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Abstract

Butterfly Optimization Algorithm (BOA) is a recent metaheuristics algorithm that mimics the

behavior of butterflies in mating and foraging. In this paper, three improved versions of BOA

have been developed to prevent the original algorithm from getting trapped in local optima

and have a good balance between exploration and exploitation abilities. In the first version,

Opposition-Based Strategy has been embedded in BOA while in the second Chaotic Local

Search has been embedded. Both strategies: Opposition-based & Chaotic Local Search

have been integrated to get the most optimal/near-optimal results. The proposed versions

are compared against original Butterfly Optimization Algorithm (BOA), Grey Wolf Optimizer

(GWO), Moth-flame Optimization (MFO), Particle warm Optimization (PSO), Sine Cosine

Algorithm (SCA), and Whale Optimization Algorithm (WOA) using CEC 2014 benchmark

functions and 4 different real-world engineering problems namely: welded beam engineer-

ing design, tension/compression spring, pressure vessel design, and Speed reducer design

problem. Furthermore, the proposed approches have been applied to feature selection

problem using 5 UCI datasets. The results show the superiority of the third version (CLSOB-

BOA) in achieving the best results in terms of speed and accuracy.

Introduction

In recent years, the complexity of real-world engineering optimization problems has been

increased rapidly due to the advent of the latest technologies. In order to find the optimal solu-

tions to these problems, many optimization methods have been introduced to find the optimal

solutions. These algorithms can be divided into 2 major categories: deterministic and stochas-

tic. In the formal category, for example Linear and non-linear programming [1], the solution

of the current iteration is used in the next iteration to get the updated solution. The methods

in this category have some limitations such as falling into local optima, single based solutions,

and other issues regarding search space as mentioned in [2]. In the latter category stochastic

methods, also known as metaheuristics, which generate & use random variables. This category

has many advantages such as flexibility, simplicity, gradient-free and independently to the
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problems. Metaheuristics algorithms have been proposed by studying creatures’ behavior,

physical phenomena, or evolutionary concepts and has been successfully applied to many

applications [3–5]. Genetic Algorithm (GA) [6], Differential Evolution (DE) [7], Particle

Swarm Optimization (PSO) [8], Artificial Bee Colony (ABC) [9], Ant Colony Algorithm

(ACO) [10], and Simulated Annealing (SA) [11] are some of the most conventional metaheur-

istics algorithms. Recently, numerous number of optimization algorithms have been appeared

such as: Cuckoo Search (CS) [12], Gravitational Search Algorithm (GSA) [13], Crow Search

Algorithm (CSA) [14], Dragonfly Algorithm (DA) [15], Biogeography-Based Optimization

algorithm (BBO) [16], Bat algorithm (BA) [17], Whale Optimization Algorithm (WOA) [18],

Grasshopper optimization algorithm (GOA) [19], Emperor penguin optimizer (EPO) [20],

Squirrel search algorithm (SSA) [21], Seagull Optimization Algorithm (SOA) [22], Nuclear

Reaction Optimization (NRO) [23], Salp swarm algorithm [24], Harris Hawks Optimization

(HHO) [25], Slime Mould Algorithm (SMA) [26], Henry Gas Solubility Optimization (HGSO)

[27], Elephant Herd Optimization (EHO) [28], Ant-Lion Optimization (ALO) [29] and Moth-

Flame Optimization (MFO) [30].

Butterfly optimization algorithm [31] is a novel population-based metaheuristics algorithm

that mimics butterflies foraging behavior. BOA has been applied to many fields. In [32] Aygül

et al. use BOA to find the maximum power point tracking under partial shading condition

(PSC) in photovoltaic (PV) systems. Lal et al. in [33] presented Automatic Generation Control

(AGC) to 2 nonlinear power systems using BOA. Also, in [34] Arora and Anand embedded

learning automata in BOA. Li et al. in [35] proposed an improved version of BOA using

Cross-Entropy method to achieve a better balance between exploration and exploitation.

Arora and Anand proposed a binary version of BOA and applied it to the Feature Selection

(FS) problem [36]. Another binary version which also applied to feature selection is introduced

by Zhang et al. [37] by using new initialization strategy and new operator has been added to

transfer function. Likewise, Fan et al. [38] tried to improve BOA performance by adding fra-

grance coefficient and enhancing local & global search.

A guiding weight and population restart are done by Guo et al. [39]. BOA has been also

hybridized with other metaheuristics algorithms such as FPA [40] and ABC [41]. Also, Shar-

ama and Saha in [42] proposed an updated version of BOA using mutualism scheme. In spite

of, many real-world problems have been solved by using the original BOA due to its advan-

tages as easy in implementation, simplicity, less number of parameters. However, in some

cases like other MH algorithms, it may stuck in local optima regions which lead to premature

convergence problems.

However, the success of the above mentioned algorithms in enhancing BOA search capabil-

ities, it still have some limitations and drawbacks: 1) BOA still have difficulties to escape from

local optimum region especially when BOA is applied to complex or high dimensional prob-

lems. 2) all enhanced BOA variants solve only one problem (Initialization, diversity, and bal-

ancing between exploration & exploitation). This encourages and motivates us to introduce

some other enhancement.

Opposition-based Learning strategy (OBL) has been integrated with many MH algorithms

like PSO [43], GSA [44], ACO [45], GWO [46] and DE [47] to strength their exploration abili-

ties. Also, Chaotic Local Search (CLS) strategy is used in order to make a good balance between

exploration and exploitation. CLS concepts was introduced in numerous number of MHs such

as PSO [43], Tabu search [48] and ABC [49].

In this paper, three enhanced versions of BOA has been introduced. In the first proposed

version Opposition-based Learning strategy is used to enhance the population diversity by

checking the opposite random solutions in the initialization phase and the updating step. In

the second proposed version, Chaotic Local Search (CLS) has been incorporated in BOA to
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exploits the regions near to the best solutions. In the last version, both of OBL and CLS are

used together to enhance overall performance. To best of our knowledge, this is the first time

to use CLS, OBL concepts in BOA algorithms.

This paper is organized as follows: section 2 provides the basics of BOA. The three novel

variants and the concepts of OBL & CLS are introduced in section 3. the experiments results &

Discussion and Conclusion & Future work are shown in sections 4 and 5 respectively.

1 Preliminaries

In this section, the BOA inspiration and mathematical equations are shown first. Then, the

basics of Opposition-based Learing and Chaotic Local Search are presented.

1.1 Butterfly optimization algorithm

The BOA equations and complexity is described in details in the following subsections.

1.1.1 Inspiration & mathematical equations. Butterflies belong to the Lepidoptera class

in the Animal Kingdom Linnaean system [50]. In order to find food/mating partner, they used

their sense, sight, taste, and smell. Butterfly Optimization Algorithm (BOA) is a recent nature-

based algorithm developed by Arora and Singh in 2018 [31]. BOA simulates the behavior of

butterflies in food foraging. Biologically, each butterfly has sense receptors that cover all but-

terfly’s body. These receptors are considered chemoreceptors and are used in smelling/sensing

the food/flower fragrance. To model butterflies’ behavior, it’s assumed that each butterfly pro-

duce fragrance with some power/intensity. if a butterfly is able to sense fragrance from the best

butterfly, it moves towards the position of the best butterfly. On the other hand, if a butterfly

can’t sense fragrance, it moves randomly in the search space. In BOA, the fragrance is defined

as a function of physical intensity as given in 1.

pfi ¼ cIa ð1Þ

where pfi refers to the amount of fragrance perceived by other butterflies, c is the sensory

modality, I and a refer to stimulus intensity and power exponent respectively. Global search

(exploration) and local search (exploitation) phases are given respectively by Eqs 2 and 3.

xiðt þ 1Þ ¼ xiðtÞ þ ðr2 � g� � xiðtÞÞ � pfi ð2Þ

xiðt þ 1Þ ¼ xiðtÞ þ ðr2 � xjðtÞ � xkðtÞÞ � pfi ð3Þ

Algorithm 1 Butterfly Optimization Algorithm (BOA)
1: Initialize Dim, Max_Iter, curr_Iter, Objective Function
2: Generate a uniform distributed solutions (Initial Population)

X = (x1, x2, . . ., xn)
3: Define sensory modality c, stimulus intensity I, and switch

probability p
4: calculate stimulus intensity Ii at xi using f(xi)
5: while (curr_Iter ¡ Max_Iter) do
6: for each butterfly in (X) do
7: Calculate fragrance using Eq 1
8: end for
9: g� = best butterfly
10: for each butterfly in (X) do
11: r = rand()
12: if r ¡ p then
13: Update butterfly position using Eq 2
14: else
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15: Update butterfly position using Eq 3
16: end if
17: end for
18: Update value of a
19: end while
20: Return g�.

1.1.2 Complexity. To be able to compute the BOA complexity, assume the population

size is (P), maximum iteration number (N), the problem dimensions (D). Then, the BOA com-

plexity can be calculated as follows O(N(D × P + D × C)) where C refers to the cost of the fit-

ness function = O(NDP + NDC).

1.2 Opposition-based Learning

Tizhoosh in [51] introduced Opposition-based learning (OBL) to accelerate the convergence

by calculating the opposite solution of the current one and taking the best of them. In [47] a

mathematical proof is given to show that the opposite solutions are more likely to be near opti-

mal than totally random. The opposite solution �Xi can be calculated from the following equa-

tion

�Xi ¼ aþ b � Xi;Xi 2 ½a; b� ð4Þ

where a, b is the lower bound and the upper bound respectively.

1.3 Chaotic local search

Chaotic system characteristic can be used to make local search operator in order to strengthen

the exploitation abilities in solving optimization tasks. Chaos is based on the navigation of

deterministic nonlinear complex behavior. There are many chaotic maps in literature such as

logistic, singer, tent, piecewise, and sinusoidal. This is because of the efficiency of chaotic map

is related to the problem itself as mentioned by Fister et al. [52, 53]. Logistics map is used in

this paper and its sequequence can be obtained from the following equation.

Ciþ1 ¼ m� Ci � ð1 � CiÞ; i ¼ 1; 2; :::; n � 1 ð5Þ

where μ = 4, set 0� C1� 1 and C1 6¼ 0.25, 0.5, 0.75, 1. To calculate the candidate solution CS

from the target position T, the next equation is used.

CS ¼ ð1 � sÞ � T þ S� �Ci; i ¼ 1; 2; :::; n � 1 ð6Þ

2 The proposed approaches

2.1 Opposition-Based BOA (OBBOA)

The first version is called OBBOA which improves the performance of BOA by using OBL

strategy. OBL enhance the BOA algorithm by improving its ability to explore search space

deeply and speed up the reaching to optimal value. This version consists of 2 stages: First, at

the initialization stage by calculating the opposite solution to each one in the initialization,

then selecting the best N values. Second OBL is embedded in the updating stage. The pseudo-

code of this version is given in Alg. 2.

Algorithm 2 Opposition-Based BOA (OBBOA)
1: Initialize Dim, Max_Iter, curr_Iter, Objective Function
2: Generate a uniform distributed solutions (Initial Population)

X = (x1, x2, . . ., xn)
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3: Define sensory modality c, stimulus intensity I, and switch
probability p

4: calculate stimulus intensity Ii at xi using f(xi)
5: Compute �X
6: Select best N from X [ �X
7: while (curr_Iter < Max_Iter) do
8: for each butterfly in (X) do
9: Calculate fragrance using Eq 1
10: end for
11: g� = best butterfly
12: for each butterfly in (X) do
13: r = rand()
14: if r � p then
15: Update butterfly position using Eq 2
16: else
17: Update butterfly position using Eq 3
18: end if
19: Calculate �x
20: xi ¼ �xi if f ðxiÞ < f ð�xiÞ

21: end for
22: Update value of a
23: end while
24: Return g�.

2.2 Chaotic Local Search BOA (CLSBOA)

In the second version which is called CLSBOA, Chaotic Local Search is integrated with BOA

to make a proper balance between exploration and exploitation. The pseudo-code of this ver-

sion is introduced in Alg. 3.

Algorithm 3 Chaotic Local Search BOA (CLSBOA)
1: Initialize Dim, Max_Iter, curr_Iter, Objective Function
2: Generate a uniform distributed solutions (Initial Population)

X = (x1, x2, . . ., xn)
3: Define sensory modality c, stimulus intensity I, and switch

probability p
4: calculate stimulus intensity Ii at xi using f(xi)
5: while (curr_Iter < Max_Iter) do
6: for each butterfly in (X) do
7: Calculate fragrance using Eq 1
8: end for
9: g� = best butterfly
10: for each butterfly in (X) do
11: r = rand()
12: if r < p then
13: Update butterfly position using Eq 2
14: else
15: Update butterfly position using Eq 3
16: end if
17: end for
18: Generate the candiate solution CS by performing CLS strategy
19: g� = CS if f(CS)<f(g�)
20: Update value of a
21: end while
22: Return g�.
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2.3 Chaotic Local Search Opposition-Based BOA (CLSOBBOA)

In this version, both of the 2 previous modification has been added together to enhance BOA

and get the most near optimal solution.

Complexity:

To be able to compute the BOA complexity, assume the population size is (P), maximum

iteration number (N), the problem dimensions (D). Then, the CLSOBBOA complexity can be

calculated as follows O(BOA) + O(OBL) + O(CLS) = O(N(D × P + D × C + P + P)) where C
refers to the cost of the fitness function = O(NDP + NDC)

Algorithm 4 Chaotic Local Search & Opposition-Based BOA (CLSOBBOA)
1: Initialize Dim, Max_Iter, curr_Iter, Objective Function
2: Generate a uniform distributed solutions (Initial Population)

X = (x1, x2, . . ., xn)
3: Define sensory modality c, stimulus intensity I, and switch

probability p
4: calculate stimulus intensity Ii at xi using f(xi)
5: Compute �X
6: Select best N from X [ �X
7: while (curr_Iter ¡ Max_Iter) do
8: for each butterfly in (X) do
9: Calculate fragrance using Eq 1
10: end for
11: g� = best butterfly
12: for each butterfly in (X) do
13: r = rand()
14: if r ¡ p then
15: Update butterfly position using Eq 2
16: else
17: Update butterfly position using Eq 3
18: end if
19: Calculate �x
20: xi ¼ �xi if f ðxiÞ < f ð�xiÞ

21: end for
22: Generate the candiate solution CS by performing CLS strategy
23: g� = CS if f(CS)<f(g�)
24: Update value of a
25: end while
26: Return g�.

3 Experiments

In this section, the proposed algorithms are tested using CEC as shown in the first subsection

after that these algorithms are applied to 5 UCI datasets.

3.1 Benchmark functions

In this subsection, 30 functions have been used to compare algorithms using many statistical

measure.

3.1.1 Test functions. A set of 30 functions from CEC 2014 are used to compare the per-

formance of the proposed algorithms with other state-of-art algorithms. This benchmark func-

tions have new characteristics such as rotated trap problems, graded level of linkage, and

composing functions through dimensions-wise properties. This benchmark can be categorized

to the following (Unimodal, Multi-modal, Hybrid, and Composite functions) and the defini-

tion of these function can be shown in Table 1 where opt. refers to the mathematical optimal

value and the bound of the variables in the search space falls in the interval 2[−100, 100].
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Table 1. CEC2014 functions.

No. Types Name Opt.

F1(CEC) Unimodal fnctions Rotated high conditioned elliptic function 100

F2(CEC) Rotated bent cigar function 200

F3(CEC) Rotated discus function 300

F4(CEC) Simple multimodal

functions

Shifted and rotated Rosenbrocks function 400

F5(CEC) Shifted and rotated Ackleys function 500

F6(CEC) Shifted and rotated Weierstrass function 600

F7(CEC) Shifted and rotated Griewanks function 700

F8(CEC) Shifted Rastrigins function 800

F9(CEC) Six Hump Camel Back 900

F10

(CEC)

Shifted and rotated Rastrigins function 1000

F11

(CEC)

Shifted and rotated Schwefels function 1100

F12

(CEC)

Shifted and rotated Katsuura function 1200

F13

(CEC)

Shifted and rotated HappyCat function 1300

F14

(CEC)

Shifted and rotated HGBat function 1400

F15

(CEC)

Shifted and rotated Expanded Griewanks plus Rosenbrocks

function

1500

F16

(CEC)

Shifted and rotated Expanded Scaffers F6 function 1600

F17

(CEC)

Hybrid functions Hybrid function 1 (N = 3) 1700

F18

(CEC)

Hybrid function 2 (N = 3) 1800

F19

(CEC)

Hybrid function 3 (N = 4) 1900

F20

(CEC)

Hybrid function 4 (N = 4) 2000

F21

(CEC)

Hybrid function 5 (N = 5) 2100

F22

(CEC)

Hybrid function 6 (N = 5) 2200

F23

(CEC)

Composition functions Composition function 1 (N = 5) 2300

F24

(CEC)

Composition function 2 (N = 3) 2400

F25

(CEC)

Composition function 3 (N = 3) 2500

F26

(CEC)

Composition function 4 (N = 5) 2600

F27

(CEC)

Composition function 5 (N = 5) 2700

F28

(CEC)

Composition function 6 (N = 5) 2800

F29

(CEC)

Composition function 7 (N = 3) 2900

F30

(CEC)

Composition function 8 (N = 3) 3000

https://doi.org/10.1371/journal.pone.0242612.t001
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3.1.2 Comparative algorithm. In order to test our algorithms, we compare the 3 pro-

posed versions with many metaheuristic algorithms as the native Butterfly Optimization Algo-

rithm (BOA), Grey Wolf Optimizer (GWO), Moth-flame Optimization (MFO), Particle warm

Optimization (PSO), Sine Cosine Algorithm (SCA), and Whale Optimization Algorithm

(WOA) [54].

The individual search agent is set to 50 and the maximum number of iteration is fixed to

500. The parameters setting of all comparative algorithms is given in Table 2.

3.1.3 Results & discussion. In this section, the proposed versions (OBBOA, CLSBOA,

and CLSOBBOA) are presented and compared with the original BOA as shown in Table 3.

From this table, it has been noticed that the 3rd proposed version called (CLSOBBOA) have

achieved the best results in terms of Average/Mean, Best, Worst, and Standard Deviation (SD).

Table 4 shows the comparison of CLSOBBOA (the best proposed version) with other state-

of-art metaheuristics algorithm. It’s noticed that CLSOBBOA achieve best results and ranked

first in almost half of the benchmark functions. Figs 1, 2 and 3 show the convergence curve of

these functions. Also, Wilcoxon rank sum [55, 56] test has been performed between CLSOB-

BOA and the native BOA as given in Table 5 where the significance level has been considered

5%.

Furthermore, Figs 4 and 5 show the box plot for some functions: unimodal(F1 and F3),

multi-modal(F4, F7, F9, F11, F13, and F16), hybrid (F18, F20, F21 and F22), and Composite

functions(F25, F27, F28, and F30). It’s obvious that CLSOBBOA is more narrow than original

BOA and it’s super narrow compared with other comparative metaheuristics algorithms.

3.2 Engineering problem

In order to evaluate a metaheuristics algorithm, a common approach is testing it on real con-

strained Engineering problems. These engineering problems have many equality and inequal-

ity. In addition, the optimal parameter values of almost engineering problems are unknown.

In this subsection, 4 engineering optimization problems are used to test CLSOBBOA. These

problems are welded beam engineering design, tension/compression spring, pressure vessel

design, and Speed reducer design problem.

3.2.1 Welded beam design problem. This engineering problem proposed by Coello in

[57] has 4 parameters. These parameters are design thickness of the weld h, clamped bar

length l, bar thickness b, and the height of the bar t. The mathematical representation can be

expounded in Appendix 6.1. Table 6 shows the results of CLSOBBOA compared with Animal

Table 2. Meta-heuristic algorithms parameters settings.

Alg. Parameter Value

BOA a 0.1

GWO a [0, 2]

MFO t [−1, 1]

b 1

PSO wMaxt 0.9

wMin 0.2

c1 2.0

c2 2.0

SCA a 2

WOA a 2

b 2

https://doi.org/10.1371/journal.pone.0242612.t002
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Table 3. The comparison results of all algorithms over 30 functions.

F Algorithm Best Worst Mean SD

F1 BOA 3.5971e+07 3.1810e+08 1.0080e+06 1.2667e+5

OBBOA 1.6723e+07 2.3640e+08 6.7445e+07 4.7897e+07

CLSBOA 5.7586e+07 7.2621e+08 1.2429e+08 1.4759e+08

CLSOBBOA 9.5454e+04 1.9320e+07 8.0108e+07 7.2858e+07

F2 BOA 2.6574e+09 1.0043e+10 4.4261e+09 2.5605e+09

OBBOA 7.1006e+08 8.8216e+09 3.3621e+09 1.8186e+09

CLSBOA 2.2787e+09 9.2016e+09 4.1975e+09 2.0389e+09

CLSOBBOA 6.6739e+03 6.3838e+07 3.2066e+05 4.5402e+3

F3 BOA 1.2913e+04 1.8349e+04 1.4306e+04 2.5048e+03

OBBOA 7.2557e+03 1.7454e+04 1.2592e+04 2.7249e+03

CLSBOA 1.1739e+04 1.7093e+04 1.3854e+04 2.5865e+03

CLSOBBOA 8.5819e+03 1.5012e+04 1.1610e+04 1.7285e+3

F4 BOA 2.0912e+03 3.8529e+03 2.6292e+03 5.6597e+02

OBBOA 1.2404e+03 4.4836e+03 2.3235e+03 8.2272e+02

CLSBOA 1.9510e+03 5.3563e+03 2.7072e+03 1.0699e+03

CLSOBBOA 4.2516e+2 2.7130e+03 8.8079e+02 13.310

F5 BOA 5.2042e+02 5.2066e+02 5.2049e+02 0.1050

OBBOA 5.2036e+02 5.2061e+02 5.2047e+02 0.0786

CLSBOA 5.2032e+02 5.2052e+02 5.2038e+02 0.0775

CLSOBBOA 5.2028e+02 5.2064e+02 5.2040e+02 0.0565

F6 BOA 6.0708e+02 6.0956e+02 6.0832e+02 1.0965

OBBOA 6.0725e+02 6.0911e+02 6.0840e+02 0.5863

CLSBOA 6.0770e+02 6.1002e+02 6.0850e+02 0.9281

CLSOBBOA 6.0190e+02 6.1009e+02 6.0843e+02 0.577

F7 BOA 8.0304e+02 9.5780e+02 8.7396e+02 62.3545

OBBOA 7.6548e+02 9.7498e+02 8.5850e+02 56.6647

CLSBOA 8.1979e+02 8.8123e+02 8.4222e+02 36.6645

CLSOBBOA 7.0012e+02 8.8830e+02 7.3922e+02 0.06032

F8 BOA 8.6394e+02 8.8581e+02 8.7199e+02 10.1535

OBBOA 8.5749e+02 8.9292e+02 8.7059e+02 9.0216

CLSBOA 8.5810e+02 8.9173e+02 8.6610e+02 11.4144

CLSOBBOA 8.0436e+2 8.8665e+02 8.3193e+02 2.56771

F9 BOA 9.6165e+02 9.7920e+02 9.6592e+02 9.0121

OBBOA 9.4129e+02 9.8231e+02 9.6468e+02 10.3115

CLSBOA 9.5419e+02 9.8318e+02 9.6244e+02 11.6616

CLSOBBOA 9.5529e+02 9.7704e+02 9.6255e+02 6.2637

F10 BOA 2.5486e+03 3.0370e+03 2.6438e+03 1.8702e+02

OBBOA 2.2832e+03 3.0108e+03 2.5974e+03 1.9311e+02

CLSBOA 2.5452e+03 3.0265e+03 2.6622e+03 2.1390e+02

CLSOBBOA 1.1924e+3 3.0311e+03 1.6173e+03 1.4853e+02

F11 BOA 2.6618e+03 3.1056e+03 2.7892e+03 1.6215e+02

OBBOA 2.2947e+03 3.1046e+03 2.7424e+03 2.1860e+02

CLSBOA 2.6374e+03 3.2235e+03 2.7841e+03 2.2713e+02

CLSOBBOA 1.7170e+03 2.8534e+03 2.7774e+03 1.6215e+2

(Continued)
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Table 3. (Continued)

F Algorithm Best Worst Mean SD

F12 BOA 1.2017e+03 1.2023e+03 1.2019e+03 0.2708

OBBOA 1.2011e+03 1.2022e+03 1.2017e+03 0.3247

CLSBOA 1.2015e+03 1.2021e+03 1.2017e+03 0.2306

CLSOBBOA 1.2009e+03 1.2019e+03 1.2015e+03 0.1381

F13 BOA 1.3039e+03 1.3054e+03 1.3045e+03 0.6891

OBBOA 1.3032e+03 1.3052e+03 1.3041e+03 0.5280

CLSBOA 1.3037e+03 1.3062e+03 1.3044e+03 1.0008

CLSOBBOA 1.3001e+03 1.3053e+03 1.3022e+03 0.05490

F14 BOA 1.4282e+03 1.4504e+03 1.4354e+03 9.3979

OBBOA 1.4245e+03 1.4490e+03 1.4379e+03 6.8308

CLSBOA 1.4333e+03 1.4541e+03 1.4373e+03 8.0703

CLSOBBOA 1.4002e+03 1.4465e+03 1.4320e+03 0.1292

F15 BOA 2.8689e+03 6.500e+03 5.0786e+03

OBBOA 1.9296e+03 1.3932e+04 4.4538e+03 3.4833e+03

CLSBOA 3.2042e+03 3.1369e+04 7.7426e+03 7.2418e+03

CLSOBBOA 1.5024e+03 1.0747e+04 4.7610e+03 1.0485e+02

F16 BOA 1.6035e+03 1.6038e+03 1.6036e+03 0.1655

OBBOA 1.6033e+03 1.6038e+03 1.6036e+03 0.1570

CLSBOA 1.6033e+03 1.6037e+03 1.6035e+03 0.2070

CLSOBBOA 1.6033e+3 1.6038e+03 1.6035e+03 0.0598

F17 BOA 2.3517e+05 5.2617e+05 3.3745e+05 1.1954e+05

OBBOA 7.6198e+04 5.1763e+05 2.2619e+05 1.2488e+05

CLSBOA 3.1117e+05 6.5610e+05 4.0887e+05 1.5533e+05

CLSOBBOA 4.8701e+04 7.0552e+05 8.5776e+04 2.5502e+04

F18 BOA 1.7587e+04 4.8365e+06 3.0925e+05 1.0695e+06

OBBOA 1.0590e+04 1.7808e+06 1.2400e+05 3.9117e+05

CLSBOA 1.3717e+04 1.6055e+06 1.3132e+05 3.6880e+05

CLSOBBOA 7.9930e+3 1.3861e+05 4.6620e+04 3.3053

F19 BOA 1.9279e+03 1.9786e+03 1.9389e+03 18.0575

OBBOA 1.9071e+03 1.9772e+03 1.9268e+03 19.6003

CLSBOA 1.9265e+03 2.0442e+03 1.9461e+03 29.3827

CLSOBBOA 1.9026e+3 1.9512e+03 1.9250e+03 2.9060

F20 BOA 7.6669e+03 8.6363e+04 2.0606e+04 1.98136e+04

OBBOA 2.2118e+03 3.0375e+04 1.3241e+04 8.30101e+03

CLSBOA 9.5177e+03 7.5429e+04 1.8474e+04 1.64929e+04

CLSOBBOA 5.1116e+03 3.6863e+04 1.0850e+04 8.91533e+03

F21 BOA 4.5448e+04 1.6143e+06 3.2084e+05 4.02760e+05

OBBOA 1.7469e+04 9.8848e+05 1.5497e+05 2.17338e+05

CLSBOA 2.7288e+04 6.7756e+05 1.8627e+05 2.16049e+05

CLSOBBOA 3.6120e+03 4.0706e+04 1.3284e+04 1.5581e+03

F22 BOA 2.4161e+03 2.5767e+03 2.4490e+03 61.2592

OBBOA 2.2804e+03 2.4836e+03 2.3877e+03 57.6424

CLSBOA 2.3370e+03 2.7499e+03 2.4365e+03 1.05537e+02

CLSOBBOA 2.230e+03 2.4935e+03 2.3890e+03 18.5703

(Continued)
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Migration Optimization (AMO) [58], Water cycle algorithm (WCA) [59], Lightning search

algorithm (LSA) [60], Symbiotic organisms search (SOS) [61], and Grey Wolf Optimizer

(GWO) [62].

3.2.2 Tension/Compression spring. The second engineering constrained problem is

called Tension/Compression spring proposed by Arora [63]. The main goal of this problem is

to minimize the weight of design spring by find the optimal values for the 3 parameters: the

diameter of the wire d, the mean diameter of the coil D and the active coil numbers N. Also,

Appendix 6.2 gives its mathematical definition. Table 7 compares the results of CLSOBBOA

algorithm with WCA, ABC [64], TLBO [65], and SOS.

3.2.3 Pressure vessel design. One of the most famous engineering problem is the pressure

vessel design introduced by Kannan and Kramer in [66] which aims to minimize the cost of

materials, welding, and forming This problem has 4 parameters: the thickness Ts, head‘s thick-

ness Th, the inner radius R, and cylindrical length L. Mathematical definition of this problem

Table 3. (Continued)

F Algorithm Best Worst Mean SD

F23 BOA 2.5000e+03 2500 2500

OBBOA 2.5000e+03 2.5000e+03 2500 4.1730e-13

CLSBOA 2.5000e+03 2500 2500

CLSOBBOA 2.5000e+03 2.5000e+03 2500 4.1730e-13

F24 BOA 2.5795e+03 2600 2.5918e+03 12.1467

OBBOA 2.5544e+03 2600 2.5877e+03 14.9424

CLSBOA 2.5927e+03 2600 2.5968e+03 5.6880

CLSOBBOA 2.5592e+033 2600 2.5907e+03 8.6636

F25 BOA 2700 2700 2.6982e+03 5.4556

OBBOA 2.6822e+03 2.7000e+03 2.6978e+03 5.4111

CLSBOA 2700 2700 2.6990e+03 2.9984

CLSOBBOA 2.682e+03 2.7000e+03 2.6998e+03 5.45561

F26 BOA 2.7023e+03 2.7067e+03 2.7034e+03 1.7518

OBBOA 2.7003e+03 2.7033e+03 2.7016e+03 0.9510

CLSBOA 2.7023e+03 2.7249e+03 2.7043e+03 5.0978

CLSOBBOA 2.7008e+03 2.7033e+03 2.7018e+03 0.0909

F27 BOA 2.8612e+03 3.2305e+03 3.0001e+03 1.5009e+02

OBBOA 2.7465e+03 3.1371e+03 2.9313e+03 1.4431e+02

CLSBOA 2.7710e+03 2.9000e+03 2.8521e+03 69.0391

CLSOBBOA 2.7480e+03 2.9000e+03 2.8568e+03 0.469+e02

F28 BOA 3000 3.5324e+03 3.1976e+03 2.08291e+02

OBBOA 3.3249e+03 3.6655e+03 3.5018e+03 1.02142e+02

CLSBOA 3.0000e+03 3.0000e+03 3.0000e+03 0.0054

CLSOBBOA 3.0000e+03 3.0000e+03 3.0000e+03 1.790e-4

F29 BOA 3100 1.1511e+05 2.4659e+04 3.3954e+04

OBBOA 3100 1.0710e+06 2.7354e+05 3.7340e+05

CLSBOA 3100 3.5565e+04 4.7232e+03 7.2595e+03

CLSOBBOA 3100 5.8748e+05 3.7343e+04 1.6260e+03

F30 BOA 5.9971e+03 2.6134e+04 1.0799e+04 6.7561e+03

OBBOA 3.2000e+03 3.7058e+04 1.2980e+04 8.5345e+03

CLSBOA 3200 2.4155e+04 8.0275e+03 6.3396e+03

CLSOBBOA 4.1627e+03 5.8775e+04 1.1109e+04 8.4793e+02

https://doi.org/10.1371/journal.pone.0242612.t003
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Table 4. The comparison results of all algorithms over 30 functions.

F1 F2 F3

Avg Std Avg Std Avg Std

CLSOBBOA 9.5454e+4 1.2667e+5 6.6739e+3 4.5402e+3 8.5819e+03 1.7285e+3

BOA 1.0080e+08 5.2571e+07 4.4261e+09 2.5605e+09 1.4306e+04 2.5048e+03

GWO 9.5526e+06 5.0611e+06 9.0682e+07 2.4562e+08 1.3114e+04 9.0242e+03

MFO 3.5572e+06 7.2399e+06 1.1676e+09 2.2771e+08 1.9628e+04 1.5038e+04

PSO 2.5249e+07 8.0505e+06 5.0614e+3 2.3787e+3 5.2453e+3 3.9510e+3

SCA 1.2039e+07 5.1675e+06 9.3345e+08 4.7255e+08 1.1411e+04 8.8356e+03

WOA 1.1876e+07 8.1442e+06 2.0966e+07 1.2829e+07 5.9297e+04 3.9137e+04

F4 F5 F6

Avg Std Avg Std Avg Std

CLSOBBOA 4.2516e+2 13.310 5.2028e+02 0.0565 6.019e+2 0.577

BOA 2.6292e+03 5.6597e+02 5.2049e+02 0.1050 6.0832e+02 1.0965

GWO 4.3397e+02 5.9297 5.2044e+02 0.1227 6.0253e+02 1.0790

MFO 4.2751e+02 1.3855e+02 5.2012e+2 0.1329 6.0456e+02 1.7994

PSO 1.1304e+03 20.343 5.2040e+02 0.1073 6.0722e+02 1.0849

SCA 4.9472e+02 32.142 5.2048e+02 0.1230 6.0762e+02 1.4810

WOA 4.5614e+02 34.900 5.2024e+02 0.1089 6.0854e+02 1.5315

F7 F8 F9

Avg Std Avg Std Avg Std

CLSOBBOA 7.0012e+2 0.06032 8.0436e+2 2.56771 9.5529e+02 6.2637

BOA 8.7396e+02 62.3545 8.7199e+02 10.1535 9.6592e+02 9.0121

GWO 7.0123e+02 0.77348 8.1427e+02 6.45195 9.1895e+02 7.9132

MFO 8.0137e+02 16.4145 8.2414e+02 10.6745 9.3011e+02 12.381

PSO 7.0097e+02 2.05917 8.5830e+02 6.3450 9.1282e+2 4.4846

SCA 7.1329e+02 4.26272 8.4631e+02 11.2488 9.5284e+02 9.6501

WOA 7.0165e+02 0.50518 8.5151e+02 20.8518 9.4555e+02 20.916

F10 F11 F12

Avg Std Avg Std Avg Std

CLSOBBOA 1.1924e+3 1.4853e+02 1.7170e+3 1.6215e+2 1.2009e+3 0.1381

BOA 2.6438e+03 1.8702e+02 2.7892e+03 2.9413e+02 1.2019e+03 0.2708

GWO 1.4089e+03 1.9919e+02 2.3330e+03 1.6815e+02 1.2012e+03 0.6264

MFO 1.5960e+03 2.5578e+02 2.0165e+03 3.0732e+02 1.2003e+03 0.2121

PSO 2.3420e+03 1.2159e+2 1.7719e+03 3.6301e+02 1.2013e+03 0.4253

SCA 2.0964e+03 2.4770e+02 2.5883e+03 1.9564e+02 1.2015e+03 0.3095

WOA 1.6769e+03 3.5197e+02 2.2302e+03 3.3642e+02 1.2012e+03 0.3191

F13 F14 F15

Avg Std Avg Std Avg Std

CLSOBBOA 1.3001e+3 0.05490 1.4002e+3 0.1292 1.5024e+03 1.04857

BOA 1.3045e+03 0.6891 1.4354e+03 9.3979 6.5005e+03 5.07867e+03

GWO 1.3002e+03 0.06616 1.4004e+03 0.1898 1.8759e+03 2.0916e+02

MFO 1.3003e+03 0.16621 1.4007e+03 1.0447 1.5041e+03 10.8810

PSO 1.3034e+03 0.24070 1.4002e+3 0.0585 1.5014e+3 0.75305

SCA 1.3007e+03 0.17544 1.4015e+03 0.6502 1.5110e+03 3.99372

WOA 1.3004e+03 0.18968 1.4243e+03 5.1756 1.5086e+03 6.54693

F16 F17 F18

Avg Std Avg Std Avg Std

CLSOBBOA 1.6033e+3 0.0598 4.8701e+04 2.5502e+04 7.9930e+3 3.3053e+3
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is shown in Appendix 6.3. Results of CLSOBBOA compared to other state-of-art algorithms

LSA, SOS, ABC and GWO is shown in Table 8.

3.2.4 Speed reducer design problem. The last engineering problem introduced in this

section is the speed reducer problem The objective of the function ids to fond the best

Table 4. (Continued)

BOA 1.6036e+03 0.1655 3.3745e+05 1.1954e+05 3.0925e+05 1.06959e+06

GWO 1.6028e+03 0.3827 7.0802e+04 1.5951e+05 1.3989e+04 1.06251e+04

MFO 1.6033e+3 0.4842 1.9565e+05 3.3550e+05 2.2320e+04 1.50917e+04

PSO 1.6028e+03 0.4233 1.2951e+4 2.0212e+4 9.1989e+03 1.06636e+04

SCA 1.6035e+03 0.2271 6.4658e+04 1.5044e+05 3.0945e+04 2.02963e+04

WOA 1.6036e+03 0.3439 1.9715e+05 3.3453e+05 1.7006e+04 1.33556e+04

F19 F20 F21

Avg Std Avg Std Avg Std

CLSOBBOA 1.9026e+3 0.9060 5.1116e+3 1.5581e+3 3.6120e+3 2.0764e+3

BOA 1.9389e+03 18.0575 2.0606e+04 1.9813e+04 3.2084e+05 4.0276e+05

GWO 1.9118e+03 2.1492 1.0008e+04 5.9314e+03 1.2467e+04 6.3934e+03

MFO 1.9029e+03 0.8251 1.5952e+04 1.9123e+04 1.2523e+04 1.1755e+04

PSO 1.9027e+03 1.3841 8.2582e+03 6.5637e+03 2.0928e+04 1.2878e+04

SCA 1.9061e+03 1.0124 8.7350e+03 5.4998e+03 1.8935e+04 1.0503e+04

WOA 1.9070e+03 1.9011 1.4986e+04 8.6110e+03 2.2521e+05 3.2664e+05

F22 F23 F24

Avg Std Avg Std Avg Std

CLSOBBOA 2.230e+3 18.5703 2500 9.53030 2.5592e+03 8.6636

BOA 2.4490e+03 61.2592 2500 8.43650 2.5918e+03 12.1467

GWO 2.3164e+03 61.7699 2.6324e+03 3.01732 2.5271e+03 15.6449

MFO 2.3047e+03 75.2092 2.6347e+03 6.72352 2.5443e+03 16.1036

PSO 2.3058e+03 38.2640 2.6294e+03 1.922e-07 2.522e+03 6.555

SCA 2.2910e+03 28.2535 2.6497e+03 8.06636 2.5582e+03 9.27922

WOA 2.3114e+03 81.5165 2.6191e+03 51.8188 2.5903e+03 21.0583

F25 F26 F27

Avg Std Avg Std Avg Std

CLSOBBOA 2.682e+03 5.45561 2.7001e+03 0.0909 2.748e+03 0.469+e02

BOA 2.6982e+03 9.4997 2.7034e+03 1.7518 3.0001e+03 1.5009e+02

GWO 2.6953e+03 17.1437 2.7001e+03 0.0563 3.0280e+03 1.1592e+02

MFO 2.6991e+03 17.1635 2.7002e+03 0.1785 3.0685e+03 1.2750e+02

PSO 2.6918e+03 34.4413 2.7001e+03 0.0736 2.9463e+03 1.6596e+02

SCA 2.7004e+03 7.30156 2.7008e+03 0.1900 3.0131e+03 1.6786e+02

WOA 2.6968e+03 9.23225 2.7004e+03 0.1786 3.0791e+03 2.0168e+02

F28 F29 F30

Avg Std Avg Std Avg Std

CLSOBBOA 3.000e+03 1.790e-4 3.100e+03 1.6260e+03 4.1627e+03 8.4793e+02

BOA 3.1976e+03 2.0829e+02 2.4659e+04 3.3954e+04 1.0799e+04 6.7561e+03

GWO 3.2956e+03 87.2767 8.5841e+05 1.0925e+06 4.4923e+03 7.4357e+02

MFO 3.1988e+03 36.6856 3.8029e+03 4.636e+02 3.795e+03 2.893e+02

PSO 3.2615e+03 65.2974 8.0351e+05 1.6493e+06 3.9944e+03 3.8509e+02

SCA 3.2828e+03 53.7555 1.0608e+04 6.0870e+03 5.0231e+03 1.0682e+03

WOA 3.4616e+03 1.7564e+02 6.3032e+05 1.0588e+06 6.0717e+03 1.5832e+03

https://doi.org/10.1371/journal.pone.0242612.t004
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Fig 1. Convergence curve for all algorithms from F1–F10.

https://doi.org/10.1371/journal.pone.0242612.g001
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Fig 2. Convergence curve for all algorithms from F10–F20.

https://doi.org/10.1371/journal.pone.0242612.g002
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Fig 3. Convergence curve for all algorithms from F20–F30.

https://doi.org/10.1371/journal.pone.0242612.g003
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parameter which are face weight, teeth on pinion number, teeth module, shaft length 1

between bearings and the shaft length 2 between bearings. The Mathematical representation is

shown in Appendix 6.4. Table 9 compare the results of CLSOBBOA with GWO, AMO, WCA,

and SOS.

3.3 CLSOBBOA in Feature Selection (FS)

In this subsection CLSOBBOA is used in order to solve FS using 5 different datasets.

3.3.1 CLSOBBOA architecture of FS. To be able to solve feature selection (FS), we regard

it as a binary optimization since the solutions are limited to 0, 1 where “0” refers to the corre-

sponding attribute hasn’t be selected whereas “1” is its contrary. To convert continous solution

to binary one, a transfer function is needed. In this paper, we use sigmoid function as shown

in the following equation

yk ¼
1

1þ e� xki ðtÞ
ð7Þ

where xk
i refers to the position of i-th agent at dimension k.

The output from the previous equation is still continuous and to have binary-valued one,

the following stochastic equation is used

xk
i ¼

(
1 ifrand < Sðxk

i ðt þ 1ÞÞ

0 otherwise
ð8Þ

FS fitness function is finding the small feature number and achieving the highest accuracy.

So the FS fitness equation is as follows:

Fitness ¼ agðDÞ þ b
jRj
jCj

ð9Þ

where γ(D) refers to error rate, C is the features total number, R is the length-size of selected

features. α and β can be calculated as α 2 [0, 1] and β = 1 − α

Table 5. Results of Wilcoxon signed rank test.

Fun. p-value Decision Fun. p-value Decision

F1 6.4e-10 + F2 2.7e-8 +

F3 4.4e-6 + F4 2.4e-5 +

F5 3.3e-5 + F6 7.3e-6 +

F7 4.8e-5 + F8 6.2e-6 +

F9 4.3e-4 + F10 4.3e-8 +

F11 5.1e-6 + F12 2.4e-6 +

F13 6.9e-4 + F14 3.7e-5 +

F15 2.4e-3 + F16 2.2e-4 +

F17 3.5e-4 + F18 4.8e-5 +

F19 1.3e-6 + F20 3.8e-5 +

F21 4.1e-6 + F22 6.4e-6 +

F23 6.7e-4 + F24 4.7e-5 +

F25 2.7e-3 + F26 4.2e-4 +

F27 2.5e-4 + F28 4.6e-5 +

F29 3.3e-6 + F30 3.8e-5 +

https://doi.org/10.1371/journal.pone.0242612.t005
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Fig 4. Box plot for some unimodal and multi modal functions.

https://doi.org/10.1371/journal.pone.0242612.g004
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Fig 5. Box plot for some hybrid and composite functions.

https://doi.org/10.1371/journal.pone.0242612.g005
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3.3.2 Experimental setup & results. Here, 5 different datasets from UCI have been used

to evalute the CLSOBBOA performance in solving FS problem. The details of each dataset can

be found in Table 10. The results of CLSOBBOA in solving FS problem. The results of CLSOB-

BOA compared with original BOA, PSO, and GWO are shown in Tables 11–13 in terms of

average fitness, feature size length, and classification accuracy. From these results, we can con-

clude the significant of CLSOBBOA in solving FS

Table 6. Optimization results for welded beam design problem.

Algorithm Optimization results Cost

h l t b

CLSOBBOA 0.205729 3.470488 9.036622 0.205729 1.724852

AMO 0.223 960 3.591 024 8.834 515 0.223 960 1.873 459

WCA 0.205 730 3.470 489 9.036 624 0.205 730 1.724 852 315

LSA 0.205 730 3.470 488 9.036 623 0.205 730 1.724 852 526

SOS 0.205 730 3.470 745 9.036 354 0.205 744 1.724 953 103

GWO 0.205 587 3.475 084 9.035 006 0.205 808 1.725 571 417

https://doi.org/10.1371/journal.pone.0242612.t006

Table 7. Optimization results for the tension/compression design problem.

Algorithm Optimization results Cost

d D N

CLSOBBOA 0.051 688 0.356 715 11.289 108 0.012 665

WCA 0.051 773 0.358 734 11.171 709 0.012 665

ABC 0.052 717 0.381 929 9.951 875 0.012 685 948

TLBO 0.051 790 0.359 142 11.148 539 0.012 665 851

SOS 0.051 808 0.359 577 11.125 0.012 667 638

https://doi.org/10.1371/journal.pone.0242612.t007

Table 8. Optimization results for pressure vessel design problem.

Algorithm Optimization results Cost

Ts Th R L Cost

CLSOBBOA 0.778 168 0.384 649 40.319 618 200 5885.332 773

LSA 0.843 656 0.417 020 43.712 767 40.363 464 6006.957 652

SOS 0.779 253 3.850 801 157.609 199.458 5889.984 071

ABC 7.781 687 3.846 492 40.319 620 200 5885.333 300

GWO 0.778 915 0.384 960 40.342 623 200 5889.412 437

https://doi.org/10.1371/journal.pone.0242612.t008

Table 9. Optimization results for speed reducer design problem.

Algorithm Optimization results Cost

b m p l1 l2 d1 d2 Cost

CLSOBBOA 3.501260 0.7 17 7.380 7.83 3.33241 5.26345 2995.775

GWO 3.501591 0.7 17 7.391 7.82 3.35127 5.28074 2998.5507

AMO 3.506700 0.7 17 7.380 7.82 3.35784 5.27676 3001.944

WCA 3.500219 0.7 17 8.379 7.84 3.35241 5.28671 3005.222

SOS 3.538402 0.7 17 7.392 7.81 3.3580 5.28677 3002.928

https://doi.org/10.1371/journal.pone.0242612.t009
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4 Conclusion & future work

In this paper, a 3 variants of BOA algorithm have been introduced to improve its performance

and preventing it from getting trapped in optimal subregion. These version merge the original

BOA with Chaotic local search strategy and Opposition-based Learning concepts. The results

show that the algorithm named CLSOBBOA have ranked first in more than half of CEC2014

benchmark functions. Although, the proposed algorithm tested using 4 different constrained

engineering problems.

5 Algorithms codes

Codes used in this paper can be found from the following Links:

Table 10. Descriptions of datasets.

Symbol Dataset No. of features No. of instances

DS1 Breastcancer 10 699

DS2 BreastEW 31 569

DS3 WineEW 14 178

DS4 segment 20 2310

DS5 Zoo 17 101

https://doi.org/10.1371/journal.pone.0242612.t010

Table 11. Statistical mean fitness measure calculated for the compared algorithms on the different datasets.

Dataset CLSOBBOA BOA PSO GWO

DS1 0.300 0.451 0.356 0.416

DS2 0.025 0.056 0.042 0.056

DS3 0.010 0.030 0.014 0.022

DS4 0.025 0.043 0.033 0.045

DS5 0.008 0.026 0.013 0.031

https://doi.org/10.1371/journal.pone.0242612.t011

Table 12. Average classification accuracy for the compared algorithms on the different datasets.

Dataset CLSOBBOA BOA PSO GWO

DS1 0.987 0.940 0.988 0.978

DS2 0.951 0.915 0.985 0.962

DS3 0.999 0.981 0.996 0.992

DS4 0.985 0.946 0.984 0.977

DS5 0.999 0.981 0.996 0.996

https://doi.org/10.1371/journal.pone.0242612.t012

Table 13. Average selection size for the compared algorithms on the different datasets.

Dataset CLSOBBOA BOA PSO GWO

DS1 3.4 3.8 3.6 4.6

DS2 5.4 12.4 12.9 15.7

DS3 2.6 5.2 3.7 6.1

DS4 4.1 7.6 6.4 9.1

DS5 3.1 6.1 4.3 6.5

https://doi.org/10.1371/journal.pone.0242612.t013
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• BOA: https://www.mathworks.com/matlabcentral/fileexchange/68209-butterfly-

optimization-algorithm-boa?s_tid=prof_contriblnk

• PSO: https://www.mathworks.com/matlabcentral/fileexchange/67429-a-simple-

implementation-of-particle-swarm-optimization-pso-algorithm?s_tid=prof_contriblnk

• SCA: https://www.mathworks.com/matlabcentral/fileexchange/54948-sca-a-sine-cosine-

algorithm?s_tid=prof_contriblnk

• MFO: https://www.mathworks.com/matlabcentral/fileexchange/52269-moth-flame-

optimization-mfo-algorithm?s_tid=prof_contriblnk

• WOA: https://www.mathworks.com/matlabcentral/fileexchange/55667-the-whale-

optimization-algorithm?s_tid=prof_contriblnk

6 Appendix B

6.1 Welded beam design problem

Minimize: f1(x) = 1.10471 * x(1)2 * x(2) + 0.04811 * x(3) * x(4) * (14.0 + * x(2))

Subject to: g1(x) = τ − 13600

g2(x) = σ − 30000

g3(x) = x(1) − x(4)

g4(x) = 6000 − p
Variable Range

0.125� x1� 5

0.1� x2� 10

0.1� x3� 10

0.125� x4� 5

6.2 Tension/Compression spring design problem

Minimize: f ðxÞ ¼ ðx3 þ 2Þx2x2
1

Subject to: g1ðxÞ ¼ 1 � ðx3
2
x3=71 ; 785x4

1
Þ � 0

g2ðxÞ ¼ ð4x
2

2
� x1x2=12; 566ðx2x

3

1
� x4

1
Þ þ ð1=5108x2

1
ÞÞ � 10 � 0

g3ðxÞ ¼ 1 � ð140:45x1=x
2

2
x3 Þ � 0

g4(x) = (x2 + x1)/1.5 − 1� 0,

Variable Range

0.05� x1� 2.00

0.25� x2� 1.30

2.00� x3� 15.00

6.3 Pressure vessel design problem

Minimize: f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3
þ 3:1661x2

1
x4 þ 19:84x2

1
x3

Subject to: g1(x) = −x1 + 0.0193x
g2(x) = −x2 + 0/00954x3� 0

g3ðxÞ ¼ � px
2

3
x4 � ð4=3 Þpx3

3
þ 1; 296; 000 � 0

g4(x) = x4 − 240� 0
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Variable Range

0� xi� 100, i = 1, 2

0� xi� 200, i = 3, 4

6.4 Speed reducer design problem

Minimize: f ðxÞ ¼ 0:7854x1x2
2
ð14:9334x3 þ 3:3333333x2

3
� 43:0934Þ þ 0:7854ðx4x2

6
þ x5x2

7
�

1:508ðx2
6
þ x2

7
Þ

Subject to:

g1 ¼
27

x1x2
2
x3

� 1 � 0

g2 ¼
397:5

x1x2
2
x3

� 1 � 0

g3 ¼
1:93x3

4

x2x3x4
7

� 1 � 0

g4 ¼
1:93x3

5

x2x3x4
6

� 1 � 0

g5 ¼
1

110x3
6

ffiffi
ð

p
745x4

x2x3

� �2

þ 16:9X106Þ � 1 � 0

g6 ¼
1

85x3
7

ffiffi
ð

p
745x4

x2x3

� �2

þ 157:5X106Þ � 1 � 0

g7 ¼
x2x3

40
� 1

g8 ¼
5x2

x1

� 1

g9 ¼
x1

12x2

� 1

Variable Range

2.6� x1� 3.6

0.7� x2� 0.8

17� x3� 28

7.3� x4� 8.3

7.8� x5� 8.3

2.9� x6� 3.9

5� x7� 5.5

6.4.1 Gear train design problem. Minimize: f ðxÞ ¼ 1

6:931
�

x2x3

x1x4

� �2

Variable Range

12� xi� 60, i = 1, 2, 3, 4
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