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Abstract

Mobile sensing data has become a popular data source for geo-spatial analysis, however,

mapping it accurately to other sources of information such as statistical data remains a chal-

lenge. Popular mapping approaches such as point allocation or voronoi tessellation provide

only crude approximations of the mobile network coverage as they do not consider holes,

overlaps and within-cell heterogeneity. More elaborate mapping schemes often require

additional proprietary data operators are highly reluctant to share. In this paper, I use human

settlement information extracted from publicly available satellite imagery in combination

with stochastic radio propagation modelling techniques to account for that. I show in a simu-

lation study and a real-world application on unemployment estimates in Senegal that better

coverage approximations do not necessarily lead to better outcome predictions.

Introduction

Mobile phone metadata has become a popular data source to complement official statistics.

When an individual makes a call, sends a message or uses the mobile internet, meta informa-

tion about this interaction, such as the time stamp and the location, are stored in a database of

the mobile network operator (MNO). Researchers exploit those spatio-temporal references for

geo-located analysis. One string of research in this field investigates the question whether a

certain characteristic such as poverty, literacy or food insecurity is reflected in mobile phone

behaviour. Matching this behaviour accurately to a ‘groundtruth’—often statistical data from

surveys or censuses provided for statistical areas—however, poses a major challenge as the two

data sources lack a common reference. In the case of call detail records (CDRs), the geographic

reference is provided by the antenna location, often stored as a point coordinate of the physical

location of the corresponding base transmitter station (BTS). Due to its simplicity, some scien-

tific literature treat antennas as point coordinates [1]. However, the interactions captured by

the antenna do not happen entirely at this exact coordinate, but within the coverage area of the

antenna—the cell. While an antenna may be located in one statistical area, most of the cell may

lie within the neighboring area. The state-of-the-art attempt to address this is to use spatial

weights based on the overlapping area size of statistical areas and cells approximated via voro-

noi tessellation [2, 3]. This approach has three major drawbacks: First, voronoi tessellation
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perfectly divides the space around BTS locations depending on the distance to the surrounding

BTS. This represents a naïve approximation of the true coverage areas as it does not take over-

laps, areas without coverage and additional network complexities (multiple antennas per site/

BTS, directionality of antennas, varying frequency bands etc.) into account [4]. For example,

roughly 90 million people in Africa in 2019 were still not connected to any mobile network

hinting at major holes in the coverage [5]. Second, even though the concept of ‘home-locating’

subscribers to specific BTS offers a network-based alternative to the statistical concept of ‘usual

place of residence’, it is not reflected within cells. As the weights are based on area sizes, the

voronoi tessellation implicitly assumes that individuals/households are homogeneously dis-

tributed within cells, which in most cases does not hold true. For example, a lake would receive

the same importance in the creation of area-level mobile phone metadata aggregates as an

equally sized built-up area. Third, as mobile stations (MS, generally defined as a combination

of device and SIM card) and antennas communicate via modulated radio signals whose propa-

gation paths depend on a range of factors such as the weather, coverage areas are stochastic by

nature. More elaborate approaches to model coverage ranges of mobile networks exist [4, 6],

especially in the field of radio propagation modelling native to electrical engineering, however,

they often require detailed information on the area’s topology, a number of technical details

concerning the network infrastructure and additional information from passive monitoring

systems, which mobile network operators are generally highly reluctant to share and in the lat-

ter case often not capable to collect.

Contributions

Acknowledging this, I divide my methodological contribution in this paper in two parts: First,

I propose the use of settlement information extracted from publicly available satellite imagery

to account for within-cell heterogeneity within the mobile network when linking statistical

data with mobile phone metadata. Building on this, the second part of the methodology takes

advantage of scenarios where additional technical specifications are available in order to

address the issues for holes, overlaps and non-linearities within the mobile network using

propagation-based modelling. My main contributions are as follows:

1. The idea of using settlements retrieved from publicly available satellite imagery as a common

reference for statistical units such as households and ‘home-located’ MS in order to calculate

weights for mapping mobile phone metadata and statistical data based on settlement counts in

scenarios where MS counts are not available. This way, within-cell heterogeneity is addressed.

2. A propagation-based approach to account for overlaps, holes and non-linearities in coverage

service provision—in case additional information on the network infrastructure are available.

3. A large-scale simulation study on a synthetic population grid to systematically compare the

accuracy of different mapping approaches and their effects on predictive performance.

4. A real-world application that demonstrates the impact of the mapping choice on outcomes

in later analysis.

Datasets

In the application, I revisit the simulation study of Schmid et al. [1] published in 2017 in the

Journal of the Royal Statistical Society Series A on fine-granular unemployment estimates from

mobile phone metadata in Senegal in order to investigate the effects of different mapping

schemes on the unemployment outcomes. Therefore, I re-run the original simulation with the

difference that I implement multiple mapping schemes to derive area-level covariates from
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CDRs. Specifically, I use behavioural indicators and SIM card counts extracted from CDRs

provided by the major Senegalese MNO Sonatel in the context of the D4D 2014 challenge for

the whole year of 2013 and aggregated on the level of BTS, for which the exact geo-coordinates

are also provided [7]. The behavioural indicators are generated using the popular open-source

Python module Bandicoot [8]. Further, I use population counts from the full 2013 general pop-

ulation and housing census (RGPHAE 2013) available for the NUTS 4-level of Senegal—the

communes—on the website of ANSD, the National Statistical Office of Senegal. Commune-

level unemployment information are generated from a 10% sample of RGPHAE 2013. Unem-

ployment information in RGPHAE 2013 are self-reported.

Geographic information on the administrative boundaries are available for communes and

above. The settlement-based weights I present in this paper use data on human settlement

areas in Senegal extracted from the Global Urban Footprint (GUF) project [9] of the German

Aerospace Center (DLR) at a resolution of 0.4 arc seconds, which is approximately 12m x

12m. The GUF project used 180,000 TerraSAR-X and TanDEM-X images collected during the

period of 2011—2012 (with some data from 2013/14 to fill gaps) to create black and white

abstractions where white pixels represent human settlements with a true positive rate (accu-

racy to correctly detect human settlements) of 85% on average, with 68% at lowest and 98% at

heighest. GUF data for Senegal is provided as a single black and white.tif-file with a resolution

of 55568 x 39459 pixels (see Fig 1). All datasets used in this study are available for research pur-

poses under the conditions of the respective data use agreements.

Related work

Increasing processing capabilities have propelled the use of satellite imagery in official statis-

tics. The UN [11] recommends using satellite imagery to prioritize and check geospatial

Fig 1. Settlements in Senegal provided as b/w image by the GUF project. Lower resolution built-settlements extents

data reprinted from [10] under a CC BY license, with permission from WorldPop, original copyright 2018, are used in

this figure for illustrative purposes.

https://doi.org/10.1371/journal.pone.0241981.g001
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processes such as the delineation of enumeration areas during census preparation. It further

supports the construction of population grids as a common spatial reference system as pro-

posed by [12, 13]. Various studies have used remote sensing, sometimes in combination with

mobile phone metadata, to estimate key statistical indicators such as economic growth [14–

16], population density [17–20] or poverty [2, 21, 22]. Work in that field most closely related

to this study uses settlement information extracted from satellite imagery in combination with

radio propagation models for application in cost-benefit analysis concerning additional infra-

structure investments [23]. While [23] also uses population counts from official statistics to

estimate the latent demand for mobile services, the author neither investigates the effects of

different coverage mapping techniques on the results nor does he use mobile phone metadata

for statistical purposes.

In addition, the last decade has seen an impressive amount of research on proposing the

use of mobile phone metadata for official statistics foremost in the hope to overcome the limit-

ing relationship of sample size and data collection costs. [24] provides an excellent overview

on the use of mobile phone metadata that also covers its application for statistical purposes.

Use cases to produce more frequent, more granular and/or more timely data on a wide range

of statistical topics have been identified. For example, [4, 25–28] use mobile phone metadata to

investigate population dynamics for more frequent population and tourism statistics. [29, 30]

apply the question on the whereabouts of a population to the post disaster setting. Mobility

aspects such as commuting and travelling routines have been looked at in more detail by [31–

36]. By exploiting both mobility and (social) network characteristics of mobile phone meta-

data, [37–42] and [43, 44] use mobile phone metadata to model disease spreading and integra-

tion, respectively. Mobile usage patterns have been explored to provide fine granular insights

on socio-demographic indicators such as multi-dimensional poverty [2, 3], literacy [1, 45] and

economic vulnerability [46, 47]. While most of these studies have mapped mobile phone meta-

data and groundtruth data using point-to-polygon allocation or voronoi tessellation, very few

studies have applied more elaborate approximation schemes. [4] propose a methodology based

on maximum likelihood estimation that uses cell footprints provided by one or multiple

MNOs in combination with location data from passive monitoring systems to acquire more

accurate measures on the density of MS. The authors run a simulation study on a 100x100m

synthetic population grid to compare the proposed methodology against voronoi-based cover-

age maps. However, the methodology requires very detailed information from the involved

MNOs, e.g. on the cell footprints and the signalling data that may prove difficult to acquire in

practice (see Section Mobile phone metadata). Further, while the authors rightly assume a

multinomial distribution of the MS counts, finding appropriate distributions for the wide

range of behavioural covariates appears less trivial. In order to simplify and improve the cover-

age mapping process, members of the European Statistical System as part of the ESSnet Big
Data project are currently developing mobloc [48]—an R package that implements the free

space path loss propagation model using technical specifications of antennas as input parame-

ters. However, neither [4] nor [48] systematically evaluate different coverage mapping tech-

niques on statistical modelling approaches using real-world data.

Background

Mobile phone metadata

Mobile networks not only transport data for communication purposes, they also generate data

for reasons such as network auditing, billing, maintenance and service provision. Some of this

meta information is created in interaction with user equipment such as MS. There are four

main caveats of using mobile phone metadata for population statistics in general. All of them
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have in common that they are active areas of current research. First, the customer base of an

MNO constitutes a non-representative population sample with unknown sampling design. The

consequences are varying sampling rates, i.e. locally changing market shares and parts of the

population being structurally excluded from the sample such as children, elderly and the very

poor. Second, the unit of observation—i.e. the MS, device, the SIM card and/or the subscriber—

does not perfectly match the unit of interest, which is the individual or household, as phone

sharing schemes or multi-SIM uses illustrate. Common approaches to account for these two

caveats are calibration and/or reconstructing the sampling design empirically. Third, mobile

phone metadata lacks the statistical concept of usual residence—a concept frequently used in

official statistics to determine the geo-location of an individual/household defined as the place

where an individual has lived or intends to live for a period of at least 6 or 12 months [49]. Dif-

ferent approaches to approximate the home location of an MS exists (e.g. night-time home loca-

tion defined as the most frequently used cell by an MS between 7pm and 7am during a certain

time window), however, the definitions do not map perfectly introducing uncertainty in further

analysis [50]. Fourth, coverage areas cannot be pinpointed as radio propagation is dynamic and

stochastic by nature. Propagation models of various complexity exist to provide approximations

as coverage ranges can generally vary from couple of hundred meters to over 40km.

Most scientific studies in the context of international development and official statistics use

CDRs—logs of interactions such as calls, text messages or internet use containing attributes of

the MS, the network and the connection—as a basis for further analysis. The advantages of

CDRs compared to other mobile phone metadata such as Visitor Location Registers (VLRs) or

other signalling data are threefold: First, they provide fine-grained geographical resolution

through cell-level identifiers. Second, they provide information both on the mobility and the

(social) network of the MS. Third, CDRs are fairly easy to access and to use in analysis as the

storage of essential attributes adheres to global standards such as 3gpp 32.295. However, in addi-

tion to the aforementioned general caveats of mobile phone metadata there are important cave-

ats specific to CDRs: Social network information extracted from CDRs are increasingly

incomplete due to a shift towards app-based communication (e.g. Whatsapp and Facebook mes-

senger). Mobility patterns are fragmented as locations are logged only during active MS use—

again a case of non-random sampling. Some MNOs are able to extract more detailed informa-

tion on the location of an MS and its app usage e.g. for geo-fencing purposes or app-based pric-

ing schemes through trilateration of signalling data and deep packet inspection, respectively.

This, however, requires specific hardware equipment and software capabilities, which not every

MNO has. Consequently, these type of information are rarely available to researchers.

Radio propagation modelling

Radio propagation modelling has been subject to research for decades. Coverage mappings in

mobile networks are generally used for network planning purposes [23, 51]. Looking at Phil-

lips et al. [6] is highly recommended as they provide an excellent overview on coverage map-

ping methods. In general, radio propagation modelling techniques in mobile networks largely

focus on estimating the path loss Lp a radio signal incurs en route between a transmitter tx and

a receiver rx. Together with the output power of the transmitter Ptx, the gains through directiv-

ity and efficiency of the involved antennas Gtx and Grx and their respective technically-

incurred losses Ltx and Lrx, it defines the link budget—the received power Prx usually expressed

logarithmically in decibel per milliwatt (dBm).

Prx ¼ Ptx þ Gtx þ Grx � Ltx � Lrx � Lp ð1Þ
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Since all RHS parameters except Lp are either known in advance due to the choice of the

technical equipment (i.e. Gtx and Ltx) or hardly observable (i.e. Grx and Lrx), I assume Gtx + Grx

− Ltx − Lrx = 0 in the following, leading to a simplified link budget defined as:

Prx ¼ Ptx � Lp ð2Þ

Intuitively, Eq 2 thus states that the signal strength observed on a MS solely depends on the

output power of the connected antenna and the loss in signal strength that occurs along the

way between antenna and MS. Given the abundance of available models, I follow the guidance

of the European Conference of Postal and Telecommunications Administrations (CEPT) on

radio propagation simulation for mobile services and opt for the widely popular extended

HATA model [52], named after Masaharu Hata, the author of the 1980 landmark study on the

“Empirical Formula for Propagation Loss in Land Mobile Radio Services” [53]. It is derived

from the COST-231 HATA model [54], which in turn builds on the original HATA [53] and

Okumura model [55]. They all have in common that they are empirical models to estimate the

median path loss between a transmitter and a receiver based on real-world measurements. The

HATA model extends the Okumura model by distinguishing between urban, suburban and

rural settings, thus accounting for different levels of mean attenuation due to obstacles and

changes in terrain. The COST-231 HATA model increases the frequency range of the original

HATA model. The extended HATA model is applicable for settings with frequencies f between

30-3000 MHz, distances d between 0-100km, transmitter heights htx between 30-200m and

receiver heights hrx between 1-10m. The general form of the extended HATA model LEH
p con-

sists of a loss function L for the median path loss and a path loss variation term V drawn from

a log-normal distribution that accounts for the stochastic nature of radio propagation Since

model parameters vary depending on the distance, the expected environment env (indoor/out-

door and rural/suburban/urban) and the frequency, the full extended HATA model is not

spelled out in this paper, but can be accessed here: https://ecocfl.cept.org/display/SH/A17.3.1

+Outdoor-outdoor+propagation.

LEH
p ðf ; d; htx; hrx; envÞ ¼ Lðf ; d; htx; hrx; envÞ þ Vðm; s; dÞ ð3Þ

As an example, I provide the path loss function of the extended HATA model LEH
p for dis-

tances above 0.1km outdoor in rural areas for frequencies between 150 and 1500 MHz:

LEH
p ¼ 69:6þ

46:09 � log 10f �

13:82 � log 10htxþ

ð44:9 � 6:55 � log 10htxÞ � log 10d�

ð1:1 � log 10f � 0:7Þ � hrx�

20 � log 10ðhrx=10Þ�

20 � log 10ðhtx=30Þ�

4:78 � ð log 10f Þ
2
�

40:14þ

Vð12; 12Þ

ð4Þ
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So, for example, an MS 1m above the ground at a line-of-sight distance of 3km in a rural

area to an omnidirectional antenna that is 30m above the ground transmitting at the 900 MHz

frequency band would experience a path loss of LEH
p � 118dBm. Assuming a GSM macro-cell

with an output power Ptx = 43 dBm using Eq 2 yields a budget for that link, also known as

received signal strength (RSS), of Prx ¼ Ptx � LEH
p � � 75dBm. As a rule of thumb, signals with

RSS values above −80 dBm are considered excellent, RSS values below −110 dBm point to very

poor signals.

Methodology

Usually, statistical data on individuals or households are geo-located to statistical areas via

their respective places of residence. Further, unit-level data is aggregated to area-level aggre-

gates using some form of weighting factor such as survey weights. For example, the poverty

rate of a region can either be calculated as the share of units classified as poor among the inter-

viewed residents of the region multiplied by their sampling weight or via sub-regional poverty

rates weighted with the respective sub-regional population counts. However, neither the places

of residences nor the weights are generally available on the cell-level of a mobile network (as

an equivalent to the sub-region). Hence, they need to be estimated.

In mobile phone metadata analysis, the place of residence of an individual/household is

usually approximated with the night-time home location of an MS recorded at the cell-level.

To derive survey weight proxies, for example, point-to-polygon allocation assumes equal

weights for all cells point-located within a statistical area. Voronoi tessellation uses the area

size of the intersection of voronoi tile and statistical area as weighting factor, i.e. 1 km2 always

conveys the same importance in aggregation, no matter whether it is 1 km2 of sparsely-inhab-

ited desert or 1 km2 of a densely-populated city.

In most cases, the place of residence of an individual/household (thus is approximation

alike) is linked to some form of settlement. However, neither the statistical area nor the cover-

age area of a cell account for that fact. Consequently, the underlying idea behind the proposed

methodology is to use human settlement information extracted from publicly available satellite

imagery as common geographic reference level for both statistical units such as households

and home-located MS. This allows to a) construct weights based on settlement counts and b)

refine weights in cases where MS counts, often regarded as highly sensitive information by the

MNO, are available. Further, in combination with technical information on the antenna, it

allows for an efficient coverage estimation to address the issues of holes and overlaps in a

mobile network.

In the following, settlements are denoted as i, BTS as j, statistical areas as t, the number of

home-located MS as d, the population count as p, the number of settlements as n and metadata

covariates as R. To illustrate the value added of the proposed methodologies, Fig 2a and

Table 1 showcase a typical setup faced when one seeks to augment official statistics with mobile

phone metadata: statistical indicators are provided for statistical areas A, B and C. Mobile

phone metadata is provided as BTS-level aggregates with the corresponding point locations 1

and 2. To account for that, I treat each cell site that may host multiple antennas as single omni-

directional antenna, calling it BTS subsequently. This constitutes a simplification of real

mobile networks where usually multiple directional antennas serving on various frequency

bands are co-located at the same site that does not necessarily have to be an actual (cell) tower.

Although accounting for directionality of antennas as done by e.g. [4] is likely to affect the

overall outcome of later analysis by increasing the number of network tiles available for map-

ping, the challenges for allocating them correctly (holes, non-linearities, overlaps, within-cell
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heterogeneity) remain. Consequently, it is expected that results from this study also apply to a

setup based on directional antennas, thereby justifying the simplifying assumption. Further

details on Fig 2b–2f are provided in the following subsections.

Point-to-polygon allocation

For purposes such as model fitting one approach to combine statistical data and mobile phone

metadata is to aggregate metadata covariates onto the same geographical level, e.g. statistical

areas. To do so, the point-to-polygon approach (p2p) treats BTS point locations as such and

allocates BTS-level metadata covariates using a binary weighting scheme (see Fig 2b and Eq 5).

wp2p
j;t ≔

(
1 if j � t

0 otherwise
ð5Þ

Consequently, all network traffic handled by a BTS is attributed to one statistical area exclu-

sively, no matter whether it was generated by a home-located MS actually ‘residing’ in this area

or not. In the toy example, but also in the real-world application presented in Section Applica-

tion this leads to a situation where no metadata covariates are available for certain area, e.g.

area C—with negative effects on the final sample size in model fitting.

Voronoi tessellation

In contrast, voronoi tessellation (denoted by superscript v) divides the total space of interest

into perfectly disjunct tiles along the equidistant lines between points, in this case the BTS

Fig 2. Popular and proposed mapping schemes. Three statistical areas (A-C), two BTS (1-2) and numerous dots

representing built-up areas illustrate how different mapping schemes affect the allocation of BTS-level data to statistical

data.

https://doi.org/10.1371/journal.pone.0241981.g002

Table 1. Example of statistical data and mobile phone metadata.

area_id poverty_rate bts_id # of calls lon lat

1 0.23 6453 34050 43.2344 23.2342

2 0.11 8348 1023 50.0988 18.84217

https://doi.org/10.1371/journal.pone.0241981.t001
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point locations (see Fig 2c). The current state-of-the-art procedure is to intersect these tiles—

representing approximated coverage areas of BTS—with the statistical areas. The weights to

aggregate BTS-level metadata covariates to the respective statistical area are derived from the

size of the intersection of tiles aj and at of BTS j and statistical area t, respectively, in relation to

the total size of at, also expressed as

wv
j;t≔

aj \ at

at
ð6Þ

In the toy example of Fig 2c, this would reduce to be the intersection of e.g. statistical area

A and the voronoi tile of BTS 1 divided by the total area of A. However, as mentioned above,

area sizes are used in that approach to approximate the (usually) unknown population counts

per intersection by implicitly assuming homogeneous distribution of the population within a

given statistical area.

Augmented voronoi tessellation

The proposed settlement-based mapping schemes relax this obviously strong assumption by

assuming a homogeneous housing structure instead, i.e. a constant population density per set-

tlement area within a given statistical area. Applied to voronoi tessellation, Fig 2c and 2d—

with settlement areas represented as dots—illustrate the difference. Instead of using the area

sizes aj and at to calculate the weights, the “augmented” voronoi tessellation (av) uses the num-

ber of settlements per area, denoted as nj and nt, respectively.

wav
j;t≔

nj \ nt

nt
ð7Þ

Consequently, statistical area-level covariates can easily be acquired for both approaches

using a weighted average (or a weighted median) on BTS-level data.

R̂ t ¼
XJ

j¼1

wj;tRj ð8Þ

Going back to the toy example, while BTS 1 covers the smaller part of C in Fig 2c, thus

receives a smaller weight in the calculation of area-level metadata aggregates, it looks different

in Fig 2d when comparing the number of settlements, represented by green and purple dots.

This way, the proposed methodology accounts for within-cell heterogeneity of the population

distribution.

Both voronoi tessellation and augmented voronoi tessellation splits the full space of interest

into disjunct tiles. Applied to a mobile network this means ubiquituous coverage and zero

redundancies, i.e. all dots are uniquely associated to a specific BTS in the toy example. Again

this is a strong assumption that most likely does not hold true in any real-world application.

To relax this assumption by introducing holes and overlaps in the network coverage, addi-

tional information are necessary that allow for the estimation of coverage measures such as the

received signal strength (RSS) at any given point in space. Fig 2e exemplifies the consequences:

Some settlements are not covered (black dots) and some settlements, even though closer to

one BTS, receive a stronger signal from a more distant BTS. Assuming coverages are correctly

estimated in Fig 2e and 2f, it demonstrates that point-to-polygon allocation tends to underesti-

mate the coverage of statistical areas while voronoi tessellation tends to overestimate it.
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Propagation-based mapping schemes

Previously presented schemes follow a ‘BTS-centric’ approach by first determining the respec-

tive coverage area of a BTS and then analyzing potential overlaps with other places of interest

such as settlements. In contrast, propagation-based schemes follow an ‘MS-centric’ approach

by looking at the connectivity at the place of interest, i.e. the place of usual residence or the

home location first and then estimating which (group of) BTS it most likely serves. As outlined

in Section Radio propagation modelling, multiple ways exist to estimate the ‘connectivity’ of

an MS, but all require at least information on the distance to the surrounding BTS and addi-

tional technical specifications. With that, the serving BTS can be determined at each place of

interest, thus allowing for a more nuanced coverage mapping. Here, settlements can provide a

common geographic reference for the place usual residence and the home location alike.

Best server area (BSA). In mobile networks, an MS usually connects to the antenna that

offers the strongest signal. Thus, the settlement-level weight is 1 for the BTS with the strongest

signal and 0 otherwise.

wbsa
i;j ≔

(
1 if Prx;i;j ¼ maxðPrx;i;�Þ

0 otherwise;
ð9Þ

Links weaker than a certain threshold (e.g. a Prx value below—110 dBm) can be discarded

as they represent ‘dead’ links. This way the approach accounts for holes in the network cover-

age. The weights wi,j express the importance of a BTS for a pixel. Similarly to Eq 8, they can be

used to determine the statistical area-level covariate estimates R̂t using a weighted average:

R̂ t ¼
Xnt

i¼1

wi;j
Pnt

i¼1
wi;j

Rj ð10Þ

Due to the binary nature of the weight,
Pnt

i¼1
wi;j represents the number of settlements with

mobile coverage within a given statistical area. In areas with homogeneous network infrastruc-

ture and full coverage, the best server approach closely resembles the augmented voronoi tes-

sellation with the difference that path loss increases non-linearly with the distance, i.e.

locations very close to the location of a BTS may be served by another, more distant one.

Inverse signal strength. Radio propagation is stochastic by nature. Changing environ-

mental conditions and varying network loads affect the RSS at a given location across time.

Consequently, the strongest signal is not always provided by the same BTS. In order to assure

quality of service, mobile networks usually exhibit a certain number of overlaps. To account

for that, I calculate inverse distance weights (IDW) for each pixel i using the median link bud-

get Prx,i,j as non-linear distance measure (see Eq 11) to the k-nearest antennas. s denotes a tun-

ing parameter, where s = 0 reduces widw
i;j to a fixed weight per BTS and a large s can be used to

approximate the best server approach.

widw
i;j ≔

vi;j
Pki

j¼1
vi;j

with vi;j≔
1

jPrx;i;jj
s 8j 2 ki ð11Þ

Here again, widw
i;j can be used to calculate statistical area-level weighted averages of BTS-level

mobile phone metadata covariates as presented in Eq 10.
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Potential extensions

Depending on data availability, the methodology can further be extended. While MNOs often

regard MS counts as highly sensitive information since they reveal a detailed picture of local

market shares, they can be used to further refine the weights towards more accurate population

counts. [4] presents elaborate approaches to use MS counts and advanced technical network

specifications to derive high-resolution population density estimates from signalling data.

Further, high-resolution population grid estimates such as provided by WorldPop at

100x100m [12] can be used as an alternative to binary settlement data. Here, ŵi;j can be substi-

tuted with the estimated population count p̂i per pixel directly extracted from the image.

Simulation

In order to evaluate the underlying motivation behind this methodology, i.e. more accurate

mapping schemes produce more accurate outcomes, I test the performance of the different

mapping approaches in terms of their overlap with the true coverage area and the accuracy of

the predictions in a controlled setting with groundtruth information. Therefore, I run a simu-

lation T = 1000 times on a synthetic population grid in which I re-distribute individuals, their

poverty status, BTS locations and technical BTS specifications randomly. I observe the geo-

graphical overlap of the true and the estimated coverage areas, the overlap in home-located set-

tlements and the correlation between the true and the estimated variable of interest (in this

case the poverty rate). The main challenge in this simulation is to create “true” coverage areas

for each BTS that provide a realistic, but simplified benchmark for this study. Consequently, I

opt for the extended HATA model. The choice is motivated by a series of propagation model

evaluations using real-world measurements, notably [56–58]. The stochastic component

within the HATA model is disabled in order to isolate the effect of interest.

Setup

I simulate a country including a major city, an uninhabited area such as a large lake or a

national park and rural area otherwise using a 1000 x 1000 grid where each quadratic pixel rep-

resents an edge length of 100m. The urban area is divided into 16 equally-sized (50 x 50 pixel)

small statistical areas, whereas the rural area is divided into 24 larger ones (200 x 200 pixel). I

randomly distribute one million individuals across the grid using a multivariate normal distri-

butions with μx = 10, μy = 10, Sx = [50, 0] and Sy = [0, 50] for the urban area (1/2 of the total

population) and varying parameter values for the rural centers and a uniform distribution for

the remaining rural area. Pixel-level population counts are calculated from individual-level

data. Fig 3 shows an example of the settlement distribution across space and the corresponding

population density.

In the next step, I randomly assign a poverty rate to each pixel. First, I generate a 4x4-pixel

poverty grid for which I calculate the population density (see Fig 4b). In order to account for

differences in the poverty rate between urban and rural areas, I randomly draw from a uniform

distribution with values between 0 and 1 and multiply it with the inverted normalized popula-

tion density. This poverty rate serves as the mean μ for randomly assigning poverty rates to set-

tlements within the respective grid area using a normal distribution N(μ, σ) with σ = 0.5.

Values below 0 and above 1 are windsorized. This two-step procedure tries to limit good pre-

dictive performances for areas not actually covered due to inference facilitated by the same

underlying data generating process. Further, I assume that every inhabitant has one and only

one MS and that there exists an indicator derived from mobile phone metadata that perfectly

correlates with the true poverty rate of a given set of MS. Consequently, deviations in the
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correlation between the poverty rate captured via the “true” coverage area and the poverty rate

captured via the estimated coverage area exclusively originate in their coverage mismatch.

In order to create a mobile network on top of that structure, I use a clustering algorithm

based on the population density (see Fig 5b). BTS are distributed across the country at a ratio

of roughly 1 BTS per 5,000 inhabitants in urban areas and 1 BTS per 10,000 inhabitants in

rural areas. This results in 100 urban and 50 rural BTS in this simulation. BTS are interpreted

as omnidirectional antennas and assigned specific heights, frequencies and output powers.

The specifications vary more strongly in the urban area in order to reflect the greater complex-

ity of network topology generally found in metropolitan areas. Since the HATA model

requires a classification of areas into urban, suburban and rural, I use those 50% of BTS with

the smallest number of pixels associated to them by the clustering algorithm used above as

urban and those 5% of BTS with the largest number of pixels as rural, suburban otherwise. At

the end, BTS heights are between 15—60 m with frequencies at 900 MHz and 2100 MHz and

output power between 40 and 47 dBm. The MS height is fixed at 1m above ground level.

Based on these technical specifications, the true coverage areas and the true home locations

of the settlements using the extended HATA model are calculated and used to create bench-

mark estimates of the true poverty rate. The results are then compared against estimates from

point-to-polygon allocation, voronoi tessellation, augmented voronoi tessellation and BSA

and IDW approaches of a naïve (’simple’) version of the extended HATA model that does not

know the exact technical BTS specifications, but makes an educated guess based on publicly

available information such as the frequencies used in the country and the location of urban

centers. Fig 6 exemplifies how the approaches differ in terms of geographical coverage.

The results are compared in three different ways: How much do they overlap geographi-

cally? How much do they overlap in terms of home-located settlements? How well do they pre-

dict the true poverty rate of a given statistical area?

Results

Table 2 shows the best performing approach in each round across round for all five perfor-

mance indicators. Performance differences between voronoi tessellation versus the augmented

voronoi tessellation and the augmented voronoi tessellation versus the HATA (BSA) approach

Fig 3. Simulation setup—Settlements. (a) shows locations of the built-up areas in a hypothetical country, while (b)

shows the corresponding population density in these areas (the brighter the colour, the higher the population density).

https://doi.org/10.1371/journal.pone.0241981.g003
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Fig 4. Simulation setup—True poverty rate.

https://doi.org/10.1371/journal.pone.0241981.g004
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showcase the relative contribution of settlement weighting and radio-propagation modelling,

respectively. As expected, the simple HATA model clearly outperforms the other mapping

approaches in terms of overlap, both geographically with the true coverage area (see Table 3)

as well as concerning the home-located settlements (see Table 4). As the settlement-based

approaches do only affect the calculation of weights and not of the coverage area, the coverage

results are identical for voronoi tessellation and augmented voronoi tessellation and for the

two HATA approaches, respectively. However, this advantage is not reflected to a similar

extent in the predictive performance.

Interestingly, the HATA (IDW) approach performs poorly in prediction in contrast to the

HATA (BSA) approach. This is due to the fact that the poverty rate in the true coverage area is

calculated based on a deterministic home location, i.e. it is calculated from a constant set of set-

tlements. This coincides directly with the mode-based HATA (BSA) approach, however, it

does not reflect most real-world settings, in which stochastic radio propagation and overlap-

ping coverage areas lead to situations where the captured poverty rate by the BTS is sourced

from varying sets of settlements. The HATA (IDW) approach addresses this setup. Conse-

quently, it is expected that the differences between these two approaches at least diminish in

the application with real-world data in Section Application. Also, deviations of the HATA

(BSA) approach from the benchmark exclusively originate in the technical misspecifications as

the true coverage area is calculated from a correctly specified HATA model. The network com-

plexity faced in real-world settings is expected to further undermine the accuracy of propaga-

tion-based mapping schemes.

Looking at the performance of the two voronoi approaches in Table 2 the value added of

using settlement information becomes apparent. Recalling the setup, the simulation assumes

error-free human settlement identification. This, again, may not hold true in a real-world

application as some buildings may not be detected while some detected buildings may not be

inhabited. Consequently, it is expected that the difference between thee two voronoi

approaches will be less stark in the application.

Fig 7 shows the distribution of the three performance indicators across rounds for those sta-

tistical areas for which every mapping scheme can provide estimates. On average, this reduces

the underlying set of observations from 40 to 32 (see the sample sizes in Table 5). The result

Fig 5. Simulation setup—BTS locations.

https://doi.org/10.1371/journal.pone.0241981.g005
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for the true coverage area are represented as benchmark for the other approaches as it estimates

the settlement-level poverty rates actually captured by the respective BTS. Consequently, the

benchmark should provide the upper bound for the R2 and the lower bound for the bias and

the RMSE in each round. Deviations thereof may only be due to spurious correlation.

The sample size difference also explains the difference between the performance of the

point-to-polygon approach in terms of correlation in Table 5 vis-à-vis the performance met-

rics, especially in rural areas. Point-to-polygon allocation does not provide poverty estimates

for 8 out of 40 statistical areas, on average, as they do not host a BTS (cf. Fig 6b). As both

Fig 6. Coverage areas exemplified.

https://doi.org/10.1371/journal.pone.0241981.g006
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poverty rate and BTS allocation is linked to the population density by design, it can be

expected that the predictive performance for rural areas not hosting a BTS are poor as they are

generated from different underlying distributions.

However, this does not fully explain the performance differences between the approaches.

On one hand, statistical areas are quite large, thus most of the BTS experience little overlaps in

their true coverage area with other statistical areas. Consequently, the statistical area provides a

decent approximation for the coverage. In contrast, simple voronoi tessellation with geograph-

ical weights tends to overemphasize the importance of remote areas as a) it assumes to cover

areas for which data is actually not captured and b) BTS are usually located in close proximity

to populated areas while serving remote areas further away as a side effect of it. This may be

especially relevant in situations with large between-variation among statistical areas, strong

population clusters and imperfect mobile network coverage. While b) is accounted for in the

simulation, only approx. 0.1% of the settlements are not covered by the network. Although this

in line with the mobile network coverage in most countries, it can be expected that propaga-

tion-based schemes that account for holes in the mobile network outperform established

approaches in setups with poor coverage.

Application

In their 2017 study on estimating literacy rates in Senegal published in the Journal of the Royal
Statistical Society Series A, Schmid et al. [1] use point-to-polygon allocation to map BTS point

locations to statistical areas (communes). I revisit the design-based simulation of the study and

extend it with four alternative mapping schemes, notably voronoi tessellation, satellite-aug-

mented voronoi tessellation and the herein presented propagation-based coverage estimation

methods using the best server area approach and the inverse signal strength weights. I compare

the outcomes of all five schemes in terms of bias, root mean squared error (RMSE) and

adjusted R2.

Situation in Senegal

The application draws on real-world data from Orange-Sonatel for the year of 2013 [7]. Dur-

ing that time, the MNO operated mainly on the GSM 900 (2G) band with some UMTS 2100

(3G) deployments in urban centers. A large share of on-net traffic (approx. 91% of overall

Table 2. Best performing approach by round across rounds (in%).

Mapping Coverage Prediction

Geography Settlements R2 Bias RMSE

Point 0.0 0.0 27.5 28.2 28.6

Voronoi 0.0 0.07 2.6 9.9 2.1

Aug. Voronoi (GUF) 35.5 33.1 36.8

HATA (GUF, BSA) 100.0 99.3 29.7 13.7 27.7

HATA (GUF, IDW) 4.7 15.1 4.8

https://doi.org/10.1371/journal.pone.0241981.t002

Table 3. Geographical overlap with true coverage area (in%).

Mapping Total Rural Suburban Urban

Point 25.8 15.3 30.9 22.3

Voronoi 30.7 14.1 25.5 37.0

Simple HATA 55.3 80.1 62.1 46.7

https://doi.org/10.1371/journal.pone.0241981.t003

PLOS ONE Mapping mobile network data using satellite imagery and radio propagation modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0241981 November 9, 2020 16 / 28

https://doi.org/10.1371/journal.pone.0241981.t002
https://doi.org/10.1371/journal.pone.0241981.t003
https://doi.org/10.1371/journal.pone.0241981


traffic vis-à-vis a market share of approx. 57%) during that year suggests a high prevalence of

dual SIM use. It is expected that in this setting a negligible share of SIM cards are used by IoT

devices others than MS. Coverage advantages in rural areas suggest dual-SIM use to be a phe-

nomenon of more densely populated areas. The country exhibits little irregularities in the ter-

rain: The highest point of Senegal being approx. 648 m above sea level is located at its southern

border. The lowest point constitutes the sea level. Urban built-up areas with multi-storey

buildings are predominantly limited to downtown Dakar. Most of the country is dominated

by savanna with sparse high-grown vegetation.

Original study

In their design-based simulation, Schmid et al. [1] implement a stratified two-stage cluster

sample design similar to the one used in large-scale household surveys such as the Demo-

graphic and Health Survey (DHS) using a 10% random sample of a pseudo-population as sam-

pling frame, the 431 communes of Senegal as primary sampling units (PSUs) and the 14

regions of Senegal as strata. The authors combine the constructed ‘survey’ data with covariates

extracted from mobile phone metadata on the level of communes in order to evaluate different

small area estimation techniques using the unemployment rate as target variable of choice. The

72 available covariates are calculated on the subscriber-level using the Python library Bandi-
coot [8]. The subscriber-level covariates are allocated and aggregated to a BTS using the most

frequently used BTS by a subscriber between 7pm and 7am as the home location. The BTS-

level covariates are then allocated and aggregated using point-in-polygon allocation. Variable

selection is performed backwards on large communes using the Bayesian Information Crite-

rion. The covariates are used to generate small area unemployment rate estimates using a

transformed Fay-Herriot model. Finally, Schmid et al. evaluate the small area estimates against

the ‘true’ pseudo-population aggregates in 500 simulation runs using bias and RSME for a)

communes covered by the survey (in-sample) b) communes not covered by the survey (out-of-
sample) and c) communes without covariates from mobile phone metadata. For additional

details on the setup of the original study, I refer to [1].

Extensions

I re-run the simulation of the original study five times thereby only varying the commune-

level matrix of covariates as inputs. Specifically, I create five distinct sets of commune-level

covariates beforehand by applying different mapping schemes during the aggregation process

of the BTS-level data of the original study. First, I use the point-to-polygon allocation used in

the original study. Second, I apply a standard voronoi tessellation to extract spatial weights

proportional to the geographical overlap of tile and statistical area as described in Voronoi tes-

sellation since it is used in most other studies in this field. Third, I augment the voronoi tessel-

lation with settlement information from GUF by taking the number of white pixels

(representing (part of) a settlement) within each section as a weight for commune-level aggre-

gates to account for within-cell heterogeneity. Fourth, I implement the extended HATA (BSA)

Table 4. Overlap with true home-located settlements (in%).

Mapping Total Rural Suburban Urban

Point 16.9 44.3 15.9 14.9

Voronoi 54.2 56.8 60.7 48.0

Simple HATA 59.7 87.6 66.5 50.6

https://doi.org/10.1371/journal.pone.0241981.t004
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Fig 7. Estimating the true poverty rate for statistical areas. Distribution of the three performance metrics adjusted R2, bias

and RMSE with the estimated poverty rate using the true coverage area, i.e. built-up areas perfectly allocated to BTS, as

‘Benchmark’ across 1000 simulation runs.

https://doi.org/10.1371/journal.pone.0241981.g007
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model as presented in Methodology and GUF data. In densely populated areas, this approach

closely resembles voronoi tessellation, however, it allows for holes in the network and for non-

linear relationships between signal strength and distance. Fifth, I use inverse signal strength

weights—HATA (IDW)—to capture the stochastic nature of a link.

Comparing Fig 8c and 8d to the direct estimator (Fig 8b) shows the benefits of augmenting

survey data with mobile phone metadata: providing estimates for small areas not originally

covered by the survey. Looking at settlements in Fig 8a, it is noteworthy that one commune—

Thietty in the region Kolda—does not appear to host any settlement identified as such in GUF

data. While official population numbers do not support this view, it underlines the fact that

information extracted from satellite imagery, e.g. settlement classifications, are subject to some

degree of uncertainty.

Assumptions

In contrast to point-to-polygon allocation and voronoi tessellation, the extended HATA

model requires additional technical antenna specifications, notably the antenna and receiver

height, the frequency and the transmitter power. As additional information are not available

in the original study, I make following assumptions: I fix both the antenna height htx and the

receiver height hrx at the lower bound of the extended HATA model, which is 30 m and 1 m,

respectively, both located outdoors with line-of-sight and a transceiver installed above the

roof. As most of Senegal is flat without high multi-storey buildings except in downtown Dakar

and in large parts no high-grown vegetation this assumption appears reasonable. Further, I fix

the frequency in rural areas at 900 MHz and in urban centers at 2100 MHz and I interpret BTS

as omnidirectional antennas with an output power of 45 dBm. This is clearly a simplification

of the actual network topology, especially in urban areas with a mix of directed micro and

macro cells. However, in Senegal in 2013, 4G has not yet been introduced and Orange-Sonatel

was operating 3G (on the 2100 MHz frequency band) only in urban areas. The remaining

country was served with 2G technology on the 900 MHz band. Comparing own estimates with

coverage area estimates for 2G in 2017 published by Sonatel [59] allows for a rough sanity

check for the assumptions.

While Senegal offers an official classification of rural and urban on the commune-level, it is

imperfect for the purposes of this study, as it takes a wide variety of non-network-specific fac-

tors into account. This leads to a situation where places with a high population density, e.g.

Touba Mosque, are classified as commune rurale. Instead, I use BTS density per km2 as a proxy

for urbanity with a threshold of 1. Communes with more than one BTS per km2 are classified

as urban, those 50% of the communes with the lowest site density are classified as rural, the

remaining communes are classified as suburban. This represents a more network-oriented

measure of urbanity and is also in line with the area type classification of the HATA model.

Table 5. Area-level correlation of estimated and true poverty rate & sample size.

Mapping ρ n ρRural nRural ρUrban nUrban
Benchmark 0.905 40 0.734 24 0.971 16

Point 0.930 36 0.828 20 0.940 16

Voronoi 0.873 40 0.622 24 0.966 16

Aug. Voronoi 0.896 40 0.715 24 0.966 16

Simple HATA (BSA) 0.897 40 0.717 24 0.957 16

Simple HATA (IDW) 0.885 40 0.670 24 0.962 16

https://doi.org/10.1371/journal.pone.0241981.t005
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Results

Similar to Table 2 in the simulation, Table 6 shows which mapping scheme performed best

across the 500 evaluation rounds. Confirming initial findings of Section Simulation, there is

no clear winner. While point-to-polygon allocation performs best in out-of-sample predictions

in terms of RMSE (54.0% of the rounds), it performs poorest in in-sample predictions. One

possible explanation is that the lower average number of predictors used across rounds reduces

the effects of overfitting. While HATA (IDW), HATA (BSA) and the augmented voronoi

Fig 8. Commune-level coverage areas in Senegal. Areas for which estimates of indicators of interest are available are coloured in red. Lower resolution

built-settlements extents data reprinted from [10] under a CC BY license, with permission from WorldPop, original copyright 2018, are used in (a) for

illustrative purposes.

https://doi.org/10.1371/journal.pone.0241981.g008
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approach perform well across performance metrics, the overall difference between the

approaches is limited (see Fig 9 and Table 7).

In contrast, urban communes do not perform significantly better than rural ones as sug-

gested by the simulation results. Table 8 shows, similar to Table 5 for the simulation, the corre-

lation between the actual and predicted commune-level unemployment rates. Fig 10 shows an

orientation along the diagonal signalling overall good fit. A possible explanation is that the

structural relationship of mobile phone metadata covariates and the unemployment rate is

captured more robustly for rural areas as they constitute 385 out of 431 communes in Senegal.

To test this explanation, Tables 1 and 2 in S1 Appendix show the results for in-sample and

out-of-sample predictions by commune status, respectively. While urban communes outper-

form rural ones in in-sample prediction they fare worse for in the out-of-sample setting, thus

supporting the aforementioned hypothesis.

While settlement-based mapping schemes exhibit improvements in the model fit compared

to point allocation or voronoi tessellation, they do not translate into major efficiency gains in

terms of bias and rmse (see Fig 9b and 9c). Possible reasons are threefold: There is a significant

classification error in the settlement data. The complete absence of settlements in Thietty,

Kolda, support this assumption. As a cross-check, I re-run the analysis with an alternative

source of settlement information. Specifically, I use high-resolution population density esti-

mates from WorldPop [12], however, it does not lead to gains in efficiency (cf. Table 3 in S1

Appendix). Second, there is high spatial auto-correlation, thus little structural difference

between the densely and sparsely populated areas in terms of the variable of interest—here

unemployment—so even though latter are overemphasized in the calculations, it does not

affect the outcome predictions. Here, I re-run the application with alternative variables of

interest, i.e. the literacy rate and the population count (cf. Tables 4 and 5 in S1 Appendix);

again, without significant efficiency gains versa point allocation and voronoi tessellation.

Third, there is little within-area variation of the population density so that geographic weights

and settlement-based weights are very similar. The correlation coefficient between the weights

of the two voronoi approaches confirm that with ρ = 0.98. Also, I use the 100 meters x 100

meters population estimates from WorldPop to extract commune-specific variation coeffi-

cients. For 76.8% of the communes, the within-commune variance is below 1, for 4% it is

above 100 with a maximum at 3553.4.

In general, the value added of using propagation-based mapping schemes appears to be

negligible in this application, even though official coverage area estimates by Sonatel [59] hint

at the abundant presence of both overlaps and holes in the mobile network. A potential expla-

nation is that the simplified HATA model is misspecified to an extent where the introduced

errors cancel out the potential benefits. Looking at the specifications used in the application,

this is most likely due to an underestimation of the coverage as the augmented voronoi

Table 6. Best performing approach by round across rounds (in%).

Mapping Adj. R2 Bias RMSE Avg. # of predictors

in in out in out

Point 6.0 16.4 23.2 12.6 54.0 4.2

Voronoi 10.2 21.0 16.6 21.6 22.8 5.0

Aug. Voronoi (GUF) 27.2 22.6 18.0 33.2 5.2 6.5

HATA (GUF, BSA) 27.0 21.8 16.4 18.0 7.8 6.4

HATA (GUF, IDW) 29.6 18.2 25.8 14.6 10.2 6.2

https://doi.org/10.1371/journal.pone.0241981.t006
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Fig 9. Evaluation of poverty rate estimates for in-sample communes. Distribution of the three performance metrics adjusted

R2, bias and RMSE across 500 simulation runs on a comparable set of communes. The typical trade-off between the bias and the

variance of a small area estimator vis-à-vis the direct survey estimator becomes apparent.

https://doi.org/10.1371/journal.pone.0241981.g009
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approach closely resembles the upper bound for an overestimation using the HATA (BSA)

within a—by assumption—largely homogeneous network.

Conclusion

Augmenting official statistics with mobile phone metadata still faces multiple methodological

challenges, one of them is finding a common reference unit. As record-linkage on the individ-

ual-level presents considerable privacy risks a common procedure is to combine aggregates of

these two disparate data sources on a geographical level. However, the stochastic nature of

radio propagation makes it difficult to pin down coverage areas of the mobile network. Based

on this study the good news is that it does not have to be complicated if supervised learning /

prediction is the goal. While propagation-based models can help to refine the accuracy of cov-

erage area estimation, it does not greatly impact the quality of the outcome predictions. One

reason is that usually cells are located in a way that they provide a good service to as many MS

as possible. As radio signals fade over distance, this means they are in close proximity to areas

with high demand, i.e. densely populated places. Mapping schemes, in turn, mainly differ

from each other when looking at the limits of a cell. However, most of the traffic which is cor-

related with statistical data for training/prediction is generated nearby, so the differences

between mapping schemes become less relevant. Also, while geographical weights as used in

most applications in this field ignore heterogeneity occurring within the cells, the correspond-

ing statistical areas are often significantly larger. Therefore, cross-border cells, which could

actually profit from weighting schemes that take within-cell heterogeneity into account, occur

less frequent. In addition, cells and administrative (thus often statistical) areas are intimately

linked via population clusters as both tend to be centered around them.

However, this study just provided initial evidence to inform future mapping choices and

could be extended in multiple ways: First, both in the simulation and the application direc-

tional antennas are combined to omnidirectional antennas. While this is motivated by the typ-

ical data availability in real-world applications, it is of course a strong simplification of the

actual network topology. As the lower bound of spatial heterogeneity captured is given by the

number of unique areas resulting from intersecting coverage areas and statistical areas, studies

Table 7. Correlation with true unemployment rate and sample size in Senegal.

Mapping ρ n ρin nin ρout nout ρooc nooc
Point 0.535 431 0.765 192 0.320 210 0.355 29

Voronoi 0.542 431 0.778 196 0.313 235 - 0

Aug. Voronoi (GUF) 0.519 431 0.780 195 0.280 233 0.586 3

HATA (GUF, BSA) 0.511 431 0.770 194 0.269 232 0.670 5

HATA (GUF, IDW) 0.527 431 0.781 196 0.308 234 - 1

https://doi.org/10.1371/journal.pone.0241981.t007

Table 8. Area-level correlation of estimated and true unemployment rate & sample size.

Mapping ρ n ρRural nRural ρUrban nUrban
Point 0.535 431 0.507 385 0.527 46

Voronoi 0.542 431 0.519 385 0.469 46

Aug. Voronoi 0.519 431 0.495 385 0.411 46

Simple HATA (BSA) 0.511 431 0.487 385 0.374 46

Simple HATA (IDW) 0.527 431 0.510 385 0.369 46

https://doi.org/10.1371/journal.pone.0241981.t008
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such as [4] have shown that moving from an BTS-oriented to a cell-oriented analysis could

greatly affect analysis, especially via potential increases in sample size. However, it needs fur-

ther investigation how refined mapping schemes can add further value, particularly in the

presence of measurement uncertainty, to supervised learning setups in cell-level analysis. Sec-

ond, the study used comparatively simple empirical propagation models based on real-world

measurements largely ignoring actual environments. More advanced propagation models

exist, however, they require significantly more computing resources that could limit their

applicability as they take the physical surrounding via digital surface models into account.

Nevertheless, investigating this constitutes an interesting path for further research.
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Fig 10. True vs. estimated unemployment rate by commune status for a single simulation run.
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