
RESEARCH ARTICLE

Optimal path test data generation based on

hybrid negative selection algorithm and

genetic algorithm

Shayma Mustafa Mohi-AldeenID
1*, Radziah Mohamad2, Safaai Deris2

1 College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq, 2 School of Computing,

Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

* Shaymamustafa@uomosul.edu.iq

Abstract

Path testing is the basic approach of white box testing and the main approach to solve it by

discovering the particular input data of the searching space to encompass the paths in the

software under test. Due to the increasing software complexity, exhaustive testing is impos-

sible and computationally not feasible. The ultimate challenge is to generate suitable test

data that maximize the coverage; many approaches have been developed by researchers

to accomplish path coverage. The paper suggested a hybrid method (NSA-GA) based on

Negative Selection Algorithm (NSA) and Genetic Algorithm (GA) to generate an optimal test

data avoiding replication to cover all possible paths. The proposed method modifies the gen-

eration of detectors in the generation phase of NSA using GA, as well as, develops a fitness

function based on the paths’ prioritization. Different benchmark programs with different data

types have been used. The results show that the hybrid method improved the coverage per-

centage of the programs’ paths, even for complicated paths and its ability to minimize the

generated number of test data and enhance the efficiency even with the increased input

range of different data types used. This method improves the effectiveness and efficiency of

test data generation and maximizes search space area, increasing percentage of path cov-

erage while preventing redundant data.

Introduction

Software testing is a vital step to improve the quality and increase the reliability of software.

The main role of software testing is generating a huge amount of test data which satisfies the

sufficiency criteria. Nevertheless, it is a difficult and time-wasting procedure, which accounts

for more than half of the software development cost [1]. The whole process can be improved

by automation of test data generation, which can significantly reduce time taken for software

testing [2, 3]. Due to the nature of the program’s input, the overall testing of the inputs is not

feasible for the different program’s size [4]. Among the problems faced by generating test data

include non-deterministic or impractical solutions obtained. The highly non-linear structure

of the program challenges the search algorithms, making the search for effective and optimum

test data of a non-linear, complex, and irregular input in the search space to be difficult [3].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mohi-Aldeen SM, Mohamad R, Deris S

(2020) Optimal path test data generation based on

hybrid negative selection algorithm and genetic

algorithm. PLoS ONE 15(11): e0242812. https://

doi.org/10.1371/journal.pone.0242812

Editor: Mohd Nadhir Ab Wahab, Universiti Sains

Malaysia, MALAYSIA

Received: August 15, 2020

Accepted: November 9, 2020

Published: November 30, 2020

Copyright: © 2020 Mohi-Aldeen et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-0537-8742
https://doi.org/10.1371/journal.pone.0242812
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242812&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1371/journal.pone.0242812
https://doi.org/10.1371/journal.pone.0242812
http://creativecommons.org/licenses/by/4.0/


The coverage criteria of structural testing, that has been proposed to decide which of the test

data could be cover by the program’s code can be split into two criteria: “control flow cover-

age” which focuses on testing the program flow, and “data flow coverage” that focuses on the

data flow inside the program [5].

There are numerous criteria for control flow coverage like (from weakest to strongest cov-

erage): statement coverage (each statement of the program implemented at least once), branch

coverage (where, every branch of the program is achieved at least once with both outcomes),

“condition coverage (each condition of the decision in the program is performed)”, “multiple

condition coverage (where, all true and false combinations of conditions in compound deci-

sions are exercised at least once)”, and “path coverage (every separate path in the program is

exercised at least once)” [1, 2]. Path coverage is the strongest criterion of coverage of the ade-

quacy criteria in the white box testing because each path in a program must be executed at

least once [1, 2]. Finding the test data that traverses every path is a complex procedure because

there are numerous program’s paths and the process might be endless when the program

includes loops [4, 6]. It is also not feasible to find the set of test data which can cover all the

nested branches of the program. Accordingly, several researchers proposed various approaches

for test data search that can attain maximum path coverage.

Searching of test data in a possible input data set to execute a specific program’s path

requires information to guide the search and to determine where the finest test data occur in

the searching space. Such a way to deal with the optimization problem [7, 9]. In the past few

decades, lots of research has been done to generate test data automatically and several auto-

mated test data generation techniques have been suggested in the literature [8–10].

Negative Selection Algorithm (NSA) has been applied to generate a set of test data to cover

a programs’ paths [11] but it has some limitations and restrictions in the generation phase that

affect its performance. These limitations include random generation of detectors which affects

the number of test data generated because the new randomly generated detectors are unable to

explore new paths and no benefit can be obtained from existing detectors. Another limitation

is the matching rule that calculates the distance between detectors using Hamming distance,

and removing all detectors that is close to each other to avoid redundancy. Thus, a hybrid

method is proposed to improve the effectiveness of the NSA test data generation method and

optimize the generated detectors while increasing the coverage percentage and reducing the

overlap between detectors that cover the same paths. This hybrid method is called NSA-GA

test data generation method, which is a combination of the NSA with Genetic Algorithm

(GA).

The paper is presented as follows. Related works are presented in Section 2, Section 3 and 4

explain the overview of the NSA and GA methods, the proposed algorithm is presented in Sec-

tion 5, while Section 6 provides details on the experimental evaluations and the conclusion is

included in Section 7.

Related works

Different approaches were used to automatically generate the test data in white-box testing for

various criteria of coverage. This is done for increasing the coverage percentage, decreasing

the test data number, and to minimize the execution time of the testing process [12, 13]. In

general, the techniques of “automatic test data generation” can be categorized into random,

symbolic, dynamic, and “search-based test data generation techniques” [1, 4]. In random

approach, the selection of test data by chance from an input range. Even though it is easy and

can produce many test data rapidly, it also produces an unlimited amount of redundant data

[4, 14].

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 2 / 21

https://doi.org/10.1371/journal.pone.0242812


In the early era of software testing automation, the most test data generators use symbolic

and dynamic techniques. Symbolic techniques are static, meaning that they specify symbolic as

a replacement for real values to variables. Moreover, the dynamic techniques need a real exe-

cute of the program by some particular inputs. Whether some of the required test criteria were

not fulfilled, then the collected data that obtained through the execution process can be used to

choose on which tests best satisfied the set of requirements. This feedback assists the test

inputs’ modification gradually till all supplies are fulfilled. Nevertheless, these approaches are

impractical, time-wasting, and getting trapped in local optima of the probable input data range

in the search space. The troubles also arise when arrays, pointers or loops exist in the “software

under test (SUT)” [4, 15]. “Search-based test data generation” is a portion of a broad part of

research in the “search-based software engineering” [8, 15]. “Search-based test data genera-

tion” involves exploration of the test data in the input range of the software under test in order

to fulfill certain test data coverage criterion [9].

Recently, the techniques of “search-based test data generation like Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing

(SA), Artificial Bee Colony (ABC), and Memetic Algorithm (MA)” have been the greatest com-

monly used techniques to automatically generate the test data, and are used in the meta-heuris-

tic optimizing techniques for finding the top solution for generating the test data by guiding

the search to the suitable spaces of the range. Although these evolutionary algorithms could

guide the search and produce relevant test data to ensure an ultimate percentage of path cover-

age, they still need to be enhanced due to their limitations in producing the optimum set of

test data [7, 12–14].

The automation of test data generation is a topic that attracts many researchers. Even

though numerous methods have been proposed recently to automate the generation of test

data to satisfy suitability measures, the implementation of these approaches in finding the opti-

mum solution which satisfies the minimal amount of test data and full cover of the desired

measure within an acceptable time while averting redundancy, is quite restricted. In spite of

the benefits of these methods, improving the efficiency and effectiveness of the generating

method is required, since these methods may produce a large amount of redundant test data,

wasting both time and cost. In addition, they may not cover the lower probability execution

paths. Problems may also arise from infeasible paths in the program. Mohi-Aldeen et al.

(2016) applied negative selection algorithm (NSA) to fulfill the path coverage measure in test

data generation. The results are presented that NSA is better than the random approach in

reducing the number of test data, preventing duplication and increasing path coverage per-

centage. But this method its own limitations, namely the random generation of detectors and

matching rule which is the distance between the detectors. These limitations affect the effec-

tiveness and efficiency of the test data generation process [11]. To overcome these restrictions,

a hybrid method combining NSA with GA is proposed. This technique is able to improve the

results in terms of increasing path coverage, reducing the number of test data and decreasing

number of generations involved.

Negative Selection Algorithm (NSA)

NSA proposed by Forrest is one of the best methods in an Artificial Immune System (AIS) and

has been successfully used in wide-ranging applications including “pattern recognition, anom-

aly detection, computer security, and fault detection” [16, 17]. AIS is a section of a computa-

tional intelligence model stimulated by the biologic behavior of “Natural Immune System

(NIS)”, a very complicated organic net with a rapid and effective approach of defending the

body against a particular external body named antigens [18]. The main concept of NSA is

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0242812


generating a number of detectors in the search space and then uses these detectors in classify-

ing the new data as self or non-self [19]. The algorithm contains two phases, namely “genera-

tion stage and detection stage”. In the first stage, a set of “detectors” is produced randomly by

some process of censoring that tries to match the self-samples. The corresponding applicants

are eliminated, and the rest is kept as “detectors”. This stage is finished after enough detectors

(detector’s set) are generated. This termination is determined by certain stopping criteria [19].

Meanwhile, in the stage of detection, the detector set that produced in the first stage is used for

checking whether the samples of input corresponding to “self or non-self samples”. If it is

matched with any detector, then it is categorized as “non-self”, that means an irregularity in

the utmost applications [20]. Fig 1 shows these stages.

Genetic Algorithm (GA)

GA is a computational modeling that simulates the biological development process of the Dar-

win theory of genetic selection. The basic idea behind GA was introduced by Holland in 1975.

GA starts with generating a set of initial individuals which are called chromosome and repre-

sented by a binary string generated randomly [21]. GA is a meta-heuristic search method used

to solve complex optimization problems which are very difficult to solve using other methods.

GA is an ideal solution for optimization problems since it could search very large and highly

nonlinear space. GA is computationally simple yet powerful in improving search operations

[22]. Three basic operations used in GA are selected, crossover, and mutation. Selection opera-

tion is used to select pairs of individuals that will be combined to contribute to the next genera-

tion; crossover operation includes two selected chromosomes that are exchanged to produce

two offsprings; while the mutation process is used to change one or more proportion of the

chromosome. The aim of the mutation process is to preserve the variety in the generation to

avoid early convergence into local optimum solution. Since there is no specific way to deter-

mine the probability of the mutation, thus it will be determined instinctively. The basic idea of

GA is illustrated in (Fig 2).

The proposed hybrid NSA-GA method

Many factors affect the performance of NSA such as: 1) number of detectors, which affect the

efficiency of generation and detection stages and consequently, the speed of the algorithm, 2)

detector coverage, that is the section of the non-self space covered by the set of detectors which

affect the detection accuracy, and 3) the algorithm, which is used in generating the detectors

which affects the quality of the detector set [21, 23]. Several works have been concentrating on

the optimization and the limitation of the detectors’ number in generation phase and to

improve the matching rule [24, 25]. This paper proposed a hybrid method to modify the gen-

eration of detectors in training phase of NSA instead of random generation using GA which

Fig 1. Negative Selection Algorithm (NSA) concepts.

https://doi.org/10.1371/journal.pone.0242812.g001

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0242812.g001
https://doi.org/10.1371/journal.pone.0242812


can optimize and limit the generations of detectors, because the new randomly generated

detectors could not explore a new path and there is no benefit from the existing detectors since

the random generation affect the performance, i.e. affecting the coverage space and number of

generations needed to reach the coverage criteria. Although the increase in number of detec-

tors improved the coverage, it also increases the number of test data, while the decrease in

number of detectors reduced the ability of the method in covering the whole search space,

which affects the coverage percentage. Previous work in the NSA test data generation proposed

by Mohi-Aldeen et al. (2016) shows that the NSA could not achieve total path coverage for

complex programs, and huge amount of test data required for covering the software’s paths.

The proposed hybrid NSA-GA method will improve the effectiveness and efficiency of test

data generation by providing test data which covers the paths with low execution probability

and maximizing the search space area. These moves can increase the percentage of path cover-

age and prevent data redundancy. NSA detectors generation is a vital role in improving the

performance of this algorithm, and the hybrid method modifies the generation of detectors in

training phase using GA instead of random generation. This modification can optimize and

limit generations of detectors and help in the selection of test data. Another improvement

which has been done to NSA is the detector coverage matching rule. Satisfying the detector

Fig 2. Main idea of Genetic Algorithm (GA) [21].

https://doi.org/10.1371/journal.pone.0242812.g002

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0242812.g002
https://doi.org/10.1371/journal.pone.0242812


coverage is critical because the overlap between detectors may affect the percentage of covered

paths, and the main goal of fitness function is to improve the detection coverage which will be

presented in the next section. The fitness function computes the distance between the candi-

date detector and all detectors in a detector set. In this paper, a proposed hybridization method

is considered to optimize the detectors generated as well as to improve the effectiveness and

efficiency of the traditional NSA.

In this method, GA is used to modify the generation of detectors in generation stage instead

of randomly generating the detectors. This improvement increases the ability of this hybrid

method to optimize and limit the generation of detectors and help in the selection of test data.

Moreover, a fitness function based on paths’ prioritization has been used to compel the search

to spend more effort on branches that have higher weights (low probability to execute). The fit-

ness function computes the average weight of each path with all detectors in a detector set and

maximum fitness function value is used to select the best detector that could cover more space.

Generating detectors using GA. Random generation of detectors is the main method

that proposed by Forrest, 1994. In this approach, the number of detectors was increased expo-

nentially with the size of the self-set and this increased the time that is needed for completing

the process, which is not good and needs to be avoided. Thus, random generation of detectors

is not efficient [26, 27]. This result motivates the researchers to use other approaches for gener-

ating the detectors set of candidate [21, 28].

A modification on the NSA was implemented in this paper by using GA for generating the

detectors set that is able to optimize the generated detectors. The chromosome in the proposed

method represents the detector, this detector, in turn, represents the values of the program’s

input variable represented by a binary string. The chromosome size is equal to the maximum

number of the desired detectors and the length of the string depends on the domain length of

each input variable. The method begins with the random generation of the initial candidate

population of individuals (x1, x2,.., Xn) from the search space S, where x � S, and x is a test data

input which represents the set of input variables. Two parents, P1 and P2, are randomly

selected and two operators are used which represent the main of the rule of GA. In order to

represent the new population, a new individual is created from the selected parents after apply-

ing these two operators. During the crossover, the two parents are swapped by applying the

single point crossover at a random position of the chromosome to create a new individual

(child); this operator happens according to a likelihood of crossover XP. Next is the mutation

process, which reverse every bit of the new chromosome (changed from 0 to 1 and vice versa)

with the pre-defined mutation likelihood Mp to develop a new detector d1. Duplication of the

new detector d1 is checked in the set D, if d1 already exist in the set, remove it from the set D;

otherwise, compute the distance (Hamming distance) between the new detector d1 and all

detectors di in the set D and the minimum distance obtained will be compared with a thresh-

old value (τ). If the distance is less than the threshold value, then this test data is removed, oth-

erwise it is added to the set of test data. This process helps to cover as much of the search area

as possible, and here it could cover more paths with limited number of test data for the soft-

ware under test. Then, select the closest one represented by d2 and calculate the fitness func-

tion of the new detector d1 and the closest one d2. If the fitness function of d1 is greater than

d2, replace the d2 with d1, otherwise keep the closest one (replace the closest parent if the fitness

is greater). Fig 3 shows the flowchart of the proposed NSA-GA method and the following are

the stages of the method:

Input:

1- The program under test P and its input variable list X = (x1, x2, . . ., xn), where 8x2S;

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0242812


2- The control flow graph (CFG) of P;

3- The constraints of the GA and NSA, number of detectors Max, τ;

Output:

1- Set of test data D = (d1, d2, . . ., dn) which satisfied the path coverage;

2- The set of paths generated U = (u1, u2, . . ., un);

Begin

Step 1: Randomly generate the initial population d1 of n individuals from the search space S;

Step 2: While detector number< max or D not reached total coverage of paths U;

Step 3: Select a pair of individuals as parents represented by parent 1 and

Fig 3. The flowchart of the proposed NSA-GA method.

https://doi.org/10.1371/journal.pone.0242812.g003

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0242812.g003
https://doi.org/10.1371/journal.pone.0242812


parent 2;

Step 4: Apply crossover to create a new individual represented by child;

Step 5: Apply mutation to child;

Step 6: Get the child as new detector d1;

Step 7: Remove the redundant test data:

Check the duplication of d1 with di in D;

Calculate the distance of the new detector d1 with every detector di in D, 8di2D by

using Hamming distance as below:

faff ðdi; xÞ ¼
XN

i¼1

ðdi � xÞ

Step 8: Get the detector with minimum distance among other detectors d2 (closest one)

Step 9: Cover the maximum search space:

Check the distance faff(d1,d2);

If faff(d1,d2)< τ then go to step 10; else, add d1 to D;

Step 10: Paths prioritization coverage:

Calculate the fitness value of d1 and d2 represented by f1 and f2 respectively;

Step 11: Select better detector based on paths prioritization coverage:

If (f1> f2) then replace d1 with d2 and return to step 2;

Else eliminate d2 and return to step 2;

Step 12: End If

Step 13: End If

Step 14: End While

End.

Usually, the probability of crossover is set between 0.6 to 1 while the mutation probability is

set to between 0 and 0.1 depending on the experience. These two operator probabilities con-

trolled the population in terms of the exploration and exploitation of the search space [4]. The

affinity matching distance (matching threshold) outlines the acceptable difference between

detectors and self-samples. The most popular approach used by researchers to choose the most

appropriate probability is the trial-and-error approach to select the value that gives the best

performance. Then, empirically, the best value of mutation probability which used in the pro-

posed method is 0.01 and 0.8 for crossover probability, while the best value of the threshold

used the method was set to 0.5.

Paths coverage prioritization. The fitness function evaluates how good a solution is in

order to achieve the search goal. The value of an individual fitness represents the measure of

its ability to survive in the following generations [4, 29]. The essential role of the fitness func-

tion is to compel the search algorithm to spend more effort on the branches that have higher

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0242812


weights based on the priority of the program paths or the most critical paths in the program.

Thus, assigning an accurate weight for each branch depending on its reachability is very

important. The most important factor in the performance of the NSA is the matching rule

which represents the distance between two detectors, and this affects the search space that is

covered by detectors set. This fitness function selects the best test data from the set of test data

which could cover more paths within the program.

This technique starts with assigning initial weights to all edges of the control flow graph

(CFG). The weight value of each edge will decrease by one when a test data that could cover

this edge has been generated. The technique will continue to explore new nodes and decrease

their weight by one until the end node of the control flow graph is reached. These steps are

repeated until there are no more edges in the CFG or there is no more data to traverse the

edge. Then the fitness function is calculated from the sum of the total weights of each path

from the start node to the end node divided by the length of the path, the result is considered

as the objective value of a specific path. Then the path which has the maximum value of fitness

function is considered as the most critical or most difficult path and given the highest priority.

The less weight path is the path that traverses with a larger set of test data, so its fitness is

decreased, while the path which traverses by less set of test data has the highest weight and

higher fitness value. The method will select data which have higher fitness value to be used in

the next operation. The fitness function which has been used in our method could adjust the

amount of test data dynamically and perform adequate testing for paths with strict inputs. It is

also able to produce a particular amount of test data for every path, reduce redundancy of test

data and improve the efficiency of generating the test data. The weight of each path is still

reduced since there is a possibility of a test data to traverse this path; the more generated test

data that traverse the same paths means the least priority of the path, while the path with high

weight means higher probability to cover this path. This operation is iterated until all paths are

traversed or the maximum number of generations is reached.

Results and discussion

This section presents the results of the experiments conducted to evaluate the effectiveness of

the proposed NSA-GA test data generation method for path coverage. At the beginning, the

program is converted automatically into a CFG, and then NSA-GA was used to generate test

data automatically. The results show that the proposed method could generate the least

amount of test data in less generations’ number and could achieve higher coverage percentage.

This result will be likened with both random approach and NSA test data generation method

[11] to investigate the performance of the proposed method. The performance is measured in

terms of efficiency (represented by the number of generations and amount of test data

required to satisfy all paths of the program) and effectiveness (represented by the ratio of paths

covered in a program). This section presents the performance of the proposed method for gen-

erating test data for the benchmark programs which have been gathered from the previous

studies and being commonly utilized as test problems in the recent research of “search-based

software testing (SBST)” field.

The structures of these programs made them suitable to be used to test several test data gen-

eration techniques [4, 21]. The programs have different lines of code and complexity (from

simple to complex programs) with nested loops, selection, as well as nested selection through

the loops. Also, the programs include equality conditions or logical operators, like (=, ! =,<,

>,< =,> =) and also complex situations of AND and OR, furthermore the existence of math-

ematical operators, like (+, -, /, �, Mod), that do the programs suitable for testing numerous

test data generation methods. Description of each program is presented in Table 1. The

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0242812


experiments also study the performance of the proposed method with programs which have

different types of data, i.e. integers, floats, characters and programs with complex structures,

i.e. arrays and loops. The Results of the experiments for different data structures and loops are

explained in the next sub heading sections respectively. These programs can be classified based

on their program structures as given in (Fig 4). The experiments were executed using Intel1

Core™ i7 2.10 GHz, 64 bit processor and 8 GB memory in the Microsoft Windows 7 environ-

ment. The implementation of the method is coded using the Delphi 5 platform.

This section illustrates the results of each program. The” triangle type classifier (Trityp)” is

considered the utmost well-known program in software testing, which has three input values

and is utilized to determine the triangle kind that is characterized as: scalene, isosceles,

Table 1. The benchmark programs description.

Benchmark

Shortening

Explanation Arguments

Number

Code

Lines

Loops

Number

Decision nodes

Number

Paths

Number

Reference

TriTyp Triangle Type: Find out whether the three input numbers will

represent what type of triangle–equilateral, isosceles, scalene,

or not a triangle.

3 18 0 6 7 [4]

Mid Find the middle value between three values. 3 20 0 5 6 [6]

QuadEq “Find the quadratic equation root and specify whether it is

imaginary or real”.

3 28 0 6 7 [22]

STD-Scale Find the average marks of a student in three subjects. 3 46 0 5 6 [6]

P-Lie Detect “if x and y point locate on x-axis, y-axis or origin”. 2 21 0 3 4 [22]

MinMax Find the maximum and minimum values in an array of

integers and real numbers.

1 16 1 2 13 [4]

L-Search “Search a key in array of real, integer, character and string”. 2 27 2 2 20 [4]

BubSort Arrange an array of elements in an increasing order. 1 20 2 1 15 [30]

NumDays Calculate the number of days between two dates. 6 233 4 23 164 [1]

CalDay Determines the “day of the week for a specific date”. 3 119 0 24 25 [31]

AllTrue32 Examine if the Boolean elements of an array values are all true. 1 7 1 32 232 [32]

https://doi.org/10.1371/journal.pone.0242812.t001

Fig 4. Classification of the benchmarks programs.

https://doi.org/10.1371/journal.pone.0242812.g004

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0242812.t001
https://doi.org/10.1371/journal.pone.0242812.g004
https://doi.org/10.1371/journal.pone.0242812


equilateral or not a triangle. There are twelve branches that contain two AND decision condi-

tions and two OR decisions. The program contains an equality condition and four nesting

branches that increase the complication process of checking for the appropriate test data. If

every input variable has 2 bytes long, so the space of searching will be huge and its required to

execute 248 test cases that equal to 216�216� 216 which is impossible to execute.

The program appears as an easy program, however, it is not so. A less number of test input

data could fulfill the equilateral type of triangle that is the most complicated path to cover

because the equilateral triangle path is achieved only and only if the values of the three inputs

are positive and equal. “As an example, there are 215–1 types of equilateral triangle. So the

chance of randomly choosing three inputs that execute the equilateral path is (215−1 / 248

which is about equal to 1/ 233)”. This made the program a standard for evaluating different

approaches in software testing. Fig 5 shows the code and the “control flow graph (CFG)” of

this program.

For the triangle type classifier (TriTyp), the results show that the NSA-GA is more efficient

compared to random testing and NSA. NSA-GA is able to achieve total paths coverage from

the second generation while random testing and NSA needed 14 and 3 generations, respec-

tively. The efficiency of the proposed method in generating test data which cover the program

paths is presented in (Fig 6). This figure represents the number of test data required to fulfill

each path for 1000 iterations. From the figure, compared to random testing or NSA, the pro-

posed NSA-GA method has more probability to generate data for the most difficult path

which is the equilateral path because of its capability to direct the searching process to the max-

imum search space, finding test data to include the low probability paths to execute. The pro-

posed NSA-GA increased the probability of executing equilateral path to 200.8 average test

data compared to 38.9 with NSA while random testing failed to traverse this path.

Fig 5. The code and the control flow graph of triangle classification program.

https://doi.org/10.1371/journal.pone.0242812.g005

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0242812.g005
https://doi.org/10.1371/journal.pone.0242812


Due to the NSA-GA’s ability to remove redundant test data, remove the closest test data

and select the test data that reduces intersection, it is able to generate a reduced amount of test

data required to fulfill all program paths. Fig 7 shows the ability of the NSA-GA method in

reducing the amount of test data needed to fulfill all Trityp program paths. The results show

that NSA-GA could fulfill all program paths with minimum amount of test data that is 133.8,

while 4945 and 229 test data are needed in random testing and NSA test data generation

respectively. Thus, NSA-GA is more efficient than random testing and NSA since it decreases

the amount of test data required to fulfill all program paths by more than 95% nd 17% com-

pared to random testing and NSA, respectively.

Fig 8 presents the average amount of test data required to perform each path of the bench-

mark programs with 1000 number of iterations using random testing, NSA method, and the

proposed NSA-GA. The figures show that the proposed NSA-GA is more efficient than the

other two methods in generating the test data for the most difficult paths of the programs since

it could maximize the search space that could generate more test data to achieve the low proba-

bility execution paths. For example, on average, the amount of test data required to fulfill the

Fig 6. Average amount of test data to fulfill each path of TriTyp program.

https://doi.org/10.1371/journal.pone.0242812.g006

Fig 7. Average amount of test data to fulfill all TriTyp program paths.

https://doi.org/10.1371/journal.pone.0242812.g007

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0242812.g006
https://doi.org/10.1371/journal.pone.0242812.g007
https://doi.org/10.1371/journal.pone.0242812


most difficult path of the P-Lie program which is the point lies on origin is 15.1 test data for

NSA-GA, random testing is unable to cover this path, and NSA recorded 0.2 test data as

shown in (Fig 8D).

Another example is the first division with distinction path of the STD-Scale program in

(Fig 8C) could not be covered by random testing, NSA needs 69.5 test data to cover this path

and NSA-GA has more chance to traverse this path with 86.5 test data. This means that

NSA-GA has more ability to generate test data for programs with really difficult paths. The

hybrid NSA-GA method is more efficient than random testing and NSA test data generation

since it could decrease the amount of test data required to perform all program paths by

removing duplicates and closest test data from the set. The results show that the hybrid

NSA-GA is more efficient and effective than the other two methods since it has the ability to

generate test data to perform all paths of programs with the least number of generations and

reduce the amount of test data required.

Fig 9 portrays the effectiveness of the methods (in terms of the methods’ coverage percent-

age) while (Fig 10) shows the efficiency of the methods (in terms of average number of test

Fig 8. Average amount of test data required to achieve the program paths for ten generations. “(a) Mid program,

(b) QuadEq program, (c) STD-Scale program, and (d) P-Lie program”.

https://doi.org/10.1371/journal.pone.0242812.g008

Fig 9. Average coverage percentage for random testing, NSA and NSA-GA methods for all benchmark programs.

https://doi.org/10.1371/journal.pone.0242812.g009

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0242812.g008
https://doi.org/10.1371/journal.pone.0242812.g009
https://doi.org/10.1371/journal.pone.0242812


data needed to cover all paths of the programs). Fig 9 show that the proposed NSA-GA method

has highest percentage coverage for most programs. For example, in the P-Lie program, the

average coverage percentage (AC) of the proposed NSA-GA is 100% compared to 50% for

NSA and random testing. In (Fig 10), NSA-GA employed least number of test data to achieve

total coverage. For example, in the CalDay program, the average number of test data required

by the NSA-GA to fulfill all paths of this program is 1035.2 with 11 generations, compared to

5338 with 54 generations for NSA and 8658 with 87 generations for random testing.

The average amount of test data needed to perform all P-Lie program paths is 460.1 test

data for NSA-GA, while NSA needed 691 test data and random testing needed 4848 test data.

This means that the proposed NSA-GA can reduce the amount of test data required to perform

all programs paths by more than 34% and 91% compared to NSA and random testing, respec-

tively. Moreover, as portrayed in (Fig 11), NSA-GA is also able to reduce the testing time

needed for each program.

Different data types experiments

This section will present the experimental results of single and complicated data structure

(array) with multiple data types, like integer, float, character, and string. The experiments were

done on MinMax program that consists array of integers and array of floats, L-Search program

Fig 10. Average number of test data recorded for random testing, NSA and NSA-GA methods for all benchmark

programs.

https://doi.org/10.1371/journal.pone.0242812.g010

Fig 11. Testing time for random testing, NSA and NSA-GA methods for all benchmark programs.

https://doi.org/10.1371/journal.pone.0242812.g011

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0242812.g010
https://doi.org/10.1371/journal.pone.0242812.g011
https://doi.org/10.1371/journal.pone.0242812


that consists array of integers, array of characters, array of floats and array of string, and Bub-

Sort program that consists array of integers and array of floats. These programs were used to

investigate the performance of the in handling complex data structure and different data types.

The ranges of the input test data in this paper are selected from previous work as (0–100),

(0–200), and (0–500) [29]. The results show that the increase in test input data range will grad-

ually decrease the path coverage percentage, increase the number of test data, and generation

number required to fulfill all program paths. CalDay and NumDays programs are not consid-

ered in this study since they have limited data input representing month and year. Meanwhile,

experiment on STD-Scale program was only done on the range (0–100) only because that is

the only range applicable to this program. To assess the effectiveness and the efficiency of the

suggested approach, the results of NSA-GA method are compared with random approach and

NSA test data generation obtained from Mohi-Aldeen et al. (2016) Three performance metrics

were considered which are: average amount of test data needed to fulfill all program paths

(ATD), average number of generations that required for the whole coverage (AG) and average

percentage coverage (AC). The results are presented in Tables 2 and 3. These tables provide a

comparison of results for all three methods using integer and float data types with different

ranges. For each table, the program name and its range are given in the first and second col-

umn; the next three columns contain the AC, ATD, and AG for random testing; the next three

columns contain the same measurements using NSA, and the last three columns are for

NSA-GA.

From the tables, the results show that the hybrid NSA-GA method employs the least test

data number because it has both filter and fitness functions to check the duplication of test

data and priority of the paths. It also minimizes the generation number required to perform all

programs’ paths. In addition, the proposed hybrid NSA-GA method maximized the percent-

age coverage of the programs paths due to its ability to maximize search space coverage and

traverse low probability execution paths.

As illustrated in Tables 2 and 3, for different input data ranges, the proposed method

achieved lowest AG and ATD and highest AC. Although the increase in data range will gradu-

ally increase the difficulty of the search test data, NSA-GA still performed better in terms of

AG, ATD and AC than the other two methods. This demonstrates that the proposed method is

more advantageous to be used for large input range data. For example, when integer data type

of (0–100) range is used in the P-Lie program, the AC of the program paths is 50% using ran-

dom testing and NSA compared to 100% using the proposed NSA-GA method for the same

type and range. For cases where the range of input data were increased, for the (0–200) and

(0–500) integer data ranges, NSA-GA recorded 75% and 63%, and these percentages are still

higher than random testing and NSA for the same ranges. NSA recorded 48% and 35% while

random testing recorded 38% and 28%. These percentages decreased when float data type is

used, for example, for the same P-Lie program but using float input data type, for the (0–100)

data range, the AC is 65% instead of 100%, and the ATD also increased gradually with the

increase in data ranges, i.e. 460.1, 544.1 and 552 test data were needed to cover the paths for

(0–100), (0–200) and (0–500) data ranges, respectively. However, this number is small com-

pared to other methods.

NSA needs 691, 996 and 1063.3 test data when the range of input data was increased, while

random testing needs 4848, 34467.8, and 36104.4 test data. The AG also recorded the same

pattern. For float data type, both the ATD and AG also increased with the increase in range.

The proposed NSA-GA method recorded the smallest AG compared to random testing and

NSA test data generation. For example, for the CalDay program, the AG for NSA-GA is 11

compared to 87 and 54 for random testing and NSA. Meanwhile, for the NumDays program,

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0242812


the full coverage is not achieved (NA) when using random and NSA, but for the NSA-GA it

needs six generations to achieve total coverage.

The ATD of the proposed method NSA-GA is less than random testing and NSA test data

generation. For example, for the MinMax program, the ATD using the proposed method is

34.6 compared to 497.2 and 113.6 for random testing and NSA methods, respectively. Mean-

while, for the case of AC, AC for the proposed NSA-GA is higher than random testing and

NSA test data generation. For example, for the STD-Scale program, NSA-GA’s AC is 100 com-

pared to 65 and 67 using random testing and NSA, respectively. After the experiment done, it

is found that different data types and different ranges do not affect the proposed NSA-GA

method performance. Thus, we could confirm that the proposed NSA-GA is capable of gener-

ating best test data for path coverage even using different data types and different ranges. Figs

12 and 13 present AC of each program for integer and float input data types. Figs 12 and 13

show the results of the experiments using the proposed NSA-GA method for both integers and

float data types with different ranges. The results show that the performance of the proposed

method with floating data is as good as its performance with the integer data, for different

ranges and data types (single or array).

In other words, the proposed NSA-GA outperformed the other methods by recording

higher coverage percentage and fewer the generated amount of test data with minimum gener-

ation’s number and for both data types and in all ranges. Thus, NSA-GA achieved better

Table 2. Comparison of results between NSA-GA, NSA, and random testing on all programs using integer data type and different range.

Programs Data Range Random NSA NSA-GA

AC% ATD AG AC% ATD AG AC% ATD AG

TriTyp 0–100 87 4945 50 100 229 3 100 133.8 2

0–200 86 19909.4 200 100 554.5 6 100 250.8 3

0–500 77 53987.3 540 100 589.9 6 100 369.8 4

Mid 0–100 95 23 1 100 6 1 100 5 1

0–200 85 35 1 100 11.5 1 100 8.3 1

0–500 85 40 1 100 14.1 1 100 7.5 1

P-Lie 0–100 50 4848 49 50 691 7 100 460.1 5

0–200 38 34467.8 345 48 996 10 75 544.1 6

0–500 28 36104.4 362 35 1063.3 11 63 552 6

QuadEq 0–100 78 3816 39 95 362 4 100 85 1

0–200 75 11252.1 113 93 772.8 8 98 354.7 4

0–500 70 50955.2 510 93 856.4 9 95 487.2 5

STD-Scale 0–100 65 2534 26 67 215 3 100 98 1

L-Search 0–100 73 698.6 7 83 290.5 3 89 151.7 2

0–200 72 721.1 8 82 569 6 84 287.8 3

0–500 71 1400.4 15 77 577.2 6 82 326 3

MinMax 0–100 75 497.2 5 77 113.6 2 100 34.6 1

0–200 70 633.4 7 77 114.3 2 80 35.9 1

0–500 70 634.9 7 76 125.7 2 75 36.9 1

BubSort 0–100 69 387 4 75 176.8 2 100 14.2 1

0–200 69 465 5 70 189.2 2 72 17.7 1

0–500 69 687 7 70 235.5 3 72 19.2 1

CalDay —— 73 8658 87 92 5338 54 94 1035.2 11

NumDays —— 30 NA NA 84 NA NA 91 542.9 6

AllTrue32 —— 2 NA NA 54 93966 940 60 81295.3 813

https://doi.org/10.1371/journal.pone.0242812.t002

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0242812.t002
https://doi.org/10.1371/journal.pone.0242812


coverage even using complex data types, complex structures and increase in the search space.

From the results, it can be concluded that NSA-GA is the best method in generating a less

number of test data to achieve highest path coverage in less number of generations compared

to NSA and random testing for all benchmark programs.

The experiments of loops benchmark programs

This section explains the effectiveness of the proposed method in handling program with

loops. Path testing is able to find more logical errors than the statement or branch coverage

Table 3. Comparison of results between NSA-GA, NSA, and random testing on all programs using float data type and different range.

Programs Data Range Random NSA NSA-GA

AC% ATD AG AC% ATD AG AC% ATD AG

TriTyp 0–100 37 NA NA 100 559.6 6 100 235.4 3

0–200 33 NA NA 100 540.8 6 100 282.2 3

0–500 29 NA NA 98 662.4 7 100 415.8 5

Mid 0–100 92 12 1 100 7.2 1 100 7.3 1

0–200 88 14.1 1 100 13.1 1 100 8.8 1

0–500 87 15.7 1 100 14.2 1 100 10.6 1

P-Lie 0–100 30 NA NA 45 824.7 9 65 490.7 5

0–200 28 NA NA 31 978.1 10 57 515.4 6

0–500 25 NA NA 28 1031.3 11 50 554.7 6

QuadEq 0–100 53 NA NA 100 738.5 8 100 398 4

0–200 50 NA NA 97 864.3 9 100 436.1 5

0–500 50 NA NA 95 927.5 10 98 496.9 5

STD-Scale 0–100 65 NA NA 67 NA NA 83 376 4

L-Search 0–100 42 NA NA 43 NA NA 52 31185.5 312

0–200 36 NA NA 41 NA NA 46 63355.5 634

0–500 36 NA NA 41 NA NA 43 74370.5 744

MinMax 0–100 75 587.2 6 77 127.5 2 78 33.6 1

0–200 73 773.5 8 76 128.7 2 77 36.3 1

0–500 69 845.2 9 73 216.8 3 76 37.1 1

BubSort 0–100 70 478 5 71 187.4 2 75 18.3 1

0–200 69 645 7 71 336.7 4 73 18.2 1

0–500 69 672 7 71 356.5 4 72 20.9 1

https://doi.org/10.1371/journal.pone.0242812.t003

Fig 12. Comparison between AC of random testing, NSA and NSA-GA methods using different ranges for integer

input data.

https://doi.org/10.1371/journal.pone.0242812.g012

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0242812.t003
https://doi.org/10.1371/journal.pone.0242812.g012
https://doi.org/10.1371/journal.pone.0242812


since the errors exist in several numbers of iterations within the loops. Each number of loop

iterations are considered as a different path. The method applies loop testing by executing the

loop, zero, one, two and more than two times. The effectiveness of the method was shown

using different types of data. Similar to the previous experiments, the results are evaluated

based on the average amount of test data required to perform all program paths (ATD), aver-

age number of generations that required for the whole coverage (AG) and average percentage

coverage (AC). L-Search, MinMax and BubSort programs using different input data types are

considered in this section. In Table 4, the programs’ names are given in the first column; the

next three columns contain the AC, ATD, and AG for random testing; the next three columns

contain the same measurements using NSA, and the last three columns are for NSA-GA.

As can be seen from Table 4, the proposed NSA-GA achieved better results than random

testing and NSA test data generation. For AG, NSA-GA achieved total coverage with a mini-

mum number of generations. As an example, the AG of the AllTrue32 program using the pro-

posed method is 813, 940 for NSA, while random testing could not achieve total coverage

(NA) for this program. Meanwhile, the AG of the L-Search with floating numbers need 312

generations to fulfill all program paths while neither random testing nor NSA could achieve

total coverage NA. For the ATD, ATD of the proposed NSA-GA method is the lowest com-

pared to random testing and NSA. For example, the ATD of L-Search with character input

data using NSA-GA is 52.9, but random testing and NSA recorded 157.7 and 77.5,

respectively.

Fig 13. Comparison between AC of random testing, NSA and NSA-GA methods using different ranges for float

input data.

https://doi.org/10.1371/journal.pone.0242812.g013

Table 4. Comparison between random testing, NSA and NSA-GA methods for programs with loops and different data types.

Programs Random NSA NSA-GA

AC% ATD AG AC% ATD AG AC% ATD AG

L-Search-Char 90 157.7 2 95 77.5 1 100 52.9 1

L-Search-String 50 625.8 7 78 242.8 3 95 138.5 2

L-Search-Integer 71 698.6 7 82 290.5 3 89 151.6 2

L-Search-Float 41 NA NA 43 NA NA 53 31185.5 312

MinMax-Integer 75 497.2 5 77 113.6 2 100 34.6 1

MinMax-Float 69 587.2 6 78 127.5 2 76 33.6 1

BubSort-Integer 69 387 4 74 176.8 2 100 14.2 1

BubSort-Float 69 478 5 71 187.4 2 75 18.3 1

AllTrue32 2 NA NA 54 93966 940 60 81295.3 813

https://doi.org/10.1371/journal.pone.0242812.t004

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0242812.g013
https://doi.org/10.1371/journal.pone.0242812.t004
https://doi.org/10.1371/journal.pone.0242812


In addition, for the AC, the proposed NSA-GA method recorded the highest percentage

compared to random testing and NSA test data generation. For example, for the BubSort pro-

gram, NSA-GA achieved 100% coverage while random testing and NSA only managed to

achieve 69% and 74% coverage of total paths. Meanwhile, for AllTrue32 program, the coverage

of NSA-GA was 60%, while 2% and 54% were achieved by random testing and NSA. The AC

of all programs that contain loops with different input data types has been shown in (Fig 14).

From the results presented in (Fig 14), it can be concluded that the proposed NSA-GA

method is suitable to be used in programs that contain complex paths with loops and nested

selection since it could achieve total path coverage of the programs as shown in the L-Search-

Char, MinMax-Integer and BubSort-Integer compared to NSA and random testing. In addi-

tion, it also increases the search coverage.

Conclusions

The paper proposed a hybrid method NSA-GA which combines NSA with GA. This method

modified random generation of detectors in order to generate an optimized and a limited

number of detectors (test data set) and direct the search of test data to the paths which have

low probability to be executed using fitness functions based on path’s prioritization. The pro-

posed method improves the efficiency and effectiveness of test data generation and maximizes

search space area, increasing percentage of path coverage while preventing redundant data.

The results show that the proposed method (NSA-GA) improved the covering of program’s

paths, even in the complex paths that contain Nested-If conditions, loops, and multiple types of

data with different input ranges. The proposed method produces better results that reduced the

amount of generated test data with lesser generations’ number. In other words, NSA-GA’s per-

formance using different data types is as good as its performance with single or array data types.

From the results, we can conclude that NSA-GA is the best in generating fewer number of test

data that is able to achieve high path coverage in fewer number of generations by comparing

with random testing and NSA for all benchmark programs. For the future works, the author sug-

gests to use the statistical validation using ANOVA to validate the results of using the NSA-GA

in path testing and also can use another metahurestic algorithm instead of genetic algorithm.

Supporting information

S1 Dataset.

(PDF)

Fig 14. Average coverage of all loops programs with different data types.

https://doi.org/10.1371/journal.pone.0242812.g014

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242812.s001
https://doi.org/10.1371/journal.pone.0242812.g014
https://doi.org/10.1371/journal.pone.0242812


Acknowledgments

The authors would like to thank the Ministry of Higher Education & Scientific Research of

Iraq and University of Mosul for supporting the research. Also, We would like to thank the

Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia for providing the

facilities and support for the research.

Author Contributions

Conceptualization: Shayma Mustafa Mohi-Aldeen.

Data curation: Shayma Mustafa Mohi-Aldeen.

Methodology: Shayma Mustafa Mohi-Aldeen.

Writing – original draft: Shayma Mustafa Mohi-Aldeen.

Writing – review & editing: Radziah Mohamad, Safaai Deris.

References
1. Singh Y. Software Testing. Cambridge University Press; 2011.

2. Paul A., Jeff O. Introduction to Software Testing. Cambridge University Press. 2017.

3. Gennadiy A. Software Testing Automation Tips: 50 Things Automation Engineers Should Know.

Apress; 2017.

4. Hermadi I., Lokan C., and Sarker R. Dynamic stopping criteria for search-based test data generation for

path testing. Information and Software Technology. 2014; 56(4): 395–407.

5. Rajiv Ch. Software Testing: Principles and Practices. Mercury Learning & Information. 2018.

6. Ghiduk A. S. Automatic generation of basis test paths using variable length genetic algorithm. Informa-

tion Processing Letters. 2014; 114(6): 304–316.

7. Khari M., Kumar P. An extensive evaluation of search-based software testing: a review. Soft Comput.

2019; 23: 1933–1946.

8. Colanzi T, Assunção W.K.G., Farah P.R., Vergilio S.R., Guizzo G. A Review of Ten Years of the Sym-

posium on Search-Based Software Engineering. In: Nejati S., Gay G. (eds) Search-Based Software

Engineering. SSBSE 2019. Lecture Notes in Computer Science, vol 11664. Springer, Cham.

9. Rashmi R.S., Mitrabinda R., PSO based test case generation for critical path using improved combined

fitness function, Journal of King Saud University—Computer and Information Sciences. 2020; 32(4):

479–490.

10. Anand S., Burke E. K., Chen T. Y., Clark J., Cohen M. B., Grieskamp W., et al. An orchestrated survey

of methodologies for automated software test case generation. Journal of Systems and Software. 2013;

86(8): 1978–2001.

11. Mohi-Aldeen S. M., Mohamad R., & Deris S. Application of Negative Selection Algorithm (NSA) for test

data generation of path testing. Applied Soft Computing. 2016; 49: 1118–1128.

12. Mohi-Aldeen S. M., Deris S., and Mohamad R. Systematic mapping study in automatic test case gener-

ation, in: Fujita H. et al. (Eds.), New Trends in Software Methodologies, Tools and Techniques, Fron-

tiers in Artificial Intelligence and Applications. IOS Press Ebooks; 2014: 703–720.

13. Divya K. V. A Review on Search Based Software Engineering. International Journal of Computer Sci-

ence and Mobile Computing (IJCSMC). 2019; 8(6):124–127.

14. Mishra D.B., Mishra R., Das K.N., Acharya A.A. Test Case Generation and Optimization for Critical

Path Testing Using Genetic Algorithm. In: Bansal J., Das K., Nagar A., Deep K., Ojha A. (eds) Soft

Computing for Problem Solving. Advances in Intelligent Systems and Computing. 2019; vol 817.

Springer, Singapore.

15. Shimin L. and Zhangang W., Genetic Algorithm and its Application in the path-oriented test data auto-

matic generation, Procedia Engineering 15. 2011: 1186–1190.

16. Forrest S., Perelson A. S., Allen L., & Cherukuri R. Self-Nonself Discrimination in a Computer. IEEE

Symposium on Security and Privacy; 1994.

17. Al-Enezi J. R., Abbod M.F., and Alsharhan S. Artificial Immune Systems-models, algorithms and appli-

cations. IJRRAS. 2010; 3(2): 118–131.

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 20 / 21

https://doi.org/10.1371/journal.pone.0242812


18. Timmis J. Artificial immune systems—today and tomorrow. Natural computing. 2007; 6(1): 1–18.

19. Timmis J., Hone A., Stibor T., and Clark E. Theoretical advances in artificial immune systems. Theoreti-

cal Computer Science. 2008; 403(1): 11–32.

20. Hosseini S., Seilani H. Anomaly process detection using negative selection algorithm and classification

techniques. Evolving Systems. 2019.

21. Holland J. H. Adaptation in natural and artificial systems: an introductory analysis with applications to

biology, control, and artificial intelligence. U Michigan Press; 1975.

22. Al-Zabidi M. S. Study of Software Testing and the Evolution of Optimal Method for Quality and Reliability

Investigation. University of Pune. India; 2013.

23. Dixon S. E. Studies on Real-Valued Negative Selection Algorithms for Self-Nonself Discrimination;

2010.

24. Gong M., Zhang J., Ma J., and Jiao L. An efficient negative selection algorithm with further training for

anomaly detection. Knowledge-Based Systems. 2012; 30: 185–191.

25. Lytvynenko V. Hybrid swarm negative selection algorithm for DNA-microarray data classification.Віс-
никНаціонального університету. 2014; 800: 134–148.

26. Lee J., Kang S. & Lee D. Survey on software testing practices. IET Software. 2012; 6(3): 275–282.

27. Dasgupta D. and Nino F. Immunological computation: theory and applications, CRC Press; 2008.

28. Delona C. J., Haripriya P. V., Anju J. S. Negative Selection Algorithm: A Survey. International Journal of

Science, Engineering and Technology Research (IJSETR). 2017; 6(4):711–715.

29. Ramı́rez A., Romero J., & Simons C. A Systematic Review of Interaction in Search-Based Software

Engineering. IEEE Transactions on Software Engineering. 2019; 45: 760–781.

30. Jiang S., Si J., Zhang Y., and Han H. Automatic test data generation based on reduced adaptive particle

swarm optimization algorithm. Neurocomputing. 2015; 158: 109–116.

31. Mao C., Xiao L., Yu X., and Chen J. Adapting ant colony optimization to generate test data for software

structural testing. Swarm and Evolutionary Computation. 2015; 20: 23–36.

32. Alshraideh M., Bottaci L., and Mahafzah B. A. Using program data-state scarcity to guide automatic test

data generation. Software Quality Journal. 2010; 18(1): 109–144.

PLOS ONE Optimal path test data generation based on hybrid negative selection algorithm and genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0242812 November 30, 2020 21 / 21

https://doi.org/10.1371/journal.pone.0242812

