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Abstract

In recent years, there has been a veritable boost in next-generation sequencing (NGS) of
gene amplicons in biological and medical studies. Huge amounts of data are produced and
need to be analyzed adequately. Various online and offline analysis tools are available; how-
ever, most of them require extensive expertise in computer science or bioinformatics, and
often a Linux-based operating system. Here, we introduce “CoMA—-Comparative Micro-
biome Analysis” as a free and intuitive analysis pipeline for amplicon-sequencing data, com-
patible with any common operating system. Moreover, the tool offers various useful
services including data pre-processing, quality checking, clustering to operational taxo-
nomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and
statistical appraisal. The workflow results in highly esthetic and publication-ready graphics,
as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEW-
ICK tree) that can be used for more sophisticated analyses. The CoMA output was validated
by a benchmark test, using three mock communities with different sample characteristics
(primer set, amplicon length, diversity). The performance was compared with that of Mothur,
QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the
functionality of COMA is demonstrated on a practical example, investigating microbial com-
munities from three different soils (grassland, forest, swamp). All tools performed well in the
benchmark test and were able to reveal the majority of all genera in the mock communities.
Also for the soil samples, the results of COMA were congruent to those of the other pipelines,
in particular when looking at the key microbial players.

Introduction

Nowadays, many studies in environmental microbiology [1, 2], molecular ecology [3, 4] and
medical diagnostics [5, 6] are either based on or accompanied by next-generation sequencing
(NGS) analyses. Amplicon-sequencing (e.g. 16S rRNA, 18S rRNA, internal transcribed spacer
(ITS), functional genes) is a cost- and effort efficient alternative to metagenomic approaches
and became a mainstream and high-throughput technique for the determination of biological
community structures. The costs have decreased with time and today a sample may be
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analyzed for less than 50 €. Moreover, amplicon-sequencing allows for the simultaneous
screening of hundreds of samples. All these aspects have made amplicon-sequencing
approaches extremely popular and led to a multitude of studies investigating all kinds of habi-
tats. Among them there are the microbiota of humans [7], aquatic ecosystems [8], soils [9],
deadwood [10], wastewater treatment systems [11] and anaerobic digesters [12-14], to name
only a few. Although most of these studies are focused on prokaryotes by targeting the 16S
rRNA genes of bacteria and/or archaea, also other structural genes like 18S rRNA [15], 28S
rRNA [16, 17] and ITS [18], or different functional genes [19, 20] are commonly used.

However, the downside of these high-throughput approaches are enormous amounts of
generated data requiring proper analysis. Modern NGS platforms like Illumina NovaSeq yield
up to 2 x 10'? sequences per run (https://emea.illumina.com/systems/sequencing-platforms.
html), stored in big data files of usually several gigabyte (GB) in size. The typical workflow for
amplicon-sequencing data analysis comprises demultiplexing of the dataset in order to assign
sequences to samples and merging of paired-end reads to obtain single sequences (however,
there are also situations where single-end reads are provided or where merging is not recom-
mended for some reason). Then, trimming off primers, adapter sequences or barcodes and fil-
tering of bad sequences based on quality or sequence length is required. Similar sequences are
clustered into operational taxonomic units (OTUs) using a common similarity cutoff (typically
97%) and OTUs are assigned to a taxonomic reference database such as Greengenes [21] (last
update 2013), RDP [22] (last update: 2016), SILVA [23], PR2 [24], MIDORI [25], ITSoneDB
[26] or UNITE [27], a process called de novo assembling (= sequences clustering before taxo-
nomic assignment). The order can also be reversed resulting in a different strategy for OTU
picking that is called closed-reference or open-reference if it is a combination of both
approaches. However, these picking strategies are rare nowadays and most tools are using de
novo assembling. As an alternative to OTUs, current research is going in the direction of
amplicon sequence variants (ASVs), where sequences are clustered based on differences down
to a single nucleotide [28]. This procedure yields real biological sequences rather than con-
structed clusters, which can be directly compared between different studies. Moreover, ASV
approaches tend to be less time-consuming, and no arbitrary threshold and centroid selections
are needed [29]. On the other hand, OTU clustering algorithms such as USEARCH turned out
to produce particularly reliable results and these tools are applied by multitudes of scientists.
Current publications indicate that both, OTU and ASV approaches yield robust results, which
are well comparable to each other [30, 31]. After OTU/ASV picking, data post-processing,
including singleton removal and data subsampling may be conducted, followed by statistical
appraisal (e.g. alpha-diversity, beta-diversity, hypothesis testing, redundancy analysis) and
data visualization.

A wide range of software solutions is available for computing all these steps. Web-based
applications promise fast and simple solutions for data analysis. Nonetheless, limited upload
capacities and collapsing server speed at peak times often bother the user and may turn online
data processing into a frustrating procedure. Beyond web-based applications, there are also
various offline tools freely available, among them Mothur [32] and “Quantitative Insights Into
Microbial Ecology” (QIIME [33], QIIME2 [34]). Both provide a great variety of different tools
in terms of explorative data analysis, quality control (QC), data processing, statistics and data
visualization, and allow extensive adjustment and fine-tuning of each step. The drawback of
these remarkably wide tool packages and options, however, is that the user needs extensive
knowledge and experience on handling command-line tools and sequence-based data process-
ing. This problem can only be partially addressed by the numerously available online docu-
mentations and interactive user blogs. If the user does not have sufficient experience and
expertise, the complex workflow may be time-consuming and may lead to mistakes and
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erroneous conclusions. Moreover, many bioinformatic tools require a Linux operating system
and deep operation skills, often lacked by the users, or requiring a time-consuming training.
An overview on existing software packages is provided in Table 1 showing the most relevant
features as well as drawbacks relative to CoMA.
We developed CoMA (Comparative Microbiome Analysis) as a free pipeline for intuitive
and user-friendly analysis of amplicon-sequencing data, available for all common computer

Table 1. Selection of existing software packages available for amplicon sequencing data analysis.

Tool
AmpliSAT [35]

BioMaS$ [36]

CloVR-ITS [37]

ITScan [38]

LotuS [39]

MetaAmp [40]

MG-RAST [41]

MICCA [42]

Microbiome

Analyst [43]

Mothur [32]

PEMA [31]

PipeCraft [44]

PIPITS [45]

QIIME [33]

QIIME2 [34]

Important features

Set of web-based tools, oriented towards
advanced users, flexible usage, accepts various
different marker genes

Web-based application, user-friendly design,
amplicons from Illumina, Ion Torrent and
Roche 454, basic data visualization (pie chart,
tax. tree)

optimized for analyzing fungal communities,
offers data visualization and statistics, supports
cloud computing

Web-based application, offers data visualization

and statistics, optimized for analyzing fungal
communities

command line-based, more oriented towards
advanced users, flexible usage, amplicons from
Illumina, Ion Torrent, PacBio and Roche 454

Web-based application, supports ASVs,
moderate complexity, accepts various different
marker genes, output in standardized formats

Web-based application, also supports other
NGS data analysis apart from AS, moderate
complexity, flexible usage

command line-based, single- and paired-end
reads, moderate complexity, amplicons from
Illumina, Ion Torrent and Roche 454

Web-based application, also supports other
NGS data analysis apart from AS, moderate
complexity, flexible usage

command line-based, oriented towards
advanced users, very flexible usage with a huge
variety of tools and options

user-friendly operation, OTU and ASV
supported, provides o- and B-diversity analyses
as well as statistics, output in standardized
format

GUI, user-friendly design, flexible usage,
amplicons from Illumina, Ion Torrent, PacBio
and Roche 454

optimized for analyzing fungal communities,

extraction of an ITS sub region, uses paired-end

reads, amplicons from Illumina

command line-based, oriented towards
advanced users, very flexible usage with a huge
variety of tools and options

command line-based or GUI-based, oriented
towards advanced users, very flexible usage
with a huge variety of tools and options,
supports ASV

https://doi.org/10.1371/journal.pone.0243241.t001

Drawbacks relative to CoMA

difficult to handle for entry-level users,
performance relies on server speed and other
job submissions

no support for PacBio, no post processing, no
statistics, plain data visualization without
many options, performance relies on server
speed and other job submissions

limited to ITS primers, limited to Roche 454
— no Illumina data supported

limited to ITS primers, performance relies on
server speed and other job submissions

no GUI, no post processing, no data
visualization, no statistics

no post processing, no data visualization,
performance relies on server speed and other
job submissions

performance relies on server speed and other
job submissions

no GUI, no post processing, no data
visualization, no statistics

performance relies on server speed and other
job submissions

no GUI, difficult to handle for entry-level

users,

currently limited to 4 different marker genes
(168, 18S, ITS, COI),

no post processing, no data visualization, no
statistics

limited to Illumina MiSeq data, limited to ITS
primers, no GUI, no post processing, no data
visualization, no statistics

no GUI, requires a Linux OS, difficult to
handle for entry-level users

requires a Linux OS, difficult to handle for
entry-level users
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platforms. We used various open-source, third-party tools and combined them into a linear
analysis workflow in the form of a Bash script, starting with the raw input files (in FASTQ for-
mat) and resulting in esthetically pleasing and publication-ready graphics. In addition, output
files in standardized formats, such as a tab-delimited OTU-table, an OTU-table in BIOM for-
mat and a tree file in NEWICK format, are provided. These allow for subsequent secondary
analysis using for example Cytoscape [46], GraPhlAn [47], LEfSe [48], PICRUSt [49] or R [50],
if desired. The operation of this tool is remarkably intuitive and makes it accessible even for
entry-level users. A graphical user interface facilitates the handling, representing a major
advantage compared with command-line based applications. Nevertheless, multiple adjust-
ment parameters and the high degree of automation make CoMA also acceptable for advanced
users who are looking for an efficient and streamlined data analysis. The tool is capable of han-
dling data from today’s most important NGS platforms, including Illumina MiSeq, Illumina
HiSeq, or Illumina NovaSeq, but also from the former 454 pyrosequencing technology, which
was, in fact, terminated in 2016 but data are still around and analysis tools are still needed.
This study focuses on the processing of short rather than long reads, which are produced by
currently emerging third-generation sequencing technologies like PacBio or Nanopore.
Appropriate analysis tools for long reads are not discussed here but are readily available (e.g.
SDip [51]). Three different options for installation are available for CoMA, which can all be
downloaded from the CoMA webpage (https://www.uibk.ac.at/microbiology/services/coma.
html). A detailed manual describes both the installation as well as the usage of the tool.

Here, we present the new CoMA pipeline and benchmark it by analyzing three different,
constructed mock communities. The performance of CoOMA is compared with that of Mothur,
QIIME and QIIME2, the currently most popular platforms for NGS data analysis (however,
the support for QIIME ended in 2018 and the developers suggest switching to QIIME2). More-
over, we apply CoMA to a real dataset on the prokaryotic microbiota of three different soils
(forest, grassland, swamp) in order to demonstrate its functionality also on a practical example.
Soil samples were analyzed on an Illumina MiSeq device, using a 16S rRNA amplicon-
sequencing approach. We hypothesize that the CoMA pipeline works well in the benchmark
test, revealing all included genera. We expect CoMA to perform as efficiently and precisely as
Mothur, QIIME and QIIME2, and that the results are stable irrespective of the applied dataset.
In addition, we hypothesize that the results for the soil samples obtained by the different analy-
sis tools are highly comparable, especially when looking at the key microbial players.

Material and methods
Implementation of CoMA

CoMA is implemented as a linear data analysis pipeline ranging from the processing of raw
input files to the computation of results. It comprises four main sections: data pre-processing
and quality checking, OTU clustering and taxonomic assignment, data post-processing, as
well as data visualization and statistical appraisal (Fig 1). All steps, except for the merging of
paired-end reads and OTU clustering/taxonomic assignment, are optional and can be skipped
by the user if desired. Therefore, the tool allows for the (partial) re-calculation of a former,
already completed CoMA run or the continuation of an unfinished or terminated analysis.
CoMA offers a simple user interface, composed of GTK+ dialogs, which guides the user
through the analysis and provides important information on each step of the workflow.

Data pre-processing and quality checking. Data analysis using COMA requires input
files in FASTQ format (paired-end or single-end, either uncompressed or compressed with
gzip), which is the standard NGS file format provided by all common sequencing platforms. In
case of paired-end reads, forward and reverse reads are first merged at their overlapping
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Fig 1. Overview of the CoMA pipeline workflow. Different colors represent the four sub-sections of the CoMA
workflow: Data pre-processing and quality checking (orange), clustering of operational taxonomic units (OTUs) and
taxonomic assignment (green), data post-processing (blue) and data visualization and statistical appraisal (yellow).
Labelled arrows demonstrate the order of events and name specific file types that are needed as input for each step.
Taxonomic assignment is done with Blast, Lambda or RDP using either one of the available databases (e.g. Silva [23])
or any custom database provided by the user. Numbers indicate third party tools that are used for the specific COMA
step: 1 = PANDAseq, 2 = PRINSEQ, 3 = LotuS/sdm, 4 = QIIME, 5 = Mothur. TDOT = Tab-delimited OTU-table.
PER = Paired-end reads. SER = Single-end reads. PCoA = Principal coordinates analysis.

https://doi.org/10.1371/journal.pone.0243241.9001

region, using the open-source tool “Paired-end assembler for DNA sequences” (PANDAseq
[52]). This step is followed by a QC step (an individual quality report is created for each sam-
ple) and a subsequent sequence selection step, both accomplished by the “Preprocessing and
Information of Sequence data” (PRINSEQ [53]) utility. Amplification primers, sequencing
adapters and multiplex identifiers are removed (trimming) and reads are selected based on
Phred quality score (PQS), amplicon length and ambiguous bases. The selection parameters
are different for each specific primer pair and can be adjusted based on the information gained
from QC. A second QC step, checking the success of trimming and sequence selection, finally
completes the data pre-processing workflow.

OTU clustering and taxonomic classification. All steps within this program section are
either part of the “Less OTU scripts” (LotuS [39]) pipeline or the “simple demultiplexer” tool
(sdm [39]). First, an error-correction step is applied, followed by the removal of artificial chi-
meric sequences, resulting from cross-hybridization of DNA fragments during library prepa-
ration. Subsequently, clustering to OTUs is done with the UPARSE-OTU algorithm [54] at a
97% similarity level, following a de-novo assembling approach. OTU sequences are then
aligned/classified with a desired gene reference database using either “Basic Local Alignment
Search Tool” (BLAST [55]), “Local Aligner for Massive Biological Data” (Lambda [56]) or the
“Ribosomal database project” (RDP [57, 58]) classifier. CoOMA supports several popular taxo-
nomic databases, including SILVA, Greengenes, RDP, UNITE, HITdb [59], beetax [60], and
PR2, as well as any custom database provided by the user. A custom database needs to be com-
posed of two individual files: a FASTA file with all sequences and a TAX file with the accompa-
nying taxonomic information. The correct structure for both files is provided in the CoMA
manual. It is possible to use multiple databases, where the first serves as primary- and the
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other(s) as backup database(s). OTUs that cannot be assigned to the primary database are then
diverted to the backup database(s). This workflow section is completed by the generation of

universally applicable output files (tab-delimited OTU-table, BIOM file, NEWICK tree), allow-
ing for specific subsequent data analysis or individual visualization steps by the user if desired.

Post-processing of data. Data post-processing starts with an initial removal step, where
very rare OTUs can be dropped from analysis (filter_otus_from_otu_table.py, QIIME). OTUs
can be omitted due to a low number of total reads on the one hand or due to rare occurrence
within the samples on the other hand. To assess whether the sequencing effort (i.e. number of
reads per sample) was sufficient, rarefaction curves are computed using Mothur’s rarefaction.
single command. The applied metric can be selected by the user out of the following possibili-
ties: OTUs, Chaol richness estimator, Shannon-Wiener diversity index, Simpson’s diversity
index and Good’s coverage for OTUs. The output is provided either as text file containing all
raw data or as line plot. Based on rarefaction curve analysis, the dataset can be subsampled to a
unique read count for each sample to bring the data onto a common scale [61]. This step is
done using the single_rarefaction.py script provided by the QIIME platform. The pseudo-ran-
dom number generator used here for subsampling is an implementation of the Mersenne
twister [62]. To facilitate use, COMA provides the read count for each sample, sorted in
increasing order. The next step allows for renaming sample names; all further results are pre-
sented using the newly assigned names. Finally, metadata can be assigned to the samples.
These metadata can be used in all upcoming steps in order to group the samples.

Data visualization and statistical appraisal. First, summary files, containing the most
abundant taxa of each sample at all taxonomic levels (kingdom, phylum, class, order, family,
genus, and species) are created. The user can compute a report for bacteria, archaea, fungi and
eukaryotes, as well as a general summary. Moreover, a summary report for a specific taxon can
be created. During the next step, publication-ready and highly esthetic bar charts and heat-
maps can be created for each taxonomic level. The user can choose between plots for bacteria,
archaea, fungi, eukaryotes and prokaryotes. Alternatively, plots can be computed for a specific
taxon, including all descendent taxa at the lower taxonomic levels. In addition, this step allows
the user to set a threshold, based on relative abundance, for taxa to be included in the plots and
a decision whether unassigned taxa will be included or excluded from the depictions. More-
over, the user can choose between various popular image file formats (EPS, JPEG, PDF, PNG,
PS, RAW, SVG, TIFF) and adjust the pixel density if a raster graphic format was selected. Sub-
sequently, Venn diagrams can be created to compare detected taxa among given groups for
each taxonomic level. Within the next step, alpha diversity (or within-sample diversity) can be
calculated using various different calculators (observed OTUs, Shannon-Wiener index, Simp-
son’s index, Pielou’s evenness index, Good’s coverage of counts, Chaol richness estimator, Faith’s
phylogenetic diversity). Every metric has different strengths and limitations—technical discus-
sion of each metric is readily available online and in ecology textbooks. The output is provided
either as raw-data text file or as publication-ready bar chart. Finally, CoOMA offers two different
approaches for analyzing beta diversity: ordination and hierarchical cluster analysis. Ordina-
tion can be done using various different metrics (Minkowski, Euclidean, Manhattan, Cosine,
Jaccard, Canberra, Chebyshev, Braycurtis, Dice, Weighted UniFrac, Unweighted UniFrac). After
calculating of a distance matrix, data are visualized in either two- or three-dimensional Princi-
pal coordinates analysis (PCoA) plots. To quantify the strength of the grouping, statistical tests
(ANOSIM, PERMANOVA; 999 permutations) are applied. For cluster analysis, the user can
choose between the following linkage methods for the cluster analysis: Single, Complete, Aver-
age (UPGMA), Weighted (WPGMA), Centroid (UPGMC), Median (WPGMC) and Ward.
These methods are used to compute the distance d(s,t) between two clusters s and t, using a
bottom-up approach. In addition, the user can select a suitable metric to determine the
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distance between two individual data points: Euclidean, Cosine, Cityblock, Correlation, Jaccard,
Braycurtis and Dice. Results from cluster analysis are presented as dendrogram plots.

Mock community datasets

All mock community datasets for benchmarking CoMA were taken from the public mockro-
biota repository [63]. In order to cover different input sequences in terms of variable region,
sequence length and diversity, the three datasets mock-13 [64], mock-16 [65] and mock-26 [66]
were selected. Mock-13 comprises 21 bacterial strains (18 genera; three replicates) that were
sequenced on an Illumina MiSeq machine (paired-end run) by targeting the V4 region of the
16S rRNA. The same sequencing procedure was also used for mock-16; however, this dataset
additionally includes archaea and the overall diversity is with 59 strains (46 genera; three repli-
cates) much higher than in mock-13. Mock-26 includes ITS data from 11 fungal strains (11
genera) that were sequenced with a gx-flx-titanium sequencer (Roche, Switzerland). The whole
dataset comprises over 130 samples, including multiple replicates and different variations of
the community (even abundance, uneven abundance, pure culture). For this work, samples
Mock.81, Mock.92 and Mock.99 were randomly picked out of the evenly distributed samples.

Mock data analysis with COMA. Mock-13 forward and reverse reads were merged in a
first step and the quality of the joined reads was then determined. Based on QC analysis, reads
were selected due to their sequence length (240-265 bp) and their mean PQS (> 15). The
reads were not trimmed since primers and other sequence appendices were already cut off in
the raw input files. After the second QC step, reads were clustered into OTUs (> 97% similar-
ity) and representative sequences were aligned to the SILVA database (SSU 132) using BLAST.
The same procedure was applied for mock-16, however with two minor modifications. Before
quality selection, primers were trimmed off from the forward (19 bp) and reverse end (20 bp).
In addition, the PQS selection was more rigorous (> 30) since the overall quality of the reads
was higher in mock-16 compared with mock-13.

A slightly different protocol was applied for mock-26 since the dataset was still multiplexed
and contained single-end reads. Demultiplexing was done with the “demux emp-single” com-
mand within the QIIME2 toolkit since COMA does not support multiplexed input files in its
current version. Selected files (Mock.81, Mock.92, Mock.99) were then subjected to the CoMA
pipeline, starting with the first QC step. Reads with a maximum length of 500 bp were then
selected. A minimum sequence length was not adjusted since ITS reads typically show a wide
distribution in sequence length and thus a loss of information should be avoided. Since the
overall quality level of the sequences was high, a minimum average PQS > 30 was adjusted.
After the second QC step and the OTU clustering, reads were aligned to the UNITE database
(version 8) using the BLAST algorithm.

Mock data analysis with Mothur. Data analysis of mock-13 and mock-16 with Mothur (v.
1.39.5) was done according to the standard operating procedure (SOP) for Illumina MiSeq
data, provided at the Mothur homepage (https://www.mothur.org/ wiki/MiSeq_SOP, [32]).
Input forward and reverse reads were merged with “make.contigs”. After checking the quality
with “summary.seqs”, ambiguous bases and reads with a length of > 270 bp (mock-13)
and > 292 bp (mock-16) were removed using “screen.seqs”. A table of unique sequences was
created with “unique.seqs” and a prevailing counting table, providing the occurrences of the
unique sequences in each sample, was created using “count.seqs”. To prepare the SILVA (ver-
sion 132) database, “pcr.seqs” was applied on the database file with the following limit settings:
start = 13,862, end = 23,444. Unique sequences were aligned to the prepared database using
the “align.seqs” tool and outliers were removed with “screen.seqs” (start = 8, end = 9,578
(mock-13) or 9,582 (mock-16), maxhomop = 8). After a sequence filtering step with “filter.
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seqs” (vertical = T, trump =.), reads were again checked for unique sequences using the
“unique.segs” tool to exclude potential sequence redundancies introduced in course of the
trimming step. For de-noising of data, sequences were pre-clustered with “pre.cluster”

(diffs = 2) and chimeras were removed with “chimera.uchime” and a subsequent “remove.
seqs” step. To get rid of sequencing errors, sequences were classified with “classify.seqs” and
unknown reads (at kingdom level) as well as reads assigned to chloroplasts, mitochondria or
eukaryota were removed with “remove.lineage”. Sequences were then clustered using “cluster.
split” (splitmethod = classify, taxlevel = 4, cutoff = 0.03) and a shared file was created with
“make.shared”. After taxonomic assignment (“classify.otu”), a BIOM file was created (“make.
biom”) and then transformed to a tab-delimited OTU-table using the independent “biom-con-
vert” tool (http://biom-format.org/).

For mock-26, selected files (Mock.81, Mock.92, Mock.99) were imported using “make.file”
and “fastq.info”. Low-quality reads were then excluded (“trim.seqs”; qaverage = 15) and all
individual files were merged to a combined FASTA file (“merge.files”, “make.group”). After
summarizing all data with “summary.seqs”, reads with > 10 ambiguous bases were removed.
A greater tolerance of ambiguous bases compared with mock-13/mock-16 was required since
all sequences constantly contained a considerable number of ambiguous bases. A sequence
length selection was omitted due to the high inconsistency among the ITS data. After finding
the unique sequences (“unique.seqs”) and creating a count table (“count.seqs”), analysis was
continued as described for the other mock communities, starting with the pre clustering step
(“pre.cluster”). The newest Mothur-optimized UNITE release (version 7) was used as reference
database for sequence alignment.

Mock data analysis with QIIME. Data analysis of mock-13 and mock-16 with QIIME (v.
1.8.0) was done according to the recommendations for Illumina data on the QIIME homepage
(http://qgiime.org/tutorials/processing_illumina_data.html, [33]). First, paired-end input reads
(all files in FASTQ format) were merged using the “multiple_join_paired_ends.py” script
within the QIIME toolkit. This is an alternative version of the “join_paired_ends.py” script
and allows the merging of already-demultiplexed FASTQ files. Quality filtering was done with
the “multiple_split_libraries_fastq.py” script and chimeras were removed with “usearch61”
using the “identify_chimeric_seqgs.py” and “filter_fasta.py” scripts. Reads were then clustered
into OTUs with the “usearch61” method of “pick_otus.py” and representative (= most abun-
dant) sequences for each OTU were picked using “pick_rep_set.py”. Representatives were then
assigned to the QIIME-optimized Silva SSU database (release 132) with the “assign_taxonomy.
py” script (assignment method: uclust) and the OTU-table was constructed using “make_otu_-
table.py”. The created BIOM file was converted to a tab-delimited OTU-table with the external
“biom-convert” tool as described in the previous chapter.

Selected input files for mock-26 (Mock.81, Mock.92, Mock.99) underwent, in a first step, a
quality selection (“split_libraries_fastq.py”), where reads with an average PQS < 15 were
removed. All upcoming steps were done as described above for the other mock communities.
The newest QIIME-optimized UNITE release (version 8, dynamic construction) served as ref-
erence database for sequence alignment (“assign_taxonomy.py”).

Mock data analysis with QIIME2. Data analysis with QIIME2 (v. 2019.10) followed the
“Moving pictures” tutorial, accessible on the program’s webpage (https://docs.qiime2.org/
2019.10/tutorials/moving-pictures/). However, mock-13 and mock-16 required a slightly alter-
native procedure due to their paired-end data structure, and the files from all mock communi-
ties (mock-13, mock-16, mock-26) needed to be imported in a different manner since the data
were already demultiplexed.

First, mock-13 and mock-16 input files were imported using “qiime tools import” with the
settings “SampleData[PairedEndSequences WithQuality]” as data type and
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“CasavaOneEightSingleLanePer- SampleDirFmt” as input format. After summarizing and qual-
ity-checking the imported data (“giime demux summarize”), “qiime dada2 denoise-paired”
was applied. This central step calls the DADA?2 pipeline and provides several functions, includ-
ing sequence trimming and truncation, quality filtering, removal of phiX reads, chimera
removal, and the construction of a feature table (suitable filtering settings resulted from the
previous quality-checking step). In contrast to all other pipelines used for this study, DADA2
provides ASVs, which are created by grouping unique sequences. ASVs are equivalent to
OTUs at a 100% cutoft level and are discussed to replace customary OTUs (97% cutoft) in the
future. Therefore, QIIME2 always means QIIME2-DADA?2 within the context of this publica-
tion since the pipeline also offers other options for sequence clustering (e.g. Deblur) and
results may considerably differ. For mock-16, 19 and 20 bp were trimmed off from the forward
and reverse end, respectively. No trimming was applied for mock-13 since all sequence appen-
dices were already removed in the raw input files. Thereafter, taxonomic information was
assigned to the representative sequences using a pre-trained Naive Bayes classifier (Silva 132,
99% OTUs from the 515F/806R inner primer region, available at https://docs.qiime2.org/2019.
10/data-resources/) and the “qiime feature-classifier classify-sklearn” tool. After exporting the
table- and taxonomy QIIME2 artifact with “qiime tools export” and the external “biom-con-
vert” tool, a tab-delimited ASV-table file was created.

For mock-26, selected input files (Mock.81, Mock.92, Mock.99) were imported with “qiime
tools import” (data type: “SampleData[SequencesWithQuality]”, input format: “CasavaO-
neEightSingle-LanePerSampleDirFmt”). Sequence preparation and ASV-table construction was
again done with the DADA?2 pipeline; however, in this case with the single-end version of the
plugin (“qiime dada2 denoise-single”). No trimming or sequence truncation was applied. Rep-
resentative sequences were then taxonomically assigned with a pre-trained UNITE classifier
and the “qiime feature-classifier classify-sklearn” plugin. The classifier was trained on the new-
est UNITE database release (version 8, dynamic construction), and the reads were not
trimmed to the ITS primer sites as suggested by the QIIME2 documentation. The final tab-
delimited ASV-table file was created as previously described for mock-13 and mock-16.

Soil dataset

The chosen dataset for demonstration of the CoMA pipeline originated from a field experi-
ment conducted at the Department of Microbiology, University of Innsbruck, in autumn
2016. It aimed at investigating the microbial community structure in soils from three different
habitats: forest (F), grassland (GR) and swamp (S), characterized by different nutrient con-
tents, a specific vegetation and different degrees of human influence. However, all sites were
located in close proximity and thus subjected to similar geological and climatic conditions.

Soil sampling. Samples were taken in Trins, Tyrol (Austria; 47°04'59” N, 11°25'00” E) on
November 28, 2016. The annual average temperature is 4°C and the annual precipitation 770
mm [67]. Samples were taken at the end of the vegetation period, two months after the last fer-
tilization with manure (swamp samples). Details on the sampling sites are given in Table 2.

From each site, four field replicates were taken within an area of approximately 100 m”.
Each field replicate was composed of nine cores (0-10 cm depth, @ 2 cm) taken in a regular
systematic grid strategy (within a square of 1.4 x 1.4 m). Immediately after the sampling, soil
samples were sieved (< 2 mm) and stored at -20°C until use. Soil physico-chemical characteri-
zation (S1 Table) was done as described by Fernandez-Delgado Juarez et al. [69].

DNA extraction and NGS. Total DNA was extracted using the NucleoSpin Soil kit
(Macherey-Nagel, Diiren, Germany) according to the manufacturer’s protocol with minor
adaptations: 0.25 g (fresh weight) of twelve soil samples (stored at -20°C) were lysed in Lysis
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Table 2. Sites that were selected for soil analysis in order to demonstrate the functionality of COMA.

Habitat | GPS-coordinates Characteristics
(WGS 84)

F 47°04’55" N, 11°25°47" | Conifer forest, mainly Picea abies; Southern slope; soil type: medium-developed
E sediment brown earth, Leptic Cambisol.

GR 47°04’57"N, 11°25’13" | Meadow; not fertilized for > 10 years; cut twice a year; soil type: loose sediment
E brown earth, Eutric Cambisol.

S 47°04°27"N, 11°24°22" | Former swamp, drained in the 1980’s; water level between 5-50 cm, depending
E on the season; manure amendment: 2-3 times a year; cut twice a year; soil type:

calcareous extreme gley, Stagnosol.

All areas were located in Gschnitz valley, Tyrol (Austria) near the village of Trins. Information on the soil type was
gained from the Austrian Soils Map of the Austrian Research Centre for Forests (https://bodenkarte.at/) and the

world reference base for soil resources [68]. F = forest. GR = grassland. S = swamp.

https://doi.org/10.1371/journal.pone.0243241.t1002

Buffer 1 (SL1) at room temperature using a horizontal shaker (MM 2000, Retsch, Haan, Ger-
many) at an amplitude of 80% for 5 min. Elution was done in 2x40 uL of Buffer SE. DNA extracts
were checked on a 1.5% agarose gel and DNA concentration was determined via QuantiFluor
dsDNA dye measurement using the Quantus fluorometer (Promega, Mannheim, Germany).
Extracts were stored in low-DNA binding tubes (Axygen, Corning, USA) at -20°C until sequenc-
ing. Samples were then subjected to NGS amplicon-sequencing (Microsynth AG, Balgach, Swit-
zerland) on an Illumina MiSeq device using a 250 bp paired-end (v2) approach targeting the V4
region of the 16S SSU rRNA gene. The applied primer pair was 515f (5’ ~-GTGCCAGCMGCCGCG
GTAA-3")and 806r (5’ ~GGACTACHVGGGTWICTAAT-3"), as described by Caporaso et al.
[70] and recommended for soil in the Earth Microbiome Project [71].

Soil data analysis with COMA. Data analysis with CoMA (quality selection, OTU cluster-
ing, taxonomic assignment) was done as previously described for mock-13 but with a PQS
cutoff > 30. Rare OTUs with a sum of reads < 50 within all samples were excluded (corre-
sponding ~0.005% of all reads as previously described in other studies [72, 73]) and data was
subsampled to a depth of 92,539 after checking rarefaction curves (S1 Fig). This corresponds
to the lowest read count among all samples and all analysis pipelines (CoMA, Mothur,
QIIME). At this depth, the rarefaction curves of all samples reached a steady state and thus the
sequencing effort was assumed to suffice. Diversity analysis was done using the four provided
diversity indices: number of OTUs, Shannon-Wiener, Chaol and Simpson. For cluster analy-
sis, UPGMA (CoMA input: “average”) was chosen as method and Braycurtis distance as met-
ric. This combination is suitable for grouping microbial communities and therefore often used
in microbial ecology studies [74].

Soil data analysis with Mothur. Soil samples were analyzed with Mothur following the
same protocol and settings as described for mock-13. Removal of rare OTUs (sum of
reads < 50) as well as data subsampling (92,539 reads) was done with CoMA as described
above.

Soil data analysis with QIIME. Soil data analysis was done following the same protocol
and settings as described previously for mock-13 and mock-16. OTUs removal and subsam-
pling was again done with CoMA using the same settings.

Statistical analyses

Principal component analysis (PCA) was done with the Canoco 5 software package for multi-
variate data analysis [75]. Microbial families, excluding unassigned taxa, were used as dataset.
Prior to analysis, data were centered and log-transformed. The depiction of Canoco output
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files was thereafter performed with python. Descriptive statistics, analysis of variance
(ANOVA) and post-hoc tests were done using SPSS Statistics 24 (IBM, New York, USA) and
Excel 2016 (Microsoft, Washington, USA). Post-hoc tests were calculated using the Bonferroni
correction. Venn diagrams and cluster analysis were created with in-house developed Python
scripts. Dendrograms were created with the UPGMA method as bottom-up approach. The
data points were compared either with the Braycurtis distance (to compare different soil
microbiomes) or with the Cosine distance (to compare different analysis platforms). Key
microbial families were defined as those including > 5% of all assigned reads within each sam-
ple. The normality of the data was tested prior to analysis and the significance level was deter-
mined at p < 5%.

Results
Benchmarking with mock communities

Mock-13 comprised 21 bacterial strains that can be classified to 18 different genera: Acineto-
bacter, Actinomyces, Bacillus, Bacteroides, Clostridium, Deinococcus, Enterococcus, Escherichia,
Helicobacter, Lactobacillus, Listeria, Neisseria, Porphyromonas, Propionibacterium, Pseudomo-
nas, Rhodobacter, Staphylococcus (two strains) and Streptococcus (three strains). All strains
were equally distributed and thus each genus corresponded to 4.76% of the total abundance,
except for Staphylococcus (9.52%) and Streptococcus (14.29%). Data analysis with CoMA
revealed 16 out of 18 genera, similar to Mothur and QIIME (Table 3). QIIME2 was able to find
all genera except for Propionibacterium, which was not found with any of the pipelines (Fig 2).
This, however, is a known issue and several other studies were not able to detect Propionibac-
terium in course of mock community tests [76]. The reason for that may be mismatches close
to the 3’ terminus of the 16S rRNA primer, leading to a low abundance or even a complete
missing out of this genus [77]. Apart from Propionibacterium, Actinomyces (CoMA), Bacillus
(Mothur) and Clostridium (QIIME) were not consistently detected. When looking at the aver-
age deviation per taxon, all pipelines performed similarly well. With a mean deviation of
3.11%, Mothur was most precise, closely followed by CoMA (3.27%) and the two QIIME ver-
sions (QIIME: 3.50%, QIIME2: 3.45%). On the other hand, Mothur yielded the highest pro-
portion of erroneously assigned sequences (11.85%), followed by QIIME (9.20%). Both,
CoMA and QIIME2 showed error rates below 1% (0.64% and 0.83%, respectively). Cluster
analysis revealed smallest cosine distance between CoMA and QIIME2 (0.06; S2 Fig). Mothur
and QIIME formed a second cluster, showing a distance of 0.15. All pipelines were closer
related to each other than to the set point with an overall distance of 0.22.

The second 16S mock community included, beside bacterial, also archaeal strains. In total,
mock-16 comprised 59 strains that can be assigned to 46 different genera (archaea: 8, bacteria:
38). All strains were equally distributed, resulting in the following abundances at genus level:

Table 3. Results of the benchmark test for four different analysis platforms.

Dataset Detected Genera Average deviation per genus [%]
CoMA Mothur QIIME QIIME2 CoMA Mothur QIIME QIIME2
mock-13 16/18 16/18 16/18 17/18 3.27 3.11 3.50 3.45
mock-16 43/46 40/46 44/46 34/46 1.22 1.52 1.22 2.09
mock-26 11/11 11/11 11/11 11/11 2.31 2.09 4.01 2.05
mock-13/mock-16/mock-26 70/75 67/75 71/75 62/75 1.89 1.99 2.17 2.41

Numbers of detected genera and accuracy, given as average deviation per genus, are shown (mock-13: 18 bacterial genera (16S rRNA); mock-16: 46 archaeal/bacterial
genera (16S rRNA); mock-26: 11 fungal genera (ITS)).

https://doi.org/10.1371/journal.pone.0243241.t003
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Fig 2. Community composition of the mock-13 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected
distribution and serves as reference. The dataset comprised 18 bacterial genera, targeted with 16S rRNA amplicon sequencing.
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Acidobacterium (1.69%), Akkermansia (1.69%), Anaerocellum (1.69%), Archaeoglobus (1.69%),
Bacteroides (3.39%), Bordetella (1.69%), Burkholderia (1.69%), Caldicellulosiruptor (1.69%),
Chlorobaculum (1.69%), Chlorobium (5.08%), Chloroflexus (1.69%), Clostridium (1.69%), Dei-
nococcus (1.69%), Desulfovibrio (3.39%), Dictyoglomus (1.69%), Enterococcus (1.69%), Erwinia
(1.69%), Fusobacterium (1.69%), Gemmatimonas (1.69%), Herpetosiphon (1.69%), Hydrogeno-
baculum (1.69%), Ignicoccus (1.69%), Leptothrix (1.69%), Methanocaldococcus (1.69%), Metha-
nococcus (3.39%), Nanoarchaeum (1.69%), Nitrosomonas (1.69%), Nostoc (1.69%), Pelodictyon
(1.69%), Persephonella (1.69%), Porphyromonas (1.69%), Pyrobaculum (3.39%), Pyrococcus
(1.69%), Rhodopirellula (1.69%), Rhodospirillum (1.69%), Ruegeria (1.69%), Salinispora
(3.39%), Shewanella (3.39%), Sulfitobacter (3.39%), Sulfolobus (1.69%), Sulfurihydrogenibium
(3.39%), Thermoanaerobacter (1.69%), Thermotoga (5.08%), Thermus (1.69%), Treponema
(3.39%) and Zymomonas (1.69%). With CoMA, 43 out of 46 genera were correctly assigned
(Table 3). QIIME detected 44, whereas Mothur and QIIME2 found 40 and 34, respectively.
None of the pipelines was able to reveal Rhodospirillum, while Clostridium (Mothur) and Rue-
geria (QIIME) were only found with one of the four applied analysis tools (Fig 3). All other
genera were at least detected by two pipelines, 32 of them by all of them. CoMA and QIIME
turned out to be most precise for this dataset, resulting in an average deviation of 1.22% per
taxon. Accuracy rates of Mothur and QIIME2 were 1.52% and 2.09%, respectively. Comparing
the proportion of wrongly assigned or unassigned genera, CoMA was most efficient (3.83%),
followed by QIIME (3.88%). Mothur and QIIME2 both revealed more than one erroneous
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Fig 3. Community composition of the mock-16 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected
distribution and serves as reference. The dataset comprised 46 archaeal and bacterial genera, targeted with 16S rRNA amplicon sequencing.

https://doi.org/10.1371/journal.pone.0243241.9g003

genus out of ten tested sequences (10.53% and 16.31%, respectively). Cluster analysis based on
the mock-16 results revealed a cosine distance < 0.01 between CoMA and QIIME, indicating a
very high similarity between these two pipelines (S3 Fig). With a cosine distance of 0.08,
Mothur was closer related to them than to QIIME2. However, as seen before for mock-13, all
applied pipelines were much closer related to each other (maximum distance: 0.15) than to the
set point (overall distance: 0.30).
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Fig 4. Community composition of the mock-26 dataset, revealed with four different analysis platforms. The set point (SP) depicts the theoretically expected
distribution and serves as reference. The dataset comprised 11 fungal genera, targeted with ITS amplicon sequencing.
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The ITS dataset (mock-26) included 11 fungal strains, assigned to 11 different genera: Ama-
nita, Archaeorhizomyces, Cortinarius, Debaryomyces, Fusarium, Hymenoscyphus, Melampsora,
Mucor, Rhizina, Sistotrema, Umbelopsis. All taxa were equally distributed, resulting in an abun-
dance of 9.09% per genus. Contrary to mock-13 and mock-16, all genera of this dataset were
detected with each of the four pipelines (Table 3, Fig 4). QIIME2 and Mothur showed the high-
est accuracy with an average deviation of 2.05% and 2.09% per taxon, respectively, followed by
CoMA (2.31%) and QIIME (4.01%). QIIME?2 was also superior in terms of wrongly assigned
or unassigned sequences at genus level for this dataset (0.44%), slightly lower than CoMA with
an error rate of 0.71%. QIIME and Mothur followed with distinctively higher error rates of
2.62% and 6.17%, respectively. Cluster analysis revealed smallest cosine distance between the
results computed with CoMA and QIIME2 (< 0.01; S4 Fig). Mothur was slightly more distant
(0.02) but still closer related than to the set point with an overall distance of 0.05 to the three
aforementioned pipelines. For the mock-26 dataset, QIIME was far distant to the set point as
well as to the other analysis tools (0.10).

Taking all mock communities together, CoMA showed the overall highest accuracy with an
average deviation of 1.89% per taxon (Table 3), compared to Mothur (1.99%), QIIME (2.17%)
and QIIME2 (2.41%). Looking at the hierarchical cluster analysis, CoMA and QIIME2 showed
the smallest cosine distance (0.08; S5 Fig). Mothur followed with a distance of 0.11 and QIIME
with a distance of 0.12. All four pipelines were much closer related to each other than to the
estimated values (overall cosine distance: 0.18).
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Soil dataset as practical example

In addition to mock communities, also real soil samples were analyzed with CoMA, Mothur
and QIIME. A detailed description of the microbiological characteristics of the investigated
soil samples determined with CoMA can be found in the supplementary material (S1 File). In
the main article, we are focusing on the comparison between the three different analysis tools.

Data analyses with Mothur and QIIME resulted in the same pattern of Shannon-Wiener
diversity (F’, Fig 5), Chaol diversity, Simpson diversity (D) and OTU richness (S6 Fig) as seen
for the CoMA pipeline (S1 File). However, the level differed between the applied analysis tools.
Mothur generally evoked higher diversity (H’: p = 0.002, Chao: p < 0.001, D: p = 0.009) and
OTU richness (p = 0.004) than CoMA, irrespective of the diversity calculator and the habitat.
QIIME data were statistically neither distinguishable to CoMA nor to Mothur, except for the
Chao index where QIIME resulted in a higher diversity than CoMA (p = 0.029). When looking
at each habitat individually, Shannon-Wiener diversity reached the highest value with Mothur,
followed by QIIME and CoMA in all cases.

Principal component analysis based on microbial families clustered the CoMA and QIIME
samples in close proximity to each other (Fig 6). Data points from grassland and swamp were
located in the third quadrant, showing minor spatial deviation, mainly along the PCA Axis 2.
The first two PCA axes explained 74% of the total variation within the taxonomic data (53%
and 21% for PCA axis 1 and 2, respectively). Forest samples showed a greater distance to the
two other habitats and were located in the second quadrant. Samples analyzed with Mothur
were located in the positive direction of PCA Axis 1 and thus clearly separated from the data
points of CoMA and QIIME. Data points representing the three habitats showed, however, a
similar pattern along PCA Axis 2 as those obtained by the other pipelines.

To dig deeper into the differences/similarities between the three applied analysis pipelines,
numbers of detected taxa were determined for each taxonomic level (Fig 7). Data analysis with
CoMA resulted in the highest number of classes and families (114 and 281, respectively) and
QIIME of phyla and genera (45 and 415, respectively). Mothur analysis always resulted in the
lowest numbers of taxa, irrespective of the taxonomic level. The analysis showed that CoMA
and QIIME detected a similar taxa composition at each level. Mothur, however, did not reveal
common taxa at a comparable rate but detected several taxa that were neither found with
CoMA nor with QIIME. At phylum level, 39 out of 54 taxa (72%) were found with both
CoMA and QIIME. Out of these 39 common taxa, 19 were also detected with Mothur (35%).

CoMA Mothur QIIME
114 : i 114 : ; 11 - ;

10 1

Fig 5. Shannon-Wiener diversity (H’) of the three different soils after sequencing data analysis with CoMA, Mothur and QIIME. Four replicates for each habitat
are shown. Letters indicate significant differences across the analysis tools for each habitat. F = forest. GR = grassland. S = swamp.

https://doi.org/10.1371/journal.pone.0243241.g005
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Fig 6. Principal component analysis based on archaeal and bacterial families of soil samples from three different
habitats: Forest, grassland and swamp. The color code indicates the applied data analysis tool: CoMA, Mothur and QIIME.
Q1—Q4 = quadrants of the coordinate system.

https://doi.org/10.1371/journal.pone.0243241.9006

CoMA and QIIME shared 100 (61%) and 98 (60%) out of all detected 164 classes, respectively,
while Mothur found only 27 shared classes (16%) with the other pipelines. The same trend was
observed at order level where CoMA and QIIME detected 183 (68%) and Mothur 50 (19%)
out of 270 taxa, and at family level where CoMA found 243 (70%), QIIME 245 (70%) and
Mothur 88 (25%) out of 349 families. However, at genus level, the percentage of taxa detected
with all three of the analysis tools was much higher compared to the other taxonomic levels,
except for phylum level. CoOMA revealed 317 (61%), QIIME 339 (65%) and Mothur 159 (31%)
out of 518 genera. The percentage of taxon overlap for the three analysis tools was higher at
phylum level (35% of all phyla), followed by genus (26%) and family level (24%). At order and
class levels, the percentages of shared taxa were much lower and accounted for only 18% and
15%, respectively. CoMA and QIIME overlapped in 83%, 78%, 82%, 80% and 72% of all com-
monly found taxa at phylum, class, order, family and genus level, respectively.

To compare the general output of the pipelines and evaluate CoMA as an alternative analy-
sis tool, key families (i.e. abundance > 5% of reads) of the three habitats were analyzed. Within
the forest samples, all families determined with QIIME were also found with CoMA (11 out of
16, Table 4). Eight out of these eleven families were also detected with Mothur; however,
Chthoniobacteraceae, Nitrosomonadaceae and Solibacteraceae were not found with Mothur.
On the other hand, Mothur resulted in five unique families (Bradyrhizobiaceae, Comamona-
daceae, Nitrososphaeraceae, Oxalobacteraceae, Planctomycetaceae) that were not caught with
either of the other two tools. In grassland, nine out of 18 key families were identified with all
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Fig 7. Venn plots showing the shared phyla, classes, orders, families and genera found with CoMA, Mothur and QIIME in the soil samples. Data
include all of the three investigated habitats (forest, grassland, swamp).

https://doi.org/10.1371/journal.pone.0243241.9007

pipelines. CoMA and QIIME determined again the same taxa (14 out of 18), but did not
expose Bradyrhizobiaceae, Comamonadaceae, Oxalobacteraceae and Planctomycetaceae,
which were found with Mothur. Mothur, in return, did not detect Burkholderiaceae, Chtho-
niobacteraceae, Nitrosomonadaceae, Solibacteraceae and Xanthobacteraceae in the analyzed
soil samples. The same occurred in the swamp soil. All key families detected by QIIME were
also identified with CoMA (15 out of 19). Ten of them were equally found with Mothur, except
for Burkholderiaceae, Chthoniobacteraceae, Nitrosomonadaceae, Solibacteraceae and
vadinHA17 (order: Bacteroidales). On the other hand, Mothur determined four families (Bra-
dyrhizobiaceae, Comamonadaceae, Oxalobacteraceae, Planctomycetaceae) that were neither
found with CoMA nor with QIIME. Six key families were identified with all of the three analy-
sis tools irrespective of the soil type: Anaerolineaceae, Chitinophagaceae, Flavobacteriaceae,
Gaiellaceae, Mycobacteriaceae and Sphingobacteriaceae.

Irrespective of the soil type, COMA and QIIME identified more taxa than Mothur
(p =0.024, p = 0.032), except for the kingdom and species level, where all of the three pipelines
classified 100% and 0-2%, respectively (Table 5). At phylum level, CoMA and QIIME assigned
all reads to known taxa whereas Mothur failed in 7-13%. Generally, the classification percent-
age decreased with lower taxonomic levels (p < 0.001). CoMA and QIIME behaved similarly
at all taxonomic levels; however, CoMA identified slightly more orders and families when
grassland was analyzed (+5% and +3%, respectively; p < 0.001).
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Table 4. Key microbial families found in three different habitats: Forest, grassland and soil.

Family Forest Grassland Swamp

> 5% CoMA Mothur QIIME CoMA Mothur QIIME CoMA Mothur QIIME
Anaerolineaceae 136 + 40 53+13 152 + 35 245+ 18 118 + 10 241 £ 26 2,754 £ 678 2,513 = 580 2,669 + 643
Bradyrhizobiaceae 4,302 + 575 744 + 63 607 + 134
Burkholderiaceae 1,620 + 639 869 + 248 1,642 £ 665 | 1,836 = 109 1,764 + 159 5,685 + 757 5,939 + 900
Chitinophagaceae 2,079 + 746 2,443 + 988 2,400 £ 979 | 1,565 +266 | 1,277 +210 | 1,265 + 213 1,693 + 212 1,500 + 171 1,437 £ 163
Chthoniobacteraceae | 9,001 + 3,386 7,983 + 2,928 926 + 64 847 + 43 374+ 73 356 + 66
Comamonadaceae 178 + 150 461 + 35 2,311 + 674
Flavobacteriaceae 349 +297 282 + 243 278 + 239 848 + 178 784 + 237 732+183 | 9,513 +1,400 8,816+1,314 7,939+ 1,259
Gaiellaceae 102+75| 1,530 + 1,232 113 £ 106 | 2,619 +352 | 7,127 £766 | 2,951 + 370 430 £ 92 641 + 150 490 + 90
Geobacteraceae 89 + 33 69 + 26 72+29 2,536 + 251 2,247 + 206 2,153 £ 199
Mycobacteriaceae 1,792 + 772 1,615+ 714 1,488 + 647 | 2,023 +245| 1,779+205| 1,671+ 183 192 + 27 172 £ 23 163 £ 15
Nitrosomonadaceae 514 + 468 640 + 523 | 2,262 £ 194 2,433 + 215 2,656 + 365 4,386 + 356
Nitrososphaeraceae 253 + 305 2,785 £ 411 | 2,613 +422 2,372+ 342 76 £20 74 £ 18 63+11
Oxalobacteraceae 229 + 99 210 + 12 2,081 + 563
Planctomycetaceae 3,650 + 1,045 1,902 + 125 1,392 £ 112
Propionibacteriaceae 2,813 £ 268 2,522 + 234 | 2,815 + 259 69 + 20 62 +21 78 + 19
Solibacteraceae 3,790 + 994 3,929 + 1,040 311+ 19 326 + 36 709 + 81 719 + 43
Sphingobacteriaceae 1,861 + 847 1,471 =+ 674 1,470 + 697 90 + 29 62+ 19 67 =19 521 +94 436 + 94 418 + 75
vadinHA17 3,407 £ 1,095 2,779 + 892
Xanthobacteraceae 7,373 + 564 111+ 77 8,374 + 749 | 2,090 + 138 2,228 + 147 1,663 + 151 136 +7 1,888 + 80

Data (means + standard deviation (n = 4)) were determined with three different analyses tools: CoMA, Mothur and QIIME. Families with a relative abundance < 5%
and unassigned taxa were excluded from the table, and families with a read count < 50 were considered as absent. Differently colored cells indicate the three most

abundant families.

https://doi.org/10.1371/journal.pone.0243241.t1004

Discussion
Validation of COMA

The main purpose of this work was to validate CoMA by comparing the results with those of
already established tools. Mothur and QIIME, the two currently most popular analysis tools
for amplicon-sequencing data were chosen as reference for both test assays: a benchmark test
using three different mock communities, covering different variable regions, sequence lengths
and abundances, as well as the analysis of a real soil dataset. For the benchmark test, QIIME2

Table 5. Unclassified reads for each taxonomic level in three different soils: Forest, grassland and swamp.

Unclassified [%] Forest Grassland Swamp
CoMA Mothur QIIME CoMA Mothur QIIME CoMA Mothur QIIME

Kingdom 00 0+0 0+0 00 00 0+0 0+0 00 00
Phylum 0+0 7+3 0+0 0+0 13+1 0+0 0+0 13+1 0+0
Class 1+1 10+2 1+1 1+0 19+1 1+0 1+£0 21+2 10
Order 72 33+1 8§+2 170 35+1 22+1 12+1 411 14+2
Family 35+ 10 69 8 34+10 34+1 62+1 371 28+2 60 £2 28 £2
Genus 55+9 81+7 55+8 63+1 73+1 63+1 56 +1 712 55+2
Species 98 +1 100+ 0 100+ 0 99+ 0 100+ 0 100+ 0 99+ 0 100+ 0 99+ 0

Data (means + standard deviation (n = 4)) were determined with the three data analyses tools COMA, Mothur and QIIME. All values are presented in percent of total

reads of each sample.

https://doi.org/10.1371/journal.pone.0243241.t1005
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was included to compare the OTU-based results also with an ASV approach. ASVs are cur-
rently proposed as an alternative to OTUs [28, 78] and we believe that a proper validation of
CoMA would not be possible if neglecting this progression. For the real dataset, however, anal-
yses focused solely on OTU-based strategies, which are still predominant in soil microbiolog-
ical studies.

Benchmarking with mock communities. The benchmark test showed that all tested pipe-
lines (CoMA, Mothur, QIIME, QIIME2) were able to depict the taxonomy in each of the three
mock communities in a proper way. Irrespective of the dataset, taxa were found with a high
accuracy and a relatively low error rate. However, when looking closer, differences in perfor-
mance were found among the tools depending on the dataset. While the CoMA output was
closely related to that of QIIME2 in mock-13 and mock-26, a considerable distance between
these two tools was seen for mock-16, where CoMA was almost identical with QIIME. This
indicates that the accuracy of an analysis highly depends on the dataset and that no general
conclusion for the best performing analysis tool can be drawn when not considering sample
specificities. Decisive characteristics of input data may include the applied primer system (e.g.
16S rRNA, 18S rRNA, ITS, functional genes), the variable region (e.g. V3 or V4 for 16S
rRNA), the sequence length, as well as the taxonomic structure of the sample (e.g. species rich-
ness, evenness). Even though a general conclusion is difficult, COMA seemed to be the overall
most consistent platform in this test set since it did not show any severe inaccuracies for any of
the three datasets, while the other tools did so for at least one mock community.

When comparing the OTU-based platforms (CoMA, Mothur, QIIME) with QIIME2 com-
puting ASVs, no clear trend was observed. For mock-26, the fungal ITS dataset, QIIME?2 per-
formed particularly well and was the most accurate tool for this dataset in terms of mean per-
taxon deviation. Overall, however, QIIME2 was ranked last, what may be explained with the
averagely lowest genus detection rate (< 83%) among all platforms within the test set, espe-
cially seen for mock-16. Here, QIIME2 was not able to reveal almost 25% (12 out of 46) of all
bacterial/archaeal genera. These results evoke the question whether ASVs are truly preferable
over OTUs, albeit it needs to be emphasized that this study was not designed to compare
OTUs and ASVs in all its aspects and hence no general conclusion can be drawn. Callahan
et al. [78] suggested a general replacement of OTUs in favor of ASVs for all marker-gene analy-
ses and argued with a higher reproducibility, a finer sequence resolution and the advantage of
comparability between different studies. On the other hand, existing sequencing technologies
often lack precision and hence an accurate resolving of exact sequences appears doubtful.
Choosing the clustering strategy is a tradeoff between lumping taxa on the one hand (OTUs)
and splitting them on the other hand (ASVs), and the decision seems to depend on the ana-
lyzed dataset, particularly in terms of the applied primer system and the length of the inner
primer region. This is also supported by Edgar [79], who tested various OTU cutoff levels and
found optima of 99% for full length 16S rRNA, and 100% for short hypervariable regions (e.g.
V4 of the 16S rRNA). For the next years, we expect a co-existence of OTUs (probably with a
99% cutoff instead of 97%) and ASVs, always depending on the data to analyze. However, as
soon as the sequencing technologies are reaching the next level in terms of precision, ASVs
may be favorable and the field should clearly move in this direction.

Irrespective of the dataset, the results of all pipelines were more closely related to each other
than to the expected values (with one exception: QIIME at mock-26). This indicates that the
inaccuracies in this benchmark test were, to a certain degree, caused by the sequencing process
rather than by the applied analysis tool. Several other authors who reported a systematic dis-
tortion of NGS data [80, 81] drew the same conclusion. Biases occur all over the process, start-
ing with the extraction of DNA, the PCR, and the sequencing procedure itself [82]. According
to the authors, the steps of DNA extraction and PCR are particularly susceptible to errors,
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which further accumulate until the end of the sequencing process. This results in a severe bias
towards some strains, while others are neglected [83]. These aspects always need to be consid-
ered when using amplicon sequencing and we strongly suggest to include samples with a
known composition (= mock community) to the analysis in order to estimate the degree of
introduced inaccuracy.

In all test categories, COMA satisfied with a good performance in the benchmark test based
on mock communities. It seems to provide proper results, irrespective of the characteristics of
the analyzed dataset. The CoMA pipeline is therefore suggested as highly accurate alternative
to the established NGS analysis platforms for any kind of input data. Future CoMA releases
will also include the possibility to select the OTU cutoff level (currently: 97%) and to generate
ASVs rather than OTUs (using the UNOISE3 algorithm [84]), making the pipeline more flexi-
ble and congruent with different opinions in the field no matter in which direction sequence
analysis is heading in the future.

Platform comparison using real soil data. Comparing the three soils, all of the three
pipelines used for the soil dataset (CoMA, Mothur, QIIME) generally showed the same trends
concerning microbial diversity. The overall level of diversity, however, was different among
these analysis tools, which can be explained by the way diversity and richness are typically cal-
culated. Most algorithms, also those in CoMA, are based on OTUs. Therefore, OTU clustering
and subsequent data post-processing steps are crucial and may significantly affect diversity cal-
culations, as well as all other upstream analyses. Generally, there are three different strategies
for clustering sequences into OTUs: closed-reference OTU picking, de novo assembling and
open-reference OTU picking [72]. Closed-reference OTU picking first assigns sequences to a
taxonomic database and thereafter clusters them based on the taxonomic classification. This
process is fast, but some problems arise when taxonomic assignment is ambiguous or when no
similar entry can be found in the reference database [85]. De novo assembling reverses this
approach and clusters sequences in a first step, followed by the taxonomic assignment. This
strategy is more robust, especially when analyzing complex datasets, but also tends to be more
intense in terms of computational effort [86]. Open-reference clustering manifests itself a
hybrid of the above approaches. Similar to closed-reference OTU picking, sequences are first
assigned to a reference database and unclassified reads are thereafter assembled de novo. This
third option combines advantages of both approaches; however, it leads to two different OTU
definitions within one single strategy [87].

CoMA as well as Mothur and QIIME all used de novo assembling for clustering of the
sequencing data on a 97% similarity level. However, each tool implements individual algo-
rithms or rather complete tool packages. CoOMA and QIIME use USEARCH (in fact UPARSE
[54]) for OTU clustering by using different versions of this algorithm (CoMA: USEARCH
10.0.240, QIIME: USEARCH 6.1.544), though. Mothur uses OptiClust [86] instead. Assuming
that both USEARCH versions used in CoMA and QIIME are largely comparable, particularly
OptiClust may have caused such differences with regard to Mothur. This is supported by our
data where CoMA and QIIME were generally more closely related to each other than to
Mothur. Beyond the fundamental OTU clustering, each pipeline includes various steps for
quality filtering, including data demultiplexing, data denoising and chimera removal. All these
steps vary among the tools and may significantly affect the results of data analyses. Subsequent
removal of rare OTUs as well as data subsampling would evoke different outputs as well. How-
ever, this can be disregarded for the present comparison since all OTU-tables were treated
with the same algorithms.

Data analysis with Mothur resulted in different microbial compositions in the three soil
habitats even though most of the key microbes were found with all of the three pipelines.
Despite the different algorithms for OTU clustering and data quality filtering, the output of

PLOS ONE | https://doi.org/10.1371/journal.pone.0243241 December 2, 2020 20/28


https://doi.org/10.1371/journal.pone.0243241

PLOS ONE

CoMA - pipeline for sequencing data analysis

these analyses might be strongly influenced by the aligning tool/mechanism and the used ref-
erence database for taxonomic assignment. In all cases, alignment was done via different tools:
BLAST in CoMA, RDP in Mothur and UCLUST in QIIME, following the recommendations
in the respective SOPs. However, it should be borne in mind that all of the three pipelines also
offer alternative aligners and as such, we are not addressing this aspect in detail. Taking a
closer look at the results revealed that most of the conflicting taxa showed particularly low
abundances. For the composition of low-abundant taxa, removal of rare reads has a particu-
larly high impact. The same taxon may be slightly above the cutoff in one analysis, whereas it is
slightly below in the other. Consequently, a taxon that was in fact determined with both tools
may appear just in one of them, resulting in a decreased coverage. We assume that the applied
reference database is another important driving factor for the varying results between CoMA/
QIIME and Mothur. Both, CoMA and QIIME used the newest distribution of SILVA
(SLV_132). Taxonomic classification with Mothur, however, was done using the current
release of the RDP trainset (Version 16) as described in the SOP. This explains the differences
found in terms of unclassified taxa since SILVA includes significantly more sequences than
RDP [88], resulting in a better coverage. Nevertheless, this does not explain the mismatches
when comparing microbial core families. These taxa were not only different at family level but
also down to phylum or class.

Taken together, all comparisons indicate that the CoOMA output is generally well compara-
ble to that of Mothur and QIIME, particularly when looking at the microbial key players.
Regarding less abundant taxa, differences to Mothur were found.

Assets of the COMA pipeline

The main advantage of CoMA is the intuitive and user-friendly operation that is supported by
the graphical user interface. It allows entry-level users to perform amplicon-sequencing data
analysis and to obtain solid results without the need for time- and effort-consuming training.
Beginners are further supported by the detailed CoOMA manual and a systematic tutorial on
basis of a provided simple model dataset. All required steps and input parameters are
explained in detail and the small size of the dataset (< 1250 reads per sample) allows for a fast
progress without long downtimes. Advanced users can utilize the provided high degree of
automation to analyze huge amounts of data efficiently. Moreover, they find various settings
for optimizing the workflow and adapting the analysis specifically to their needs. CoOMA also
offers the possibility to stop an uncompleted analysis at any point to continue later or to recal-
culate parts of the workflow. This allows for the improvement of a former run by simply
adjusting decisive input parameters without the need for a complete recalculation. As an
open-source tool package, CoMA’s source code may even be adapted or expanded according
to the needs of ambitious users.

CoMA offers a huge variety of functions, starting with data pre-processing and ending with
several useful tools for data visualization and statistical appraisal. Data pre-processing is fol-
lowing a state of the art procedure for amplicon-sequencing data: merging of paired-end
reads, trimming of primers/ barcodes/adapters and quality control with the possibility to filter
bad reads. Also OTU clustering (and in the future ASV clustering), taxonomic assignment and
data post-processing are done according to the current state of knowledge. A particular focus
of CoMA was laid on graphics that meet both esthetic and scientific standards, appropriate for
publication. The graphics can be created in many different file formats and pixel depths in
order to fulfill specific journal requirements. Taxa plots can be created as bar charts but also as
heatmaps. The latter are convenient for the depiction of taxonomic data and we strongly
encourage them particularly for big datasets. Venn plots are another option for the illustrative
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comparison of taxonomic data. Two or three specifically selected groups can be compared
with each other in terms of shared taxa, available for each taxonomic level. In future CoMA
releases, the possibility for comparing four or five groups shall be implemented. However,
Venn diagrams including too many groups tend to be confusing and lose the clarity of its orig-
inal idea. Alpha- and beta diversity (ordination, cluster analysis) can be calculated using multi-
ple methods and metrics, always providing the optimal combination for the respective dataset.

CoMA also provides the results as text files in standardized formats, which can be used for
additional or more sophisticated analyses by advanced users. This may include for instance
statistical analyses with software packages such as R. Moreover, taxonomic trees can be created
using a text file in NEWICK format. This may either end in a basic depiction of the tree struc-
ture (e.g. FastTree [89]) or in highly sophisticated and complex circular plots (e.g. GraPhlAn),
combining the taxonomic tree with circular bar charts or heatmaps. The CoMA output can
also be used for the determination of overrepresented taxa (e.g. LEfSe, IndVal [90]), the crea-
tion of taxonomic networks (e.g. Cytoscape) or the construction of pseudo-metagenomic data
to reveal the connection between taxonomy and functional genes (e.g. PICRUSt, Tax4Fun
[91], Piphillin [92]). These are only some examples for further usage, and the choice depends
on the research question and the dataset.

CoMA can be run on every common computer operating system (e.g. Linux, Windows,
macOS). Currently, three different options for installation are available: a virtual appliance
(which can be imported with tools like VMware Workstation, Oracle VM Virtualbox or Paral-
lels Desktop for Mac), a Singularity image, and a direct Linux installer. Each option provides
specific advantages and the user should select the most suitable one in order to meet his needs.
The CoMA manual includes detailed information for each installation option and describes it
thoroughly. When choosing the Singularity option, CoMA can be easily used on high perfor-
mance computer (HPC) systems. Working on HPC clusters is becoming more and more
important in modern NGS data analysis, and applying CoMA here combines easy and intui-
tive operation with tremendous computing power.

Concluding, CoMA offers several advantages over currently used pipelines, especially for
beginners but also for advanced users. This includes particularly the intuitive and user-
friendly operation, the flexible usage on any operating system as well as a graphical output
in publication-ready form. We strongly recommend the usage of CoMA for convenient and
efficient NGS data analysis for researchers, both in the biological and medical field. CoMA
will be updated regularly to ensure an excellent performance also in the future, but also to
implement additional utilities (e.g. ASV support). These updates will always include the
newest versions of the taxonomic databases at the release date to guarantee the best possible
results.

Supporting information

S1 Fig. Rarefaction-curve analysis based on operational taxonomic units (OTUs) created
with the CoMA pipeline to evaluate the sequencing effort. F = forest. GR = grassland.

S = swamp.

(TIF)

S2 Fig. Hierarchical cluster analysis showing the cosine similarity between four different
analysis platforms and the set point (SP) for the mock-13 dataset. The dendrogram was cal-
culated with the UPGMA method (unweighted pair group method with arithmetic mean) as
bottom-up approach.

(TIF)
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S3 Fig. Hierarchical cluster analysis showing the cosine similarity between four different
analysis platforms and the set point (SP) for the mock-16 dataset. The dendrogram was cal-
culated with the UPGMA method (unweighted pair group method with arithmetic mean) as
bottom-up approach.

(TIF)

S4 Fig. Hierarchical cluster analysis showing the cosine similarity between four different
analysis platforms and the set point (SP) for the mock-26 dataset. The dendrogram was cal-
culated with the UPGMA method (unweighted pair group method with arithmetic mean) as
bottom-up approach.

(TTF)

S5 Fig. Hierarchical cluster analysis showing the cosine similarity between four different
analysis platforms and the set point (SP) for all mock dataset (mock-13, mock-16, mock-
26). The dendrogram was calculated with the UPGMA method (unweighted pair group
method with arithmetic mean) as bottom-up approach.

(TIF)

S6 Fig. (A) Abundance (OTU, operational taxonomic unit), (B) Simpson diversity (D) and
(C) Chaol diversity of three different soils after sequencing data analysis with CoOMA, Mothur
and QIIME. Four replicates are shown for each habitat. F = forest. GR = grassland. S = swamp.
(TIF)

S1 Table. Physico-chemical soil properties of three sites in Gschnitz valley, Tyrol (Austria)
investigated to validate the CoOMA pipeline. The table shows means + standard deviation

(n =4). DM = dry matter. VS = volatile solids. EC = electrical conductivity. WHC = water
holding capacity.

(DOCX)

S1 File. Soil data analysis with CoMA. The file includes the results and a discussion of the
microbial characteristics of three different soils (forest, grassland, swamp), which was deter-
mined with 16S amplicon sequencing.

(PDF)
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