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Abstract

Although current malaria therapies inhibit pathways encoded in the parasite’s genome, we

have looked for anti-malaria drugs that can target an erythrocyte component because devel-

opment of drug resistance might be suppressed if the parasite cannot mutate the drug’s tar-

get. In search for such erythrocyte targets, we noted that human erythrocytes express

tyrosine kinases, whereas the Plasmodium falciparum genome encodes no obvious tyrosine

kinases. We therefore screened a library of tyrosine kinase inhibitors from Eli Lilly and Co. in

a search for inhibitors with possible antimalarial activity. We report that although most tyro-

sine kinase inhibitors exerted no effect on parasite survival, a subset of tyrosine kinase

inhibitors displayed potent anti-malarial activity. Moreover, all inhibitors found to block tyro-

sine phosphorylation of band 3 specifically suppressed P. falciparum survival at the parasite

egress stage of its intra-erythrocyte life cycle. Conversely, tyrosine kinase inhibitors that

failed to block band 3 tyrosine phosphorylation but still terminated the parasitemia were

observed to halt parasite proliferation at other stages of the parasite’s life cycle. Taken

together these results suggest that certain erythrocyte tyrosine kinases may be important to

P. falciparum maturation and that inhibitors that block these kinases may contribute to novel

therapies for P. falciparum malaria.

Introduction

Malaria remains a major cause of death in much of the underdeveloped world [1–6]. In 2018,

there were 228 million new cases resulting in 405,000 deaths, mostly occurring in infants and

the elderly [7]. Ninety percent of these cases occurred in sub-Saharan Africa where one child

dies every two minutes from the parasitemia [7,8]. With multi-drug resistant strains emerging

in Southeast Asia [9–15], and rates of infection beginning to increase again [8], interest in find-

ing new cures for the disease is escalating [16–18]. Indeed, according to the World Health

Organization, $2.7 billion was invested in malaria research in 2018 alone [7,19].
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During previous studies of human erythrocyte membranes, we observed that tyrosine phos-

phorylation of the erythrocyte transmembrane protein, band 3, promotes dissociation of the

spectrin-based membrane cytoskeleton from the lipid bilayer via a mechanism that involves an

intramolecular association of the phosphorylated cytoplasmic domain of band 3 (cdb3) with

an SH2-like (MESH) sequence within the membrane-spanning domain of band 3 [20,21].

Because this phosphorylation-induced cytoskeleton dissociation was found to cause mem-

brane vesiculation and fragmentation [20–22], and since band 3 was observed to become

increasingly tyrosine phosphorylated during maturation of Plasmodium falciparum within

infected erythrocytes [23,24], we hypothesized that egress of the parasite from its red blood cell

(RBC) host might require the parasite-stimulated tyrosine phosphorylation of band 3 in order

to weaken the RBC membrane in preparation for parasite escape. A subsequent search for pos-

sible P. falciparum tyrosine kinases that might perform this membrane-weakening function,

however, yielded no obvious tyrosine kinase gene candidate in the P. falciparum genome

[25,26], suggesting that the band 3 tyrosine phosphorylation might be performed by a red

blood cell encoded tyrosine kinase. When considered together with previous data showing

that escape of P. falciparum from the infected RBC at the end of the parasite’s intra-erythrocyte

life cycle could be prevented by inhibiting the tyrosine phosphorylation of band 3 [24], it

seemed reasonable to posit that activation of an erythrocyte kinase might be required for nor-

mal parasite maturation.

In an effort to pursue a more unbiased approach towards identifying protein tyrosine

kinase (PTK) inhibitors with anti-malaria activity, we screened a blinded library of kinase

inhibitors from Eli Lilly and Co. for their abilities to prevent proliferation of P. falciparum in

human blood cultures in vitro. We report here that Syk kinase inhibitors can prevent merozo-

ite egress from late stage (schizont) P. falciparum infected RBCs, and that other classes of

kinase inhibitors either have no effect on P. falciparum propagation or block parasite matura-

tion at other stages of the parasite’s life cycle. Because none of the currently used anti-malaria

drugs act on PTKs, it is conceivable the one of the PTK inhibitors identified here could consti-

tute the starting point for development of an orthogonal therapy for malaria. Although several

researchers have previously reported that kinase inhibitors can suppress parasitemia while oth-

ers have emphasized the need to develop a host-targeted strategy for treatment of malaria [27–

32], none of these studies have defined their mechanisms of action nor determined that inhibi-

tion of band 3 tyrosine phosphorylation and the consequent erythrocyte membrane destabili-

zation can prevent parasite egress from the infected erythrocyte.

Methods

Processing of blood samples

All blood samples were obtained from healthy volunteers via venipuncture following informed

consent using procedures approved by the Purdue University Institutional Review Board and

conducted in accordance with Good Clinical Practice guidelines and the Declaration of Hel-

sinki. Blood donors were Purdue University individuals (staff members and students) drawn

from varying races and genders. The consent form stipulates clearly that the donation is

entirely voluntary, and participants may decline to participate or withdraw from participation

at any point without any penalty. No blood quality control procedures were performed on

donor blood samples to test for blood pathogens.

Preparation of compounds

Forty compounds received from Eli Lilly and Co. were provided in 10 mM DMSO solution in

96-well plates and stored at -20˚C until use. Each compound was identified using the last 2
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digits of the plate identification code (i.e. plate K000362926 was referred to as plate 26) plus

the well position in which the compound was located on the 96-well plate (i.e. 26 A2, refers to

the compound on plate 26 located in well A2). These compounds were selected based on their

structural similarity to tyrosine kinase inhibitors provided to Eli Lilly, to find analogs of PTKs

and novel antimalarial compounds. Dilutions of each compound were prepared in DMSO and

added directly to culture plates prior to addition of parasite cultures. Each compound was

assessed at concentrations of 1 μM and 10 μM in duplicate wells. The amount of DMSO used

in the parasite cultures during kinase treatment was always kept under 0.5% v/v. Compounds

with the ability to suppress parasitemia at 1 μM were considered potent, whereas compounds

that only suppressed parasitemia at 10 μM were labeled as weak inhibitors. The compounds’

structures were initially blinded until all assays in the study were completed and all results ana-

lyzed to prevent any bias.

Preparation and synchronization of P. falciparum cultures

After donation, blood was immediately processed as previously described [21]. Briefly, RBCs

were separated from plasma and leukocytes by three washings in wash medium [RPMI 1640

(Invitrogen) containing 2 mM glutamine, 25 mM HEPES, 20 mM glucose, 27 μg/mL hypoxan-

thine and 32 μg/mL of gentamicin (Sigma) (pH 7.2)]; P. falciparum strain Palo Alto was then

cultured at 1–5% hematocrit [33] under a 1% O2, 5% CO2, and 94% N2 atmosphere in com-

plete media (CM) [wash medium supplemented with 0.5% Albumax II (Gibco)]. Parasites

were synchronized using a Percoll gradient method, as previously described [24]. After allow-

ing the synchronized parasites to mature and reinvade fresh RBCs, drug studies were per-

formed at the desired times as hours post-invasion (hpi). To assess parasitemia and infected

cell morphology, thin smears were prepared, labeled with Diff-Quick stain (Siemens), and

examined by light microscopy.

Susceptibility and phenotype evaluation of treated P. falciparum cultures

After allowing the synchronized parasites to mature and reinvade fresh RBCs, ring stage

infected cultures at 2% hematocrit (hct) (0.5–1% parasitemia) in CM were treated with the

compounds provided by Eli Lilly described above. Healthy erythrocytes used for culturing and

experimentation were collected from the same donor to reduce any possible donor-related var-

iations. Analysis time points included 24 h after treatment to evaluate growth inhibition and

48 h after treatment to evaluate reinvasion efficiency. At the specified time points, aliquots of

the desired culture were removed and stained with SYBR Green I DNA stain prior to analysis

by flow cytometry to determine level of parasitemia (DNA abundance) per cell. Data was ana-

lyzed using Flow Jo. To assess parasitemia and infected cell morphology, thin smears were pre-

pared, labeled with Diff-Quick stain (Siemens) and examined by light microscopy.

Induction of tyrosine phosphorylation of uninfected RBCs with o-vanadate

and diamide

Blood collected from healthy volunteers as described above was centrifuged to remove the

plasma and buffy coat layer (containing white blood cells). Red cells were then washed thrice

with phosphate buffered saline [137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM

KH2PO4, pH 7.4] supplemented with 5 mM glucose (PBS-G) and resuspended in PBS-G at

30% hct prior to treatment with the desired kinase inhibitors in a final DMSO concentration

of 0.5% v/v. Samples treated solely with either orthovanadate (OV) or diamide served as posi-

tive controls while samples treated solely with DMSO served as negative controls. After addi-

tion of inhibitors, samples were incubated for 1 h at 37˚C with shaking, after which 2 mM
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orthovanadate or 2 mM diamide was added to induce band 3 tyrosine phosphorylation. The

samples were again incubated for 1 h at 37˚C with shaking and then centrifuged to collect the

erythrocytes. The pelleted erythrocytes were then lysed by resuspending in 10 volumes of ice-

cold lysis buffer [5 mM Na2HPO4, 1 mM EDTA, 0.5 g/100 mL sodium azide (pH 8.0)] supple-

mented with 1 mM phenylmethylsulfonyl fluoride (PMSF), phosphatase inhibitors cocktails 2

and 3, and protease inhibitor cocktail (Sigma) (added immediately before use) for 10 minutes

and the resulting membranes were collected by centrifugation at 0˚C. After aspiration of the

supernatant, the remaining RBC ghosts were washed another 3 times with cold lysis buffer/

1mM PMSF and centrifuged. The pelleted ghosts were solubilized in 2X Laemmli sample

buffer (2% SDS) containing 5% 2-mercaptoethanol and 1mM PMSF and incubated for 30 min

prior to storage at -80˚C until analysis.

Quantitation of the inhibition of malaria-induced band 3 tyrosine

phosphorylation by Western blotting

To analyze inhibition of band 3 tyrosine phosphorylation by certain Eli Lilly kinase inhibitors,

synchronized ring stage cultures at 20% parasitemia were removed, washed with CM and

resuspended at 1% hct in CM prior to addition of 5 μM (final concentration) inhibitor. After

incubation for 18 hours under a 1% O2, 5% CO2, and 94% N2 atmosphere in CM [24,33], the

treated cells were transferred into 1.5 mL tubes and pelleted. Supernatants were removed and

ice-cold lysis buffer was added to the 1.5 mL mark of each tube prior to incubation on ice for

30 minutes. Ghost membranes were prepared as described above, solubilized in 4X Laemmli

sample buffer (2% SDS) containing 0.5 mM dithiothreitol (DTT) and 1mM PMSF, and incu-

bated for 30 minutes at 45˚C prior to storage at -20˚C until SDS-PAGE analysis.

For SDS-PAGE analysis, samples were first thawed and then incubated at 95˚C for 5 min.

Samples were loaded onto a 10% polyacrylamide gel, subjected to electrophoresis, and trans-

ferred onto nitrocellulose membranes for Western blotting. Nonspecific binding was blocked

by incubating membranes overnight in 5% non-fat milk–TBST [25 mM Tris, 140 mM NaCl, 3

mM KCl, 0.5% (v/v) Tween-20, pH 8.0] at 4˚C with rocking. Membranes were then probed

with anti-p-Tyr (PY99) (1:1000; mouse monoclonal; Santa Cruz Biotechnology # SC-7020)

and anti-actin (1:10,000; rabbit polyclonal; Sigma Aldrich #A2103) antibodies in TBST for 1h

at room temperature (RT) with gentle agitation. After washing, the membranes were incu-

bated in secondary antibodies (1:10,000 anti-rabbit IgG, HRP-linked or 1:10,000 anti-mouse

IgG, HRP-linked antibody according to the isotype of the primary antibody; Jackson Immu-

noResearch Laboratories Inc. #715-035-150(Mouse) or #711-035-152(Rabbit)) for 30–60 min

at RT with shaking and subsequently washed with TBST. When needed, a specific anti-phos-

photyrosine antibody capable of detecting phosphorylated tyrosine 8 of band 3, was used in

place of the nonspecific anti-phosphotyrosine antibody at 1:5000 dilution. The anti-phospho-

tyrosine 8 antibody was prepared in our lab with the help of Proteintech Inc. (Proteintech;

antigen name: Li2760-EC1). Mouse monoclonal anti-band 3 antibody was obtained from

Sigma Chemical Co. (#B9277) and used for band 3 staining at 1:10,000 dilution. Proteins were

visualized by incubation with chemiluminescent substrate on a ChemiDoc Imaging System

using Image Lab software (Bio-Rad).

Results

In an effort to obtain an unbiased analysis of the effects of different PTK inhibitors on P. falcip-
arum survival in human blood cultures, we established an Eli Lilly & Co.-Purdue University

collaboration in which Eli Lilly researchers shared samples of 40 potent compounds from their

tyrosine kinase inhibitor library [34–36] with Purdue researchers who then evaluated these
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compounds for inhibition of parasite propagation and band 3 tyrosine phosphorylation in a

blinded manner. Each of the 40 kinase inhibitors was added to P. falciparum cultures at their

ring stage of development and propagation of the cultures was monitored for 99 hours. As

seen in Fig 1, most inhibitors displayed little to no effect on parasite propagation, prompting

us to dismiss them from further consideration. In contrast, a few inhibitors on each plate were

observed to either reduce or completely prevent parasite proliferation, with a subset of these

inhibitors impacting parasite survival at only 10 μM concentration (Fig 2, panel A) and a more

potent subset exhibiting efficacy at 1 μM (panel B). To obtain information on the stage of para-

site development at which each inhibitor interrupted the parasite’s life cycle, inhibitor-exposed

cultures that displayed suppression of parasite proliferation (Fig 2) were further examined

microscopically for information on the stage of P. falciparum maturation where development

was halted. In all cases, synchronized cultures were treated during their ring stage of develop-

ment and examined over the following 48 hours. As shown in Fig 3, four different classes of

inhibitors were identified based on these criteria. Although inhibitor-free cultures (DMSO

controls) progressed through a normal life cycle in the typical 48 h time frame, cultures incu-

bated with compounds 47F and 23D were found to die during the ring stage of their initial life

cycle. In contrast, cultures exposed to compounds 32C and 32D were halted at the trophozoite

stage of maturation and parasitized cells treated with 23B3 and 32A3 were interrupted at the

schizont stage of development. Finally, cultures exposed to 32E, 47H, 47A3, and 26D all died

during the segmenter stage of their first life cycle, i.e. the same stage observed in cultures

treated with known Syk kinase inhibitor controls. These data imply that the different kinase

inhibitors likely act on a spectrum of molecular targets that become critical to parasite develop-

ment at varying stages of development.

Fig 1. Percent parasitemia of P. falciparum infected RBCs as a function of time following treatment with de-identified tyrosine kinase inhibitors at

1μM and 10μM concentrations. The drugs were encoded based on their locations in 96-well plates as explained in the Methods section. Cultures were

synchronized as described in Methods and kinase inhibitors were added ~16 hours after RBC invasion. The drug treatments were conducted in duplicate.

https://doi.org/10.1371/journal.pone.0242372.g001
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Because our initial hypothesis proposed that tyrosine kinase inhibitors that blocked phos-

phorylation of band 3 should prevent parasite egress at the schizont/segmenter stage of the

parasite’s life cycle [24,37], we elected to explore whether the compounds that blocked parasite

development at the egress stage (e.g. 47A3, 32E, 47H, and 26D) might also inhibit band 3 tyro-

sine phosphorylation. However, because intact band 3 and most other erythrocyte membrane

proteins could not be resolved in SDS-PAGE gels at this late stage of parasite development

[23,37], we were forced to evaluate inhibition of band 3 tyrosine phosphorylation at earlier

stages of parasite maturation; i.e. where intact erythrocyte membrane proteins are more abun-

dant and readily identified by SDS-PAGE. As shown in Fig 4A, all four schizont/segmenter

stage inhibitors were found to reduce band 3 tyrosine phosphorylation at this earlier stage of

parasite development. While two of the other inhibitors (47F and 23D; supplemental S2 Fig)

were found to inhibit o-vanadate and diamide induced band 3 tyrosine phosphorylation, this

inhibitory activity could not contribute to their anti-malaria potency, because they were found

to interrupt the parasite’s life cycle at an earlier stage of development. To provide direct evi-

dence that the strong phosphotyrosine signal detected at ~100 kDa indeed derives from band

3, we employed both an antibody specific for phosphotyrosine 8 on band 3 and an antibody

that recognizes the protein band 3 to stain analogous immunoblots of malaria-infected RBCs.

As shown in S3 Fig, the antibody specific for phosphotyrosine 8 on band 3 stains both orthova-

nadate-treated and malaria infected RBC membranes (panel A). Moreover, as demonstrated in

panel B, this band co-migrates with the band that stains positive with the anti-band 3 specific

antibody. We therefore conclude that the major tyrosine phosphorylated protein in the mem-

branes of malaria-infected RBCs is erythrocyte band 3 and that erythrocyte band 3 is phos-

phorylated at least on tyrosine 8 of band 3 in malaria infected cells.

Next, to further confirm that these same four tyrosine kinase inhibitors are capable of sup-

pressing the tyrosine kinase(s) that phosphorylate band 3 in situ, we treated healthy RBCs with

two well-established inhibitors of erythrocyte tyrosine phosphatases (i.e. ortho-vanadate or

diamide) that promote natural band 3 tyrosine phosphorylation by suppressing its constitutive

dephosphorylation [38–44]. We then evaluated the abilities of these segmenter stage-specific

tyrosine kinase inhibitors to block the endogenous phosphorylation of band 3. As shown in

Fig 2. Percent inhibition of malaria parasitemia in RBCs following treatment with the most potent Eli Lilly compounds administered at 10 μM

(panel A) and 1 μM (panel B) concentrations. The indicated per cent inhibition was determined at the 22 hours post invasion time point in the

parasite’s second life cycle (at the 70 hour time point in Fig 1), when control cultures were at the mature ring stage of development. All the treatments

were done in duplicate.

https://doi.org/10.1371/journal.pone.0242372.g002
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Fig 4B, all four inhibitors reduced both o-vanadate- and diamide-induced tyrosine phosphory-

lation of band 3 in a similar manner, albeit with different potencies. More importantly, the

order of potencies for inhibition of band 3 tyrosine phosphorylation

(47H�47A3>32E2>>26D2) correlated crudely with the ranking of potencies for inhibition

of parasite egress (47A3>32E2�47H>>26D2) (see also IC50 values in supplemental S1 Fig

panels A and B), arguing that the four identified PTK inhibitors likely function at least in part

by suppressing tyrosine phosphorylation of band 3, as proposed previously [37].

That inhibition of other kinases might also contribute to the anti-malarial activities of these

suspected tyrosine kinase inhibitors is suggested by the fact that potent inhibitors of other stages

of P. falciparum development had no effect on band 3 tyrosine phosphorylation (e.g. 23B3, 26A3,

26B3, 32A3, 32B2, 32D, 32C and 47F; Figs 1 and 2, and supplemental information S2 Fig), sug-

gesting that inhibition of other tyrosine kinases can also terminate the parasitemia. Because no

known tyrosine kinase inhibitors have been found to be specific for a single tyrosine kinase, the

identities of these other kinases could not be ascertained from the specificities of the inhibitors.

Upon completion of our blinded analysis of the effects of these PTK inhibitors analogs on

parasite maturation, we submitted our ranked list of the 10 most potent anti-malaria kinase

inhibitors to our Eli Lilly collaborators for annotation with chemical identities and primary

kinase target identification [36,45–50]. Data from the annotation revealed that all potent inhib-

itors of P. falciparum egress at the segmenter stage as well as inhibitors of diamide and o-vana-

date induced band 3 tyrosine phosphorylation (Fig 4B) display Syk tyrosine kinase inhibitory

activity. Moreover, all kinase inhibitors that terminated the parasite’s life cycle at earlier stages

of parasite development (i.e. schizont, trophozoite or ring stage) were found to be promiscuous

kinase inhibitors, displaying inhibitory activities against multiple families of both tyrosine and

Fig 3. Images of blood smears of parasite cultures obtained 66 hours post invasion. Top left: Untreated (DMSO control) showing infected

RBCs have progressed to the ring stage of their second life cycle after successful egress at the end of their first life cycle). Bottom left: Positive

control of parasites treated with the well-known Syk inhibitor II showing stalled egress at the end of the first life cycle. Panels 1, 2, 3 and 4:

Blood smears displaying the stages at which the de-identified drug terminated parasite maturation. Inhibitors 47F and 23D halted parasite

maturation at ring stage, while 32C and 32D appear to halt the parasite at the trophozoite stage. Inhibitors 23B3 and 32A3 interrupted parasite

development at the schizont stage. Syk phenotype inhibitors; 32E, 47H, 47A3 and 26D appear to stop the parasite from egressing at the

segmenter stage as evidenced by the separated merozoites within infected cells.

https://doi.org/10.1371/journal.pone.0242372.g003
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serine/threonine kinases (Table 1). Assuming that these molecules act by inhibiting kinases

involved in parasite development, it would appear that multiple kinases must perform impor-

tant functions during P. falciparum proliferation and maturation. It can also be concluded that

erythrocyte Syk-mediated weakening of the RBC membrane likely constitutes a critical step in

the egress of mature merozoites from their erythrocyte hosts.

Discussion

Based on the above data and other publications from our labs [24,37], we conclude that eryth-

rocyte Syk performs a critical function in the P. falciparum life cycle, and that its inhibition

Fig 4. Western blots displaying band 3 tyrosine phosphorylation and its inhibition by the Eli Lilly compounds found to display the Syk inhibitor phenotype. All

the selected inhibitors reduced parasite-induced band 3 tyrosine phosphorylation compared to controls (panel A). The compounds also inhibited diamide (top) and

orthovanadate (bottom)-induced band 3 tyrosine phosphorylation, albeit with different potencies (panel B). It is worth noting that the inhibitors blocked diamide and

orthovanadate-induced band 3 tyrosine with identical trends.

https://doi.org/10.1371/journal.pone.0242372.g004
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terminates the life cycle by preventing merozoite egress from the infected RBC. Data support-

ing this contention include the observations that i) band 3 tyrosine phosphorylation dramati-

cally increases as parasite maturation progresses [23,24,37], ii) Syk is the major erythrocyte

tyrosine kinase found to phosphorylate band 3 in vivo [21,51], iii) Syk is progressively acti-

vated and recruited to the RBC membrane as the parasite matures [23,52,53], iv) all known

Syk inhibitors (and band 3 tyrosine phosphorylation inhibitors) display antimalarial activity

[24,37], and v) incubation of parasite cultures with Syk inhibitors does not significantly alter

earlier stages of parasite maturation even though the rise in band 3 tyrosine phosphorylation

begins early and increases as the parasite progresses through its life cycle [24,37]. Collectively,

these results argue that Syk kinase inhibitors interrupt a critical step required for parasite

escape from its RBC host. The data also suggest that a potent and selective Syk inhibitor could

constitute an excellent candidate for treatment of malaria.

Whether any of the inhibitors examined in this study directly kill the parasite or simply pre-

vent its maturation is difficult to determine from the data. Thus, the supply of nutrients to the

maturing parasite may be a limiting factor, especially as the hemoglobin and other RBC

Table 1. Structures of tyrosine kinase inhibitors used in this study.

Drug Code Structure Class of Inhibitor Most active kinase

47F Imatinib-Analog Aurora A kinase

23D Staurosporine Broad spectrum kinase inhibitor

32C No syk activity CDC7, promiscuous

32D No syk activity MAP2K1, promiscuous

32A3 No syk activity CDK9, promiscuous

32E Syk inhibitor IV Syk

47H Syk inhibitor R406 Syk

47A3 Syk inhibitor IV analog Syk, PI-3 kinase

26D Syk inhibitor IV analog Syk, PI-3 kinase

23B3 Proprietary structure No syk activity CDC7, promiscuous

https://doi.org/10.1371/journal.pone.0242372.t001
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proteins are progressively consumed. Consequently, any drug that delays or halts parasite mat-

uration could cause the parasite to die due to starvation. Moreover, once progression of the

parasite through its life cycle is halted, toxic byproducts of parasite metabolism (e.g. unpoly-

merized heme) [54–56] could accumulate, rendering the intra-erythrocyte milieu increasingly

incompatible with parasite survival, i.e. perhaps poisoning the parasite to death. With still

other causes of P. falciparum death conceivable, the specific cause of death induced by tyrosine

kinase inhibitors cannot be unambiguously defined. However, in can now be firmly concluded

that inhibition of Syk can induce it.

Based on many previous studies, we wish to propose a sequence of events culminating in

Syk inhibitor termination of P. falciparum parasitemia. Like diamide, consumption of hemo-

globin and the concomitant release of heme creates a strongly oxidizing environment within

the infected RBC [52,57–59]. Oxidation of active site cysteines in both major RBC tyrosine

phosphatases then inhibits their activity [22,57,60–62], leading to stable band 3 tyrosine phos-

phorylation by constitutively active Syk. This tyrosine phosphorylation then promotes an

intramolecular interaction between the phosphotyrosines on band 3 and an SH2-like domain

within the membrane-spanning domain of band 3 [20] that in turn triggers dissociation of

ankyrin and the spectrin-based RBC cytoskeleton from band 3 [21,63]. The resulting disjunc-

tion of the cytoskeleton from the membrane then causes the predicted weakening of the RBC

membrane that allows parasite egress from the weakened RBC [24,37]. Inhibition of Syk cata-

lyzed band 3 phosphorylation specifically blocks this weakening, preventing the escape of P.

falciparum from its RBC host at the end of its life cycle. Based on these observations and the

fact that the parasite cannot mutate an erythrocyte tyrosine kinase, we anticipate that a Syk

kinase inhibitor, perhaps in combination with an artemisinin-like anti-malarial, might consti-

tute a mutation-resistant therapy for malaria. Clinical trials currently underway in Vietnam

and Laos should provide an accurate test of this hypothesis (see ClinicalTrials.gov; Identifier:

NCT02614404 and/or NCT03697668).

Supporting information

S1 Fig. A. Effect of inhibitor concentration on the percent of fresh erythrocytes that

become infected following their co-incubation for 3 days with ring stage P. falciparum
infected RBCs (Palo Alto strain). B. IC50 values of the selected inhibitors plotted in panel

A. The inhibitors for this study were chosen from the library of inhibitors examined in Fig 1

based on their potencies in suppressing parasitemia.

(TIF)

S2 Fig. Evaluation of the ability of selected kinase inhibitors to suppress erythrocyte band

3 tyrosine phosphorylation induced by either diamide or o-vanadate. To determine whether

all compounds in the Eli Lilly kinase inhibitor library that were found to have anti-malaria

activity might also inhibit band 3 tyrosine phosphorylation, a selection of inhibitors with anti-

malaria activity were examined for their abilities to suppress diamide or o-vanadate stimulated

tyrosine phosphorylation of band 3. The anti-phosphotyrosine immunoblots of band 3 in

membranes isolated from erythrocytes treated for 1 hour with drug followed by an additional

hour treatment with either diamide (top panel) or o-vanadate (bottom panel) are shown.

Inhibitor 23D blocked parasite development at the ring stage, 32D halted the life cycle at the

trophozoite stage, and 23B3 interrupted maturation at the schizont stage, while 47H and 32E2

(both Syk inhibitors) were found to block development at the egress stage of the parasite’s life

cycle.

(TIF)
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S3 Fig. Evidence that the intensely tyrosine phosphorylated band at 100kDa derives from

band 3. Membranes from P. falciparum-infected (iRBCs) or orthovanadate (OV)-treated

RBCs were analyzed by immunostaining with either an antibody specific for phosphotyrosine

8 on band 3 (anti-pY8) or a monoclonal antibody to whole band 3 (anti-band 3).

(TIF)

S1 Raw images. Unadjusted immunoblots of the trimmed data presented in Fig 4A and 4B,

S2 and S3 Figs. The lower half of each blot was stained with an anti-actin antibody (to estab-

lish that all lanes are loaded equally), while the upper half of each blot was stained with an anti-

body to the erythrocyte protein, band 3, or phosphotyrosine 8 on band 3, or any (nonspecific)

phosphotyrosine.

(PDF)
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