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Abstract

In this work, we study the Sakaguchi-Kuramoto model with natural frequency following a

bimodal distribution. By using Ott-Antonsen ansatz, we reduce the globally coupled phase

oscillators to low dimensional coupled ordinary differential equations. For symmetrical bimodal

frequency distribution, we analyze the stabilities of the incoherent state and different partial

synchronous states. Different types of bifurcations are identified and the effect of the phase lag

on the dynamics is investigated. For asymmetrical bimodal frequency distribution, we observe

the revival of the incoherent state, and then the conditions for the revival are specified.

Introduction

Collective behaviors emerged out of a large number of interacting units are common in nature.

As one type of collective behavior characterizing the phase coherence in nonidentical units,

synchronization is well recognized in various systems such as fireflies flashing in unision [1,

2], applauding persons in a large audience [3], pedestrians [4, 5], and others [6]. Kuramoto

model (KM) is the paradigmatic model in the field of synchronization [7, 8]. There are two

key simplifications in the original KM, which renders the analytical treatments to be possible.

Firstly, each unit is treated as a phase oscillator, which is valid for the weak coupling situation

where the amplitude information of each unit is inessential to the collective behaviors. The

dynamics of each phase oscillator is solely determined by its natural frequency and in turn the

frequencies of all oscillators are drawn from a prescribed frequency distribution function g(ω).

Secondly, the coupling between units is assumed to be a global one and takes the form of a

sinusoidal function with the same strength K. The coupling strength together with the fre-

quency distribution determine the dynamics of KM.

Previously, KM has been intensively investigated. A variety of its generalizations have been

proposed and many interesting phenomena have been observed. The repulsive interaction

among oscillators (K< 0) may be introduced to KM. Tsimring et al. [9] found that KM with

repulsive interaction fails to synchronize. Hong and Strogatz [10, 11] treated the coupling

strength as an oscillator’s ability to response to the mean field and found π synchronous states

and novel time-dependent traveling wave synchronous states in the presence of both repulsive

and attractive interaction. Yuan et al. further considered the π synchronous state in the pres-

ence of correlation between the conformists/contrarians and the natural frequencies of
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oscillators [12]. Zhang et al. [13] introduced frequency-weighted coupling to KM and found

explosive synchronization and chimera-like states. KM has also been extended to complex net-

works where network topology can affect the synchronization transition. In [14], the authors

assigned the natural frequencies of phase oscillators to be the degrees of the nodes they locate

on network and found explosive synchronization transition. Recently, KM with higher-order

interaction such as biharmonic interaction has drawn some attentions in which infinitely many

stable partial synchronous states and a continuum of abrupt desynchronization transition have

been identified [15]. The shear is a crucial nonlinear ingredient for complex behaviors in cou-

pled systems [16]. Time delay was also investigated [17–19], and small time delay can be

approximated by a phase lag parameter β. Along this line, the the phase lag β is introduced into

the coupling function as Ksin(θj − θi + β) so that KM is generalized to Sakaguchi-Kuramoto

model (SKM) [20] and the synchronous dynamics has been investigated [16, 21–24].

Actually, the original KM is concise enough to display rich dynamics by taking proper fre-

quency distribution g(ω). It has been theoretically shown that the transition to synchronization

occurs at Kc = 2/[πg(0)] [25] for even and unimodal g(ω). Above Kc, the incoherent state yields

to a stationary partial synchronous state. For asymmetrical unimodal g(ω), the partial synchro-

nous states are always time-dependent [26]. When g(ω) becomes a bimodal one, increasing

coupling strength always first leads to a standing wave state, in which two synchronous clusters

of oscillators oscillate at opposite mean frequencies and, then, to traveling wave states, in which

synchronous oscillators rotate at the same frequency [27]. Bimodal frequency distributions in

the KM were already investigated at different levels [28–34], and trimodal frequency distribu-

tion were also studied [30]. Under proper parameters, KM with bimodal distribution gives rise

to discontinuous transitions cross different dynamical states. Martens et al. [33] studied KM

with bimodal natural frequency distribution consisting of two equally weighted Lorentzians,

and they derived the system’s stability diagram. They found three states depending on the

parameters and initial conditions, incoherent state, partial synchronous state, and standing

wave synchronous states. They also presented analytical results for the bifurcation boundaries

between these states. Omel’chenko and colleagues [35] studied SKM with g(ω) being a superpo-

sition of two unimodal frequency distributions with the same mean frequency. They found a

nonuniversal synchronization transition in which the incoherent state may be revived at stron-

ger coupling strength after it yields to partial synchronous state at Kc. Asymmetry has also been

studied recently [26, 29, 31]. For more complicate frequency distribution such as a trimodal

one, KM may display collective chaos through a cascade of period-doubling bifurcations [36].

In this work, we study SKM with bimodal natural frequencies distribution. As a natural exten-

sion of Ref. [33], the phase-lag parameter β is introduced into the model. The paper is organized

as follows. In section 2, we present the model and reduce the coupled phase oscillators to a low-

dimensional coupled ordinary differential equations. In section 3, we first study the synchronous

dynamics in the model with symmetrical bimodal frequency distribution with an emphasis on

the effects of the phase lag. Different dynamical states are analyzed and different types of bifurca-

tions are identified. Then we consider SKM with asymmetrical bimodal frequency distribution.

We study the revival phenomenon of the incoherent state and investigate the dependence of

revival of the incoherent state on parameters. Summary is made in the last section.

Materials and methods

We consider N phase oscillators with global coupling and the motion equation follows

_y i ¼ oi þ
K
N

XN

j¼1

sin ðyj � yi � bÞ; ð1Þ
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with θi the phase of oscillator i and K is the global coupling strength. β is the phase lag parame-

ter resulting in rich interesting dynamical phenomena and the model reduces to the original

KM at β = 0. ωi is the natural frequency of oscillator i, which is chosen randomly from a proba-

bility distribution g(ω). In this work, we assume that the frequency distribution g(ω) takes the

form

gðoÞ ¼
1

p
½

p1D1

ðo � o1Þ
2
þ D

2

1

þ
p2D2

ðo � o2Þ
2
þ D

2

2

� ð2Þ

with p1 + p2 = 1 and ω1 = −ω2 = ω0. The parameters Δ1,2 measure the heterogeneity of oscilla-

tors in their natural frequencies. Generally, both the heterogeneity parameter Δ and the phase

lag β have strong effects on the synchronous dynamics. However, these two parameters impact

on the collective dynamics in different way. Δ is used to measure the fraction of oscillators to

be in synchronization. Large Δ always suggests small fraction of phase oscillators to be in syn-

chronization. In contrast, βmeasures the phase mismatch between the synchronous oscillators

and the mean field. Sufficiently large β pushes synchronous phase oscillators to be in antiphase

with the mean field, which downgrades synchronization and tends to destroy the coherence in

population. Recent work points out that incoherent state may be revival at proper choice of β
[35], which suggests the non-monotonic effects of β on the coherence in population.

The synchronous dynamics in the model (1) is measured by the complex order parameter,

defined as Z ¼ ReiY ¼ 1

NSjeiyj . |Z| = 0 suggests the incoherent state and, otherwise, a synchro-

nous state. Using the order parameter, Eq (1) is reformulated as

_y i ¼ oi � KR sin ðyi � Yþ bÞ: ð3Þ

To study the dynamics, we consider the thermodynamic limit (N!1) where Eq (1) can

be written in a continuous formulation in terms of a probability density f(θ, ω, t), defined as

the fraction of oscillators with natural frequency between ω and ω + dω and phase between θ
and θ + dθ at time t, which satisfies the normalization condition

R1
� 1

R 2p

0
f ðy;o; tÞdydo ¼ 1

and
R 2p

0
f ðy;o; tÞdy ¼ gðoÞ. The probability density evolves following the continuity equation

@f
@t
þ
@ðfvÞ
@y
¼ 0 ð4Þ

with

v ¼ oþ
iK
2
½Z�eiðyþbÞ � Ze� iðyþbÞ�: ð5Þ

The order parameter Z in the continuous formalism is reformulated as

ZðtÞ ¼
Z 1

� 1

Z 2p

0

f ðy;o; tÞeiydydo: ð6Þ

Since the probability density is periodic in θ, it can be expanded in Fourier series as

f ðy;o; tÞ ¼
gðoÞ
2p
½1þ

X1

n¼1

fnðy;o; tÞe
iny þ c:c:� ð7Þ

with c.c. the complex conjugate of the previous term. Ott and Antonsen proposed an ansatz

(OA ansatz) [37] that the coefficients fn(ω, t) obey fn(ω, t) = [α(ω, t)]n. Substituting Eq (4) with
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the ansatz, we obtain

@a

@t
þ
K
2
ðZe� iba2 � Z�eibÞ þ ioa ¼ 0 ð8Þ

with

Z�ðtÞ ¼
Z 1

� 1

gðoÞaðo; tÞdo: ð9Þ

For the natural frequency distribution Eq (2), the order parameter Z becomes

ZðtÞ ¼ p1z1ðtÞ þ p2z2ðtÞ; ð10Þ

where we denote z1,2(t) = α�(ω1,2 − iΔ1,2, t). Then the synchronization in the model (1) is char-

acterized by the sub-order parameters z1,2(t). The evolution of zi (i = 1, 2) follows

_zi ¼ � ðDi � ioiÞzi þ
K
2
ðZe� ib � Z�eibz2

i Þ: ð11Þ

Furthermore, we let aj ¼ z�j ¼ rje� i�jðj ¼ 1; 2Þ and introduce ψ = ϕ1 − ϕ2. Then substituting

them into Eq (11), we have

_r1 ¼ � D1r1 þ
K
2
ð1 � r2

1
Þ½p1r1 cosbþ p2r2 cos ðbþ cÞ�;

_r2 ¼ � D2r2 þ
K
2
ð1 � r2

2
Þ½p2r2 cosbþ p1r1 cos ðc � bÞ�;

_c ¼ o1 � o2 �
Kðr2

1
þ 1Þ

2
½
p2r2 sin ðbþ cÞ

r1

þ p1 sinb�

þ
Kðr2

2
þ 1Þ

2
½
p1r1 sin ðb � cÞ

r2

þ p2 sinb�:

ð12Þ

The presence of the phase lag in the model breaks the symmetry between r1 and r2 even

when Δ1 = Δ2 and p1 = p2. Eq (12) consisting of three coupled ordinary differential equations is

equivalent to the model (1, 2) and, therefore, the dynamics of the model (1, 2) may be reflected

by r1, r2, and ψ. To be mentioned, the partial synchronous states in the model (1) [or the

reduced model (12)] are always time-dependent, periodic or quasiperiodic, for nonzero β. In

the reduced model (12), these time-dependent synchronous states are reduced to equilibria or

periodic solutions by considering the model in a rotating frame characterizing the time-depen-

dent ϕ1. In the following, we claim a solution to be an equilibrium or periodic one according

to its behavior in the reduced model (12).

Results and discussion

Symmetric frequency distribution

We first consider the symmetric frequency distribution where p1 = p2 = 0.5, and Δ1 = Δ2 = Δ.

We set the coupling strength K = 4 and investigate the effect of the phase lag β on the model

dynamics.

We start with the reduced model Eq (11) and investigate the stability of the incoherent

state. The incoherent state is defined by z1 = z2 = 0. Supposing that the evolution of perturba-

tions to the incoherent state follows δz1,2 * eλt and substituting them into Eq (11), we may
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have

l1;2 ¼ eib � D0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ib � o02

0

p
ð13Þ

with Δ0 = 4Δ/K and o0
0
¼ 4o0=K. For convenience, we assume Re(λ1)>Re(λ2). When Re(λ1)

becomes positive, the incoherent state becomes unstable. Beyond the bifurcation, Eq (12) gives

rise to two new stable equilibria except for the unstable incoherent state, r1,2 > 0 in one equi-

librium, and r1,2 < 0 in the other which is unrealistic and should be discarded. Therefore, the

incoherent state undergoes a supercritical Pitchfork bifurcation when Re(λ1) crosses zero (we

denoted it as PB1). Interestingly, when Re(λ2) crosses zero, it induces another pitchfork bifur-

cation (denoted as PB2) in which two newborn equilibria are unstable and one of them is

unrealistic. The pitchfork bifurcations involving the incoherent state occur at the critical

curves described by

D
0
¼ cosb�

ffiffiffi
2
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos ð2bÞ � o02
0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o04
0
� 2o02

0
cos ð2bÞ

qr

: ð14Þ

When β = 0, the critical curves (14) are reduced to a semicircle D
0
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � o02

0

p
for

o0
0
< 1, which is related to pitchfork bifurcation, and a line Δ0 = 1 for o0

0
> 1 which is related

to Hopf bifurcation [33]. Increasing β from zero, the stability regime of the incoherent state

shrinks in the plane of Δ0 and o0
0
.

Then we consider model dynamics by focusing on Eq (12). The equilibria to Eq (12) repre-

sent the partial synchronous states and their stabilities can be analyzed by the linear stability

method. For β = 0, the partial synchronous state can be acquired rigorously by setting r1 = r2

[33]. However, for partial synchronous state, r1 = r2 is always not held as β 6¼ 0. the equilibria

to Eq (12) are obtained by numerical methods and their stabilities are determined by the eigen-

values of the Jacobian matrices at them. To illustrate, we consider the bifurcation diagrams

along three parameter paths by setting β = 0.1 and K = 4. Firstly, we consider the parameter

path with o0
0

from 0.4 to 2 at Δ0 = 0.4. The bifurcation diagrams are presented in Fig 1(a)

where r1 and r2 are plotted, respectively. Besides the incoherent state which is always unstable

along this parameter path, there are at most four equilibria denoted as FPð1Þi (i = 1, 2, 3, 4). The

eigenvalues of the corresponding Jacobian matrices at these equilibria are plotted in Fig 1(b)

and 1(c). As shown, the equilibria FPð1Þ1 is stable until o0
0
’ 1:62 at which it collides with a sad-

dle FPð1Þ2 and gives rise to a limit cycle, a standing wave synchronous state, through a SNIPER

bifurcation (saddle node infinite period bifurcation). The equilibrium FPð1Þ2 is a saddle with a

one-dimensional unstable manifold, which is born at o0
0
’ 1:40 with another saddle FP1

3
own-

ing a two-dimensional unstable manifold through a saddle-node bifurcation (denoted as SN2).

Shortly after SN2, the unstable FPð1Þ3 is turned into a saddle-focus. The equilibrium FPð1Þ4 has a

pair of complex conjugate eigenvalues whose real parts are positive and is an unstable saddle-

focus, which is produced by the pitchfork bifurcation (denoted as PB2) of the incoherence

state at around o0
0
’ 0:8 according to Eq (14). Along this parameter path, there are two stable

synchronous states, one is represented by FP1
1

before o0
0
¼ 1:62 and the other is represented

by a limit cycle [the solid curves in Fig 1(a)].

Secondly, we consider the parameter path with o0
0

from 1.15 to 1.22 at Δ0 = 0.95. The bifur-

cation diagram is presented in Fig 2(a) and the eigenvalues for all equilibria are presented in

Fig 2(c) and 2(e). As shown, we find two stable equilibria (FPð2Þ1 ,FPð2Þ2 ) and one unstable equi-

librium (FPð2Þ3 ). The bifurcations at which FPð2Þ1 and FPð2Þ3 annihilate with each other and at

which FPð2Þ2 and FPð2Þ3 are born in pair belong to the saddle-node bifurcation (one is denoted as
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SN1 and the other is SN2). Along this path, the bistability between FPð2Þ1 and FPð2Þ2 exists in a

range of o0
0
.

The third parameter path is chosen against Δ0 at o0
0
¼ 1:5, which is presented in Fig 2(b), 2

(d) and 2(f). There are two equilibria, FPð3Þ1;2, and a stable periodic solution. FPð3Þ1 is a focus,

which changes from an unstable to a stable one by colliding with the limit cycle at Δ0 ’ 0.904

through a Hopf bifurcation (denoted as HB). Furthermore, the stable FPð3Þ1 disappears at Δ0 ’
1.09 by turning the unstable incoherent state to being stable one through a pitchfork bifurca-

tion (PB1). The unstable equilibrium FPð3Þ2 is always unstable, which results from a pitchfork

bifurcation (PB2) of the unstable incoherent state when the real part of its second eigenvalue

Re(λ2) crosses zero [see Eq (13)].

Using the above analysis, the phase diagrams in the plane of Δ0 and o0
0

at β = 0 and β = 0.1

are presented in Fig 3(a) and 3(b), respectively. Actually, the results at β = 0 have been thor-

oughly explored [33] and there is only two minor modifications in Fig 3(a). Firstly, we point

Fig 1. (Color online) Bifurcation diagrams of r1, r2 and λ against ω0 = 4ω0/K. K = 4, β = 0.1, and Δ0 = 4Δ/K = 0.4. Solid (open) data points represent stable (unstable)

states. In top panels, red, blue, wine, and dark green symbols are for partial synchronous states FPð1Þ1 , FPð1Þ2 , FPð1Þ3 , and FPð1Þ4 , respectively. Thick black and dark green

lines represent the maximum and minimum values of r1 and r2 for stable standing wave synchronous states. In middle and bottom panels, from left to right, real and

imaginary parts of the eigenvalues λ for partial synchronous states from FPð1Þ1 to FPð1Þ4 are displayed. Squares, circles, and triangles denote eigenvalues λ1, λ2, and λ3,

respectively.

https://doi.org/10.1371/journal.pone.0243196.g001
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out that the incoherent state loses its stability through a pitchfork bifurcation at low o0
0

instead

of a transcritical bifurcation claimed in Refs. [33, 38], which is similar to Refs. [39]. We find

that the bifurcations are similar to those in KM with trimodal frequency distribution [30]. Sec-

ondly, we include in the phase diagram one more saddle-node bifurcation (SN2) which

involves the birth of a pair of unstable saddles. The saddles arising from SN2 were not reported

in Ref. [33] in which the authors concerns with the long-term dynamics at β = 0. Interestingly,

we find that one of these two saddles becomes stable as β 6¼ 0. To be stressed, unstable solu-

tions have no effects on the long-term dynamics of the model dynamics. However, the exis-

tence of unstable solutions greatly shapes the topological structure of the underlying phase

space and has strong impacts on the transient dynamics of the model. Moreover, under certain

conditions, unstable solutions might become stable with the change of parameter and, then,

Fig 2. (Color online) Bifurcation diagrams of r1 and λ against ω0 = 4ω0/K at Δ0 = 4Δ/K = 0.95 (left column) and against Δ0 at ω0 = 1.5 (right column). Solid (open)

data points represent stable (unstable) states. In (a), red, blue, and wine lines are for partial synchronous states FPð2Þ1 , FPð2Þ2 , and FPð2Þ3 , respectively. In (b), wine and dark

green lines are for partial synchronous states FPð3Þ1 and FPð3Þ2 , respectively. Thick black and dark green lines refer to the standing wave synchronous state. In the panels

from (c) to (f), squares, circles, and triangles denote the real and imaginary parts of eigenvalues λ1, λ2, and λ3, respectively. The inset of (d) shows that HB occurs at a

lower Δ0 than PB2. Note that the incoherent state changes its stability across the pitchfork bifurcation (PB1).

https://doi.org/10.1371/journal.pone.0243196.g002
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take effects on the long-term dynamics of the model. Therefore, in the perspective of stability

analysis, the exploration of unstable solutions is still necessary.

In Fig 3(b), there are two pitchfork bifurcations involving the incoherence (PB1,PB2), two

saddle-node bifurcations involving partial synchronous states (SN1,SN2), and three bifurca-

tions involving limit cycle synchronous states (Hopf bifurcation, homoclinic bifurcation, and

SNIPER). The critical curves relating to these bifurcations divide the parameter plane of Δ/4K
and ω0/4K into several domains. And the phase diagram in Fig 3(b) shows that FPð1Þ1 and FPð2Þ1

are the same type of solutions while FPð1Þ4 and FPð3Þ2 are the same type of solutions. The typical

evolutions on the plane of r1 and r2 from (or towards) the solutions in these different domains

are presented in the insets.

Compared with Fig 3(a), there are several unique features in Fig 3(b) to be addressed. At β =

0, the two PBs form a continuous semicircle. However, these two PBs become two separated

curves. Furthermore, the Hopf bifurcation underlies the transition between the stable incoherent

state and the stable limit cycle at β = 0. However, at nonzero β, the Hopf bifurcation occurs

between the stable partial synchronous state and the stable limit cycle. In addition, the Hopf

bifurcation stays much close to PB2 of the incoherent state. At β = 0, there exists a domain in

which the incoherent state coexists with a partial synchronous state. However, no coexistence

between the incoherent state and any partial synchronous states at β = 0.1, as shown in Fig 3(b).

Instead, there exists the coexistence between two partial synchronous states in the domain

enclosed by two saddle-node bifurcations (SN1 and SN2) and HB. As shown in Fig 3(b), there

exists a Takens-Bogdanov bifurcation (denoted as TB) where Hopf bifurcation, homoclinic

bifurcation (denoted as HC), and saddle-node bifurcation merge. Interestingly, a pair of stable

and unstable synchronous states are born at SN2 above TB while a pair of unstable synchronous

states occur at SN2 below TB. In addition, SN1 gradually merges with HC to become SNIPER.

In KM with unimodal frequency distribution, increasing the phase lag β always downgrades

the coherence in population and, when β = π/2, the critical coupling strength K for the onset of

Fig 3. (Color online) Bifurcation diagrams on the (Δ0 = 4Δ/K, ω0 = 4ω0/K) plane for (a) β = 0 and (b) β = 0.1. Line color codes: black and red for two pitchfork

bifurcations, PB1 and PB2, respectively; green and pink for two saddle-node bifurcations, SN1 and SN2, respectively; blue for HB (Hopf bifurcation); cyan for HC

(homoclinic bifurcation). Acronyms: SNIPER for saddle node infinite period; CP for cusp point of SN1 and SN2; TB for Takens-Bogdanov point. To present the

topological structure of the phase space in different phase domains, we plot the phase portraits on the (r1, r2) plane in several insets with the parameters chosen from

different phase domains. The dashed arrows pointing to insets refer to the phase domain represented by the insets. In each inset, several phase portraits (wiggly lines)

are plotted with arrows representing the evolution from or towards the solutions in Eq (12). In these insets, solid (open) dots represent stable (unstable) partial

synchronous states, while the dark yellow curves represent stable standing wave partial synchronous state denoted by L. The solutions in the same color in different

insets are the same solution. K = 4.

https://doi.org/10.1371/journal.pone.0243196.g003
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synchronization becomes infinite. However, in SKM with nonzero β, the phase lag β impacts

on the coherence in population in a non-monotonic way. To see it clearly, we consider several

slices on the parameter plane of Δ0 and o0
0

and vary β. Fig 4 shows the phase diagrams on the

plane of Δ0 and β at different o0
0
. We find that, at large o0

0
, the incoherent state first becomes

unstable and, then, regains its stability again with the increase of β from zero to π/2 [see Fig 4

(c) and 4(d)] though increasing β always favors the stability of the incoherent state at small o0
0
.

Fig 4 also tells us that, at small o0
0
, the incoherent states always yields to a partial synchronous

state through PB [see Fig 4(a) and 4(b)] while both partial synchronous states and standing

wave synchronous state may appear at high o0
0

[Fig 4(d)]. For intermediate o0
0

such aso0
0
¼

1:25 in Fig 4(c), complicated structure in the phase diagram appears, for example the bistability

between different partial synchronous states, the bistability between the partial synchronous

states and the standing wave states, and the existence of two Takens-Bagdanov bifurcations.

Asymmetric frequency distribution

Omel’chenko and colleagues have found an interesting phenomenon in a SKM with g(ω)

being a superposition of two unimodal frequency distributions with the same mean frequency

where the incoherent state may be revived at stronger coupling strength [35]. Liu and col-

leagues found the same phenomenon in a SKM with g(ω0) being the superposition of two

bimodal frequency distributions [40].

Fig 4. (Color online) Phase diagrams on the plane of Δ0 = 4Δ/K and β at ω00 ¼ 4ω0=K ¼ 0 in (a), ω00 ¼ 0:7 in (b), ω00 ¼ 1:25 in (c), and ω00 ¼ 1:5 in

(d). K = 4.

https://doi.org/10.1371/journal.pone.0243196.g004
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Here we show the revival of the incoherent state for asymmetrical bimodal frequency distri-

bution and provide the conditions for better observing revival of the incoherent state. We con-

sider the stability diagrams of the incoherent state on different parameter planes where the

stability of the incoherent state is calculated based on Eq (11). With reference to the process of

reaching Eq (13), we may have

Reðl1;2Þ ¼
K
4
cosb �

D1 þ D2

2
�

1

4
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1
þ c2

2

pq

c1 ¼ 4D
2

�
� 4o2

�
� 4Kp� D� cosbþ 4Kp� o� sinbþ K2 cos2b

c2 ¼ � K2 sin 2b � 8D� o� þ 4Kp� o� cosbþ 4Kp� D� sinb

ð15Þ

with Δ− = Δ1 − Δ2, ω− = ω1 − ω2 = 2ω0 and p− = p1 − p2. To be mentioned, ω0 may be negative

when the peak frequency ω1 is less than the peak frequency ω2. Positive and negative ω0 may

exert different impacts on the model dynamics due to the asymmetrical bimodal frequency

distribution. Incoherent states change stability with changing parameters at hopf bifurcation

or pitchfork bifurcation [25, 26, 29, 31, 35]. We can get the bifurcation curves in Fig 5 from Eq

(15), in which the more general conditions are considered analytically. Fig 5(a) shows the

Fig 5. (Color online) Stability diagrams of the incoherent state for asymmetrical bimodal frequency distribution on various parameter planes. (a)

(K, p1) plane at β = 0.9, Δ1 = 0.3, Δ2/Δ1 = 0.02, and ω0 = 0.1; (b) (K, Δ2/Δ1) plane at β = 0.9, Δ1 = 0.3, ω0 = 0.1, and p1 = 0.8; (c) (K, ω0) plane at β = 0.9, Δ1

= 0.3, Δ2/Δ1 = 0.02, and p1 = 0.8; (d) (K, β) plane at Δ1 = 0.3, Δ2/Δ1 = 0.02, ω0 = 0.1, and p1 = 0.8. The shaded regions with red boundary lines, obtained

from Eq (15), mark the stable incoherent state. The blue and green lines in (d) are critical curves K = 2Δ1/cosβ for p1 = 1 and K = 2Δ2/cosβ for p1 = 0,

respectively.

https://doi.org/10.1371/journal.pone.0243196.g005
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results on the plane of K and p1. For p1 = 0 (Kc’ 0.019), the incoherent state becomes unstable

at sufficient weak coupling strength while strong coupling strength is required for p1 = 1 (Kc’

0.965), which can be seen from Eq (11). Between these two extreme situation, there exists a

domain at around p 2 (0.52, 0.86) in which the revival of the incoherent state appears. The sta-

bility diagram on the plane of K and Δ2/Δ1 with fixed Δ1 shows that the revival of the incoher-

ent state requires sufficiently small Δ2/Δ1 and it becomes the most prominent at Δ2/Δ1 = 0 [see

Fig 5(b)]. If we measure the revival phenomenon of the incoherent state by the range of the

coupling strength K, Fig 5(c) indicates that the superposition of two unimodal distributions

with the same mean frequency is not the best candidate for realization of the revival phenome-

non. Weak mismatch between the center frequencies of the two unimodal distribution is the

optimal for the revival of the incoherent state. Finally, Fig 5(d) suggests that revival of the inco-

herent state occurs only in SKM with proper phase lag β. We also plot the critical curves,

K = 2Δ1/cosβ and K = 2Δ2/cosβ, for the incoherent state when p1 = 1 and p1 = 0. It is interesting

to find that these two curves may approximate part of the boundary of the stable incoherent

state, which suggests that the revival of the incoherent state is somehow induced by the compe-

tition between these two instability mechanisms. To summarize, the revival of the incoherent

state studied here requires some conditions. Firstly, the frequency distribution is composed of

two unimodal ones and the sufficiently low ratio of their widths is required for the revival of

the incoherent state. Secondly, that the fraction of oscillators with the natural frequency from

the fat peak in the population is higher than that from the thin peak is required for the revival

of the incoherent state. Thirdly, proper choice of β is required. These conditions are similar to

those reported in the previous work [35]. Different from the work [35] where the two unimo-

dal distributions share the same central frequency and the frequency distribution is a symmet-

rical one, the frequency distribution here is a bimodal one and no symmetry on it is required.

The results in Fig 5 suggest that the revival of the incoherent state could be a rather popular

phenomenon.

Conclusion

In conclusion, we have investigated the globally coupled Sakaguchi-Kuramoto model with

bimodal natural frequency distributions. By using Ott-Antonsen ansatz for dimension reduc-

tion, we reduce the coupled phase oscillators to a low dimensional coupled ordinary equations.

For symmetrical bimodal frequency distribution, we analyze the linear stabilities of the inco-

herent state and partial synchronous states and identify different types of bifurcations between

different dynamical states. Especially, the impacts of the phase lag β on the model dynamics

are studied. For example, nonzero β greatly modifies the topological structure of the phase

space and unfolds certain bifurcations degenerated at β = 0. More importantly, β impacts on

synchronous dynamics in the population in a non-monotonic way. The bifurcation may be

unfolded by nonzero. We also study the revival of the incoherent state for the model with

asymmetrical bimodal frequency distributions and the conditions for better observing the phe-

nomenon are proposed.
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