established NGS analysis platforms for any kind of input data. Future CoMA releases

will also include the possibility to select the OTU cutoff level (currently: 97%) and to generate

ASVs rather than OTUs (using the UNOISE3 algorithm [84]), making the pipeline more flexi-

ble and congruent with different opinions in the field no matter in which direction sequence

analysis is heading in the future.

Platform comparison using real soil data. Comparing the three soils, all of the three

pipelines used for the soil dataset (CoMA, Mothur, QIIME) generally showed the same trends

concerning microbial diversity. The overall level of diversity, however, was different among

these analysis tools, which can be explained by the way diversity and richness are typically cal-

culated. Most algorithms, also those in CoMA, are based on OTUs. Therefore, OTU clustering

and subsequent data post-processing steps are crucial and may significantly affect diversity cal-

culations, as well as all other upstream analyses. Generally, there are three different strategies

for clustering sequences into OTUs: closed-reference OTU picking, de novo assembling and

open-reference OTU picking [72]. Closed-reference OTU picking first assigns sequences to a

taxonomic database and thereafter clusters them based on the taxonomic classification. This

process is fast, but some problems arise when taxonomic assignment is ambiguous or when no

similar entry can be found in the reference database [85]. De novo assembling reverses this

approach and clusters sequences in a first step, followed by the taxonomic assignment. This

strategy is more robust, especially when analyzing complex datasets, but also tends to be more

intense in terms of computational effort [86]. Open-reference clustering manifests itself a

hybrid of the above approaches. Similar to closed-reference OTU picking, sequences are first

assigned to a reference database and unclassified reads are thereafter assembled de novo. This

third option combines advantages of both approaches; however, it leads to two different OTU

definitions within one single strategy [87].

CoMA as well as Mothur and QIIME all used de novo assembling for clustering of the

sequencing data on a 97% similarity level. However, each tool implements individual algo-

rithms or rather complete tool packages. CoMA and QIIME use USEARCH (in fact UPARSE

[54]) for OTU clustering by using different versions of this algorithm (CoMA: USEARCH

10.0.240, QIIME: USEARCH 6.1.544), though. Mothur uses OptiClust [86] instead. Assuming

that both USEARCH versions used in CoMA and QIIME are largely comparable, particularly

OptiClust may have caused such differences with regard to Mothur. This is supported by our

data where CoMA and QIIME were generally more closely related to each other than to

Mothur. Beyond the fundamental OTU clustering, each pipeline includes various steps for

quality filtering, including data demultiplexing, data denoising and chimera removal. All these

steps vary among the tools and may significantly affect the results of data analyses. Subsequent

removal of rare OTUs as well as data subsampling would evoke different outputs as well. How-

ever, this can be disregarded for the present comparison since all OTU-tables were treated

with the same algorithms.

Data analysis with Mothur resulted in different microbial compositions in the three soil

habitats even though most of the key microbes were found with all of the three pipelines.

Despite the different algorithms for OTU clustering and data quality filtering, the output of
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these analyses might be strongly influenced by the aligning tool/mechanism and the used ref-

erence database for taxonomic assignment. In all cases, alignment was done via different tools:

BLAST in CoMA, RDP in Mothur and UCLUST in QIIME, following the recommendations

in the respective SOPs. However, it should be borne in mind that all of the three pipelines also

offer alternative aligners and as such, we are not addressing this aspect in detail. Taking a

closer look at the results revealed that most of the conflicting taxa showed particularly low

abundances. For the composition of low-abundant taxa, removal of rare reads has a particu-

larly high impact. The same taxon may be slightly above the cutoff in one analysis, whereas it is

slightly below in the other. Consequently, a taxon that was in fact determined with both tools

may appear just in one of them, resulting in a decreased coverage. We assume that the applied

reference database is another important driving factor for the varying results between CoMA/

QIIME and Mothur. Both, CoMA and QIIME used the newest distribution of SILVA

(SLV_132). Taxonomic classification with Mothur, however, was done using the current

release of the RDP trainset (Version 16) as described in the SOP. This explains the differences

found in terms of unclassified taxa since SILVA includes significantly more sequences than

RDP [88], resulting in a better coverage. Nevertheless, this does not explain the mismatches

when comparing microbial core families. These taxa were not only different at family level but

also down to phylum or class.

Taken together, all comparisons indicate that the CoMA output is generally well compara-

ble to that of Mothur and QIIME, particularly when looking at the microbial key players.

Regarding less abundant taxa, differences to Mothur were found.

Assets of the CoMA pipeline

The main advantage of CoMA is the intuitive and user-friendly operation that is supported by

the graphical user interface. It allows entry-level users to perform amplicon-sequencing data

analysis and to obtain solid results without the need for time- and effort-consuming training.

Beginners are further supported by the detailed CoMA manual and a systematic tutorial on

basis of a provided simple model dataset. All required steps and input parameters are

explained in detail and the small size of the dataset (< 1250 reads per sample) allows for a fast

progress without long downtimes. Advanced users can utilize the provided high degree of

automation to analyze huge amounts of data efficiently. Moreover, they find various settings

for optimizing the workflow and adapting the analysis specifically to their needs. CoMA also

offers the possibility to stop an uncompleted analysis at any point to continue later or to recal-

culate parts of the workflow. This allows for the improvement of a former run by simply

adjusting decisive input parameters without the need for a complete recalculation. As an

open-source tool package, CoMA’s source code may even be adapted or expanded according

to the needs of ambitious users.

CoMA offers a huge variety of functions, starting with data pre-processing and ending with

several useful tools for data visualization and statistical appraisal. Data pre-processing is fol-

lowing a state of the art procedure for amplicon-sequencing data: merging of paired-end

reads, trimming of primers/ barcodes/adapters and quality control with the possibility to filter

bad reads. Also OTU clustering (and in the future ASV clustering), taxonomic assignment and

data post-processing are done according to the current state of knowledge. A particular focus

of CoMA was laid on graphics that meet both esthetic and scientific standards, appropriate for

publication. The graphics can be created in many different file formats and pixel depths in

order to fulfill specific journal requirements. Taxa plots can be created as bar charts but also as

heatmaps. The latter are convenient for the depiction of taxonomic data and we strongly

encourage them particularly for big datasets. Venn plots are another option for the illustrative
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comparison of taxonomic data. Two or three specifically selected groups can be compared

with each other in terms of shared taxa, available for each taxonomic level. In future CoMA

releases, the possibility for comparing four or five groups shall be implemented. However,

Venn diagrams including too many groups tend to be confusing and lose the clarity of its orig-

inal idea. Alpha- and beta diversity (ordination, cluster analysis) can be calculated using multi-

ple methods and metrics, always providing the optimal combination for the respective dataset.

CoMA also provides the results as text files in standardized formats, which can be used for

additional or more sophisticated analyses by advanced users. This may include for instance

statistical analyses with software packages such as R. Moreover, taxonomic trees can be created

using a text file in NEWICK format. This may either end in a basic depiction of the tree struc-

ture (e.g. FastTree [89]) or in highly sophisticated and complex circular plots (e.g. GraPhlAn),

combining the taxonomic tree with circular bar charts or heatmaps. The CoMA output can

also be used for the determination of overrepresented taxa (e.g. LEfSe, IndVal [90]), the crea-

tion of taxonomic networks (e.g. Cytoscape) or the construction of pseudo-metagenomic data

to reveal the connection between taxonomy and functional genes (e.g. PICRUSt, Tax4Fun

[91], Piphillin [92]). These are only some examples for further usage, and the choice depends

on the research question and the dataset.

CoMA can be run on every common computer operating system (e.g. Linux, Windows,

macOS). Currently, three different options for installation are available: a virtual appliance

(which can be imported with tools like VMware Workstation, Oracle VM Virtualbox or Paral-

lels Desktop for Mac), a Singularity image, and a direct Linux installer. Each option provides

specific advantages and the user should select the most suitable one in order to meet his needs.

The CoMA manual includes detailed information for each installation option and describes it

thoroughly. When choosing the Singularity option, CoMA can be easily used on high perfor-

mance computer (HPC) systems. Working on HPC clusters is becoming more and more

important in modern NGS data analysis, and applying CoMA here combines easy and intui-

tive operation with tremendous computing power.

Concluding, CoMA offers several advantages over currently used pipelines, especially for

beginners but also for advanced users. This includes particularly the intuitive and user-

friendly operation, the flexible usage on any operating system as well as a graphical output

in publication-ready form. We strongly recommend the usage of CoMA for convenient and

efficient NGS data analysis for researchers, both in the biological and medical field. CoMA

will be updated regularly to ensure an excellent performance also in the future, but also to

implement additional utilities (e.g. ASV support). These updates will always include the

newest versions of the taxonomic databases at the release date to guarantee the best possible

results.

Supporting information

S1 Fig. Rarefaction-curve analysis based on operational taxonomic units (OTUs) created

with the CoMA pipeline to evaluate the sequencing effort. F = forest. GR = grassland.

S = swamp.

(TIF)

S2 Fig. Hierarchical cluster analysis showing the cosine similarity between four different

analysis platforms and the set point (SP) for the mock-13 dataset. The dendrogram was cal-

culated with the UPGMA method (unweighted pair group method with arithmetic mean) as

bottom-up approach.

(TIF)
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S3 Fig. Hierarchical cluster analysis showing the cosine similarity between four different

analysis platforms and the set point (SP) for the mock-16 dataset. The dendrogram was cal-

culated with the UPGMA method (unweighted pair group method with arithmetic mean) as

bottom-up approach.

(TIF)

S4 Fig. Hierarchical cluster analysis showing the cosine similarity between four different

analysis platforms and the set point (SP) for the mock-26 dataset. The dendrogram was cal-

culated with the UPGMA method (unweighted pair group method with arithmetic mean) as

bottom-up approach.

(TIF)

S5 Fig. Hierarchical cluster analysis showing the cosine similarity between four different

analysis platforms and the set point (SP) for all mock dataset (mock-13, mock-16, mock-
26). The dendrogram was calculated with the UPGMA method (unweighted pair group

method with arithmetic mean) as bottom-up approach.

(TIF)

S6 Fig. (A) Abundance (OTU, operational taxonomic unit), (B) Simpson diversity (D) and

(C) Chao1 diversity of three different soils after sequencing data analysis with CoMA, Mothur

and QIIME. Four replicates are shown for each habitat. F = forest. GR = grassland. S = swamp.

(TIF)

S1 Table. Physico-chemical soil properties of three sites in Gschnitz valley, Tyrol (Austria)

investigated to validate the CoMA pipeline. The table shows means ± standard deviation

(n = 4). DM = dry matter. VS = volatile solids. EC = electrical conductivity. WHC = water

holding capacity.

(DOCX)

S1 File. Soil data analysis with CoMA. The file includes the results and a discussion of the

microbial characteristics of three different soils (forest, grassland, swamp), which was deter-

mined with 16S amplicon sequencing.

(PDF)
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