
RESEARCH ARTICLE

Geographic abundance patterns explained by

niche centrality hypothesis in two Chagas

disease vectors in Latin America

Mariano Altamiranda-SaavedraID
1,2*, Luis Osorio-OlveraID
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Abstract

Ecoepidemiological scenarios for Chagas disease transmission are complex, so vector

control measures to decrease human–vector contact and prevent infection transmission

are difficult to implement in all geographic contexts. This study assessed the geographic

abundance patterns of two vector species of Chagas disease: Triatoma maculata (Erich-

son, 1848) and Rhodnius pallescens (Barber, 1932) in Latin America. We modeled their

potential distribution using the maximum entropy algorithm implemented in Maxent and cal-

culated distances to their niche centroid by fitting a minimum-volume ellipsoid. In addition,

to determine which method would accurately explain geographic abundance patterns, we

compared the correlation between population abundance and the distance to the ecological

niche centroid (DNC) and between population abundance and Maxent environmental suit-

ability. The potential distribution estimated for T. maculata showed that environmental suit-

ability covers a large area, from Panama to Northern Brazil. R. pallescens showed a more

restricted potential distribution, with environmental suitability covering mostly the coastal

zone of Costa Rica and some areas in Nicaragua, Honduras, Belize and the Yucatán Pen-

insula in Mexico, northern Colombia, Acre, and Rondônia states in Brazil, as well as a small

region of the western Brazilian Amazon. We found a negative slope in the relationship

between population abundance and the DNC in both species. R. pallecens has a more

extensive potential latitudinal range than previously reported, and the distribution model for

T. maculata corroborates previous studies. In addition, population abundance increases

according to the niche centroid proximity, indicating that population abundance is limited by

the set of scenopoetic variables at coarser scales (non-interactive variables) used to deter-

mine the ecological niche. These findings might be used by public health agencies in Latin

America to implement actions and support programs for disease prevention and vector
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control, identifying areas in which to expand entomological surveillance and maintain

chemical control, in order to decrease human–vector contact.

Introduction

Studies on species abundance at different spatial and temporal scales provide insight into the

community structure [1]. However, establishing general rules about geographic patterns in

populations abundance is difficult [2, 3]. Researchers have proposed multiple hypotheses to

describe the relationship between species distributions and geographic abundance patterns

[4]. An old macroecology hypothesis states that species might be most abundant in the center

of their geographic ranges, that is, the abundant-center hypothesis [5]. Some hypotheses state

that abundance is explained not just the geographic position of populations along their distri-

bution but also species’ environmental preferences. In this regard, some ecologists have evalu-

ated the relationship between population density and distributional patterns using the outputs

of ecological niche models (ENMs) as predictors of population abundance [6–9]. However, at

geographical scales, the most recent abundant-niche-centroid hypothesis, states that abun-

dance decreases as a function of the distance to the ecological niche centroid (DNC) [10].

Here, abundance decreases from optimal conditions at the centroid toward marginal condi-

tions [11, 12]. Therefore, the relationship between abundance and the DNC is expected to be

negative [13]. On the basis of the conjecture that demographic parameters and the location of

populations in niche space are related [13–16].

Learning about the relationship between population abundance and DNC has direct reper-

cussions on some of the most relevant environmental challenges (such as biological invasions,

habitat conservation, climate change, emerging diseases, and food security) [17]. Thus, the

need for evaluating this relationship has become yet more pressing. In some cases, when abun-

dance or density data are available, abundance can be modeled directly using Poisson regres-

sion or other statistical methods that use environmental predictors [18]. However, obtaining

data on abundance is complicated and demanding, especially for rare species [19]. Therefore,

ENMs is a low-cost option to model abundance in different spatial scales [20].

The evidence of a positive relationship between species abundance and environmental suit-

ability as a general pattern in nature is controversial [21]. The use of ENMs to assess the geo-

graphic distribution of population abundance is relatively recent, starting in the early twenty-

first century [4, 22]. Nielsen et al [7] analyzed the relationship between occurrence and abun-

dance of two species with different backgrounds (the bracken fern Pteridium aquilinum (Kuhn

in Kersten, 1879) and the moose Alces alces (Linnaeus, 1758)) and concluded that environ-

mental factors affecting population abundance might differ from those limiting population

distribution. In this regard, several studies have investigated relationships between species dis-

tribution and geographic abundance patterns by using ENM and DNC approaches [15, 22–

24]. Braz et al [21] reported the ability of distinct modeling methods to predict species abun-

dance and recommended that the relationship between population abundance and environ-

mental suitability be carefully interpreted when using ENMs to predict species distribution,

because biotic interactions can be the main driver of local population abundance within highly

suitable environments. In addition, the predicted abundance niche distance relationship is not

common [5, 11], but the differences between findings can instead rather be explained by meth-

odological issues [25].
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The characterization of the ecological fundamental niche is crucial to test the abundant

niche-centroid hypothesis, which would allow the estimated centroid that truly represents its

environmental optimum [13]. On the basis of the assumptions made about the species geo-

graphic distributions, we can interpret the environmental suitability estimated by climate-only

models as an approximation of the fundamental niche [21]. A starting point to study the geo-

graphic variation of population abundances is the biotic, abiotic, movement (BAM) frame-

work, which states that species distribution depends on three factors: dynamically linked biotic

interactors (B), unlinked abiotic stressors (A), and dispersal capacity (M). The area where all

three of these conditions meet represents species’ actual distribution and its occupied niche

[26]. Using BAM components and scenarios allows us to exemplify situations in which the

DNC estimated from distributional might or might explain species abundance [27]. Specifi-

cally, when using correlative models, BAM configurations in which species are not in climatic

equilibrium would lead to underestimation of the fundamental niche biasing the characteriza-

tion of the true centroid.

Information about the spatial population distribution patterns of insect vectors might

explain their behavioral traits and the effects of environmental factors on the population [28].

Insect abundance and distribution are regulated by several biotic and abiotic factors and their

interactions [29–32]. For example, precipitation, temperature and humidity are the most

important elements restricting abundance and regulating insect communities [33–35]. There-

fore, learning about the mechanisms underlying the incidence of vector-borne diseases

because of environmental changes will allow us to plan control strategies at different spatial

scales [36].

Ecoepidemiological scenarios for the transmission of Chagas disease are complex, so mea-

sures for vector control to decrease human–vector contact and prevent infection transmission

are difficult to implement in all geographic contexts [37]. In addition, because of the ecologi-

cal, geographic, and demographic heterogeneity of Chagas disease, more and better tools are

required for the proper characterization of its risk and transmission scenarios [38]. Thus, sec-

retaries of health or ministries of health in Latin America might use the relationship between

triatominae species’ distribution and geographic abundance patterns to support disease pre-

vention and vector control programs.

This study tested the abundant- niche centroid hypothesis to (i) determine whether the ten-

dency is toward negative relationship between population abundance and the DNC; (ii) esti-

mate the correlation between population abundance and Maxent environmental suitability,;

and (iii) map, at a fine spatial scale, the risk of Chagas transmission using, as input, the model

that better explains geographic abundance patterns of two vector species of Chagas: Triatoma
maculata (Erichson, 1848) and Rhodnius pallescens (Barber, 1932) in Latin America. Our null

hypothesis is that the internal structure of the niche explains the abundance patterns of the

species.

Material and methods

Study area and input data

The area of study extended from northern Mexico to the austral ends of Chile and Argentina.

We selected two triatomine species that are secondary Chagas disease vectors in Latin America

(T. maculata and R. pallescens). We compiled occurrence records from multiple sources,

including the available literature, online data on occurrence records from the Global Biodiver-

sity Information Facility (http://www.gbif.org/; accessed on August 17, 2019), and a database

from some colleagues and field observations from our long-term studies (see the summary in

S1 Table). We also used Moran’s I coefficient and semivariogram graphs to eliminate spatial
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autocorrelation. In addition, we downloaded abundance data from the literature included in

the database between 1971 and 2019 (PubMed, Scielo, ScienceDirect, Web of Science, Google

Scholar, JSTOR, and Directory of Open Access Journals). The spatial information was vali-

dated using the Leaflet library in R software [39], which verified that each point corresponding

to each record was correctly located according to the reported location, following the point-to-

radio method. This method ignores the fact that a locality record always describes an area, not

a dimensionless point, and that collecting might occur anywhere within the area denoted, pro-

viding only a point for a georeferenced record [40].

We used the 19 bioclimatic variables from CHELSA v1.1 online database as environmental

data [41]. These variables were built on the basis of monthly averages of climate data, (mainly

temperature and precipitation), as collected from meteorological stations, for 1979–2013, and

interpolated to the global surface [41], with a spatial resolution of 30 arc-seconds (~1 km2 cell

size). We conducted an initial correlation analysis to avoid collinearity related issues although

the ENM methods used here have proved to be robust when such issues appear [42, 43]), and

to increase computational speed. In other words, using R software, we removed from the anal-

ysis one from each pair of environmental variables, for which Pearson product–moment corre-

lations were >0.8 [44]. In addition, on the basis of the variable contribution estimates

generated by the jackknife plot in the Maxent output and correlation coefficients, we deter-

mined which variables to retain for further evaluation [45]. We obtained three sets of biocli-

matic variables per species, which we used to build niche models (Table 1). To identify a

calibration area (M) per species, we considered the global terrestrial ecoregions of the world

[46], with at least one presence record of the species in question as accessible regions. Region

M represents the areas to which a species has had access over a relevant period and has, there-

fore “tested” the associated environmental conditions for suitability [47, 48].

Ecological niche modeling

Each calibration process involved creating and evaluating candidate models using Maxent

3.4.1 [49]. We explored the best model parameterization using the R package kuenm [50]

based on distinct parameter settings: 3 sets of environmental variables, 17 values of regulariza-

tion multipliers (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 8, 10) and 7 potential com-

binations of three feature classes (linear [L], quadratic [Q], product [P], linear + quadratic

[LQ], linear + product [LP], quadratic + product [QP], linear + quadratic + product [LQP]).

We tested 357 candidate models for each species. We selected model performance and best

candidate models first by significance, second by performance, and subsequently by the Akaike

information criterion (AIC) AICCc, delta AICCc, weight AICCc and predictive power

Table 1. Performance metrics of the selected model.

Species Occurrence

records

Model settings Set of variables p-value-(partial

ROC)

Omission rate

(<5%)

Delta

AICc

Parameters

Rhodnius
pallescens

228 RM = 0.9; FC = lp;

Set 3

Bio1, Bio5, Bio7, Bio8, Bio12,

Bio18

0 0.049 0 11

Triatoma
maculata

271 RM = 0.3; FC = lq;

Set 1

Bio1, Bio3, Bio8, Bio9, Bio10,

Bio12, Bio19

0 0.067 0 11

RM, regularization multiplier; FC, feature classes (l = linear, q = quadratic, p = product) and sets of environmental variables per each species; ROC, receiver operating

characteristic; AIC, Akaike information criterion.

Bio1 = annual mean temperature; Bio3 = isothermality; Bio5 = maximum temperature of the warmest month; Bio7 = annual temperature range; Bio8 = mean

temperature of the wettest quarter; Bio9 = mean temperature of the driest quarter; Bio10 = mean temperature of the warmest quarter; Bio18 = precipitation of the

warmest quarter; Bio19 = precipitation of the coldest quarter.

https://doi.org/10.1371/journal.pone.0241710.t001
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(omission rate, E = 5%) [51]. We generated the final model and its evaluation by bootstrap for

each species using 10 replicates with raw outputs, and these were projected to the entire study

area (Latin America) [50]. In addition, we established a threshold to convert raw Maxent out-

puts into binary maps of suitable versus unsuitable environments using the reclassification

threshold of lower training presence (LTPT) [52] under an allowable error rate of E = 5%. The

thresholds were 0.0011 for T. maculata and 0.00015 for R. pallescens.

Geographic variation in population abundance

We got a total of 407 abundance data, including T. maculata (n = 197) and R. pallescens
(n = 210). We measured distances between observations of population abundances (S2 Table)

and the niche centroid. To estimate the niche and its centroid, we used the minimum-volume

ellipsoid (MVE) approach with the ellipsoid_selection function of the R package ntbox [53].

The ellipsoid_selection function has a model calibration and selection protocol that allows us to

select niche models that are statistically significant and have good performance. Next, we used

the selected MVEs to fit models that related DNCs to abundance data.

First, we used the ellipsoid_selection function to build MVEs for all combinations of n envi-

ronmental variables taken by m. Here, we estimated each model using the cov_center method,

which calls the MVE algorithm of the cov.rob function available in the R package MASS [54].

For each environmental combination, the MVE algorithm builds an ellipsoid of the smallest

volume that contains a k proportion of training points [55]. We estimated the statistical signifi-

cance of models via receiver operating characteristic (ROC) test for testing data [56] and calcu-

lated the performance as omission rates for both training and testing records (via the

inEllipsoid function of ntbox). The algorithm selected models that had a p-value of the partial

ROC test of� 0.05 and an omission rate of� 0.05; the proportion of training points inside the

ellipsoid was k = 0.95, and the environmental predictors used to fit the MVEs were bioclimatic

variables (CHELSA) that manifested correlations of p�0.8. We fit 5017 candidate models for

each species, in addition to the MVEs generated for all possible combinations of 2 or 3 vari-

ables selected from among 19 bioclimatic variables.

Second, we computed the Mahalanobis DNCs and environmental values of population

abundance records (note that these records are independent of the training and testing occur-

rences used in the ENM part) using the niche centroid and minimum-volume covariance

matrix of the selected MVEs. We created a matrix with the environmental information about

population abundance records and computed each row’s DNCs with respect to the minimum-

volume covariance matrix using the mahalanobis function in R.

Third, we calculated Spearman correlations between the DNC and population abundance

using the cor.test function in R [17]. To evaluate which ENM method provides a better expla-

nation of the geographic abundance patterns, we estimated the correlation between outputs of

the Maxent models selected by kuenm and population abundance and then compared it with

that concerning the niche centroid–based distances. Finally, we applied the ellipsoid_fit func-

tion of ntbox to build a suitability map based on the information about the MVE that provided

the best fit to population abundance data. We reclassified this map into four transmission risk

categories by dividing its values into four classes representing suitability quartiles. To intro-

duce the BAM diagram approach, we cut the risk maps cut using the M layer for each species.

Results

Ecological niche modeling

The complete occurrence database included 499 records of the presence of species, including

T. maculata (n = 271) and R. pallescens (n = 228) [17]. The final models were highly predictive
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of species distribution (Table 1). The potential distribution binary models estimated for T.

maculata indicated that the area with the highest environmental suitability extended from

Panama to northern Brazil (Fig 1A). R. pallescens showed a more restricted potential distribu-

tion, with environmental suitability mainly in the coastal zone of Costa Rica, Nicaragua, Hon-

duras, Belize and the Yucatán Peninsula in Mexico, northern Colombia, Acre and Rondônia

States in Brazil and a small portion west of the Brazilian Amazon (Fig 1B). Environmental vari-

ables with a larger contribution to the T. maculata model, were the annual mean temperature,

isothermality, and precipitation of the coldest quarter; while those with a larger contribution

to the R. pallescens model were the temperature annual range, annual precipitation, and pre-

cipitation of the warmest quarter.

Geographic variation in population abundance

We selected an MVE model per species (Table 2). The geographical representation of environ-

mental suitability obtained from DNC showed geographical areas closer to the niche centroid,

indicated that these are the places where more abundant populations are expected. For T.

maculata, in Colombia, these areas were mostly located in the Caribbean and Andean natural

Fig 1. Potential distribution maps for (A) Triatoma maculata and (B) Rhodnius pallescens- Models were

calibrated across the hypothesized area of dispersion (M) and transferred across all Latin America. Black dots are

indicated occurrences; gray areas modeled suitable conditions; and white areas unsuitable conditions.

https://doi.org/10.1371/journal.pone.0241710.g001

Table 2. Performance metrics of the selected MVE model.

Species Number of variables Set of variables Training Testing occurrence Records p-Value R2

Rhodnius pallescens 4 Bio1, Bio5, Bio6, Bio7 135 167 0.00084 0.31

Triatoma maculata 3 Bio3, Bio9, Bio11 222 340 0.00057 0.11

MVE, minimum-volume ellipsoid.

Bio1 = annual mean temperature; Bio3 = isothermality; Bio5 = maximum temperature of the warmest month; Bio6 = minimum temperature of coldest the month;

Bio7 = annual temperature range; Bio9 = mean temperature of the driest quarter; Bio11 = mean temperature of the coldest quarter.

https://doi.org/10.1371/journal.pone.0241710.t002
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regions, much of northern Venezuela, central Brazil, and small areas in Peru, Ecuador, and

Central America (Fig 2A). The niche space plot showed that the majority of environmental

conditions in the study area were far from the niche centroid (Fig 2B). For R. pallescens, the

geographical areas closer to the niche centroid had a similar pattern as T. maculata; areas

closer to the niche centroid were in Guyana, Suriname, French Guiana, the Northern Carib-

bean coast, and eastern plains in Colombia (Fig 3A). The environmental background was

closer to the niche centroid (Fig 3B).

The negative slope of the relationship between population abundance and the DNC in both

species indicated that the local population abundance is low far from the niche centroid and

that this effect is stronger at the upper limit of the abundance distribution (Fig 4A and 4B).

There was no significant relationship between environmental suitability and vector abundance

(Fig 4C and 4D).

The spatial representation of transmission risks for T. maculata showed that t northern of

Colombia and Venezuela, and in the central-west Brazil, are high-transmission-risk areas,

while the northernmost and southernmost areas of Latin America have low transmission risk.

For R. pallescens, the high-and moderate-risk areas, were in much of Colombia, Venezuela,

northern Brazil and the Guiana region (Fig 5).

Discussion

Ecological niche modeling of insects with medical relevance are a useful tool for designing vec-

tor control measures and offering base information to understand the ecoepidemiological

aspects of diseases [57–59]. R. pallecens has a more extensive, potential latitudinal range com-

pared to that previously reported in the literature, with more suitable areas in Costa Rica,

Fig 2. Geographical areas closer to the niche centroid. (A) Environmental suitability model of Triatoma maculata
representing the DNC, with values from 0 (blue) to 1 (red); population abundance records are represented in black. (B)

Environmental space (MVE). DNC, distance to the niche centroid; MVE, minimum-volume ellipsoid.

Bio3 = isothermality; Bio9 = mean temperature of the driest quarter; Bio11 = mean temperature of the coldest quarter.

https://doi.org/10.1371/journal.pone.0241710.g002
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Panama, and Colombia [60–63], indicating that this species has a high probability of coloniz-

ing new habitats, increasing its potential distribution to the south of the continent [63]. The

potential distribution increases the risk of Trypanosoma cruzi (Chagas, 1909) transmission in

regions where it is either absent or reported occasionally, such as Ecuador, eastern Peru, and

Bolivia [64]. In addition, the T. maculata distribution model corresponds with previous rec-

ords, mainly in Colombia, Venezuela, and northern Brazil [65–68]. However, the prediction of

environmentally suitable areas for the occurrence of this species in Panama, where it has not

been previously reported [68].

The metrics used to validate our calibration model (partial ROC, omission rate, and delta

AICc) suggest that the predictions are reliable. According to our calibration model’s predic-

tions, there is little probability of co-occurrence of the species for settlement in areas with

favorable environmental conditions; some places with potential sympatry are Panama, the

Colombian Caribbean, and northern Venezuela. Geographic co-occurrence implies biotic

interactions, such as vectoring and hosting pathogens. This proposition is a promising topic in

epidemiology and public health that can be examined by taking a co-occurrence networks

approach [69].

The effects of climate on triatomines have been studied, in details, especially highlighting a

few temperature based variables as factors that affect their distribution [70, 71]. Our results

partially corroborate those obtained by De La Vega and Chilman [72], who reported isotherm-

ality as one of the environmental variables with the most significant contribution in models of

six triatomine species, and minimum temperature of the coldest month as the limiting factor

for the distribution of most species evaluated in this study. Although temperature (25˚C–

58˚C) and relative humidity (~ 70%) are variables with a decisive impact on triatomine

Fig 3. Geographical areas closer to the niche centroid. (A) Environmental suitability model of Rhodnius pallescens,
representing the DNC, with values from 0 (blue) to 1 (red), abundance records are represented in black. (B) Environmental

space (MVE). DNC, distance to the niche centroid; MVE, minimum-volume ellipsoid. Bio5 = maximum temperature of the

warmest month; Bio6 = minimum temperature of the coldest month; Bio7 = annual temperature range.

https://doi.org/10.1371/journal.pone.0241710.g003
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distribution [73], this study found that some variables derived from rainfall have a significant

contribution in the potential distribution models of the species studied (such as precipitation

of the coldest quarter for T. maculata and annual precipitation and precipitation of the warm-

est quarter for R. pallescens). These findings are consistent with other studies [74, 75]. Pre-

cisely, precipitation of the driest month is a variable with the highest contribution for

Triatoma dimidiata (Latreille, 1811) [74], the seasonality of precipitation and the same precipi-

tation of the driest month are more critical for Triatoma pallidipennis (Stal, 1872) [75].

The abundant niche centroid hypothesis is a current topic in biogeography and ecology

[17]. However, more studies are required in order to assess the scope of this approach [5, 11,

17]. This is the first study to evaluate abundant niche centroid hypothesis using insects with

high ecoepidemiological importance as a study model. We believe that under BAM configura-

tions in insect vectors of human disease such as Triatominae, the effect of B (biotic) over Gp

(potential distribution area) and the geographic abundance patterns is strong, mainly because

of the relevance of the interaction with humans (hematophagous behavior) and interspecific

interactions [76, 77]. However, the population abundance–DNC relationships at large spatial

scales are negative, where population abundance increases with the proximity to the niche cen-

troid, indicating that population abundance is limited by the set of scenopoetic variables at

coarser scales used to determine the ecological niche. This pattern is known as the Eltonian

noise hypothesis [78].

In contrast, some studies have assessed the capacity of logistic Maxent environmental suit-

ability to explain population abundance patterns, using the default software parametrization,

and showed no significant relationship between environmental suitability and spatial

Fig 4. Population abundance–DNC relationships based on MVEs and Mahalanobis distances. Population abundance was low far from the niche centroid in (A)

Triatoma maculata and (B) Rhodnius pallescens (based on Maxent environmental suitability). There was no significant relationship between environmental

suitability and vector abundance in (C) Triatoma maculata and (D) Rhodnius pallescens. DNC, distance to the niche centroid; MVE, minimum-volume ellipsoid.

https://doi.org/10.1371/journal.pone.0241710.g004
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abundance patterns [6, 22, 23]. Our results are consistent with these previous findings, but our

study was performed under conditions different from previous ones. To our knowledge, this is

the first study to use the R package kuenm to test these relationships. The R package kuenm is

based on a robust model calibration process, facilitating the creation of final models based on

model significance, performance, and simplicity [50].

The geographical areas where we expect more abundant T. maculata and R. pallescens pop-

ulations, according to the spatial representation of the niche centroid, are terrestrial habitats

such as the Amazon rainforest, tropical dry forests, and tropical and subtropical grasslands

[46]. Changes in land use and land cover alter the exchange of heat, moisture, momentum,

trace-gas fluxes, and the climate at a local scale [79]. These anthropogenic activities could favor

the abundance of the species evaluated, because for R. pallescens, the land use transformation,

generalized in its distribution area, could induce changes in the vector ecology, initiating a gra-

dient that leads to synanthropic behavior [80]. R. pallescens has been found under both domes-

tic and sylvatic conditions. Colonies are also found in sylvatic ecotopes, such as the crowns of

at least four palms species: Attalea butyracea (Mutis ex L.f.) Wess.Boer, Cocos nucifera L.,

Oenocarpus bataua (Burret, 1929), and Elaeis oleifera (Cortés, 1897) [60, 81]. In addition, and

high densities of A. butyracea in forests are commonly associated with anthropogenic

Fig 5. Map of transmission risks categories obtained from the environmental suitability model of the DNC. (A) Triatoma maculata and (B) Rhodnius
pallescens. DNC, distance to the niche centroid.

https://doi.org/10.1371/journal.pone.0241710.g005
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activities, such as hunting of seed predators of these palms and past agricultural activity [82].

Attalea butyracea’s presence and abundance are the main components of the habitat defining

the ecological niche of R. pallescens [62, 80, 83]. In contrast, the differential relevance of T.

maculata in transmission cycles from distinct geographical areas indicates that the species can

quickly adapt to stable artificial ecotopes its their natural habitats are destroyed, and its distinct

ecological behaviors have different epidemiological implications [67, 83]. Further validation of

our results via field investigations to identify present species is required.

One of the main aspects to be considered when ascertaining the relationship between niche

centrality and population abundance is that dispersal between populations should be limited

[15, 17]. This assertion is consistent with our results, because the natural dispersion capacity of

triatomine vectors is not wide [84, 85]. For example, Triatoma infestans (Klug in Meyen, 1834)

register an effective flight range of at least 200 m [86]. Rhodnius bugs residing in A. butyracea
can invade domestic environments from within a circumference of at least 100 m [87]. In gen-

eral, migration in urban and peri-urban areas is influenced by factors such as light bulbs and

in forest habitats by the sylvatic–domestic zone distance [88].

Ecological niche modeling results for spatial epidemiology are widely used to generate risk

maps and answer ecological and distributional questions related to the complex disease system

[89, 90]. For example, recently, a risk map of cutaneous leishmaniasis based on anthropogenic,

climatic and environmental factors was designed [91]. Venezuela, northern Colombia, north-

ern and central-west Brazil, and the Guiana region are potential at-risk areas for Chagas dis-

ease. This result matches zones with current disease transmission [92], except for Guyana,

Surinam, and French Guyana, where Chagas disease is not a public health concern [92, 93],

although T. infestans is the main vector in Brazil [94] and Rhodnius prolixus (Stal, 1859) in

Colombia and Venezuela [95, 96]. In 2011, all the previously endemic Central America coun-

tries were formally certified as free of Chagas disease transmission thanks to control strategies

for eradication of the main domestic vector, R. prolixus [97]. Some South American countries

were certified, too [98]. R. pallescens and T. maculata have vectorial relevance in some South

and Central America countries and are considered a potential concern in ecoepidemiologically

as candidates to replace the domestic R. prolixus once it is eliminated from homes by control

campaigns [81].

Several other important factors drive the epidemiological risk due to the heterogeneous dis-

tribution of Chagas disease in Latin America [99]. Therefore, future models must consider

sociodemographic factors, reservoir distribution, human migration, palm distribution, level of

human action in nature, and housing materials [100, 101]. This study had a few limitations.

First, we did not evaluate sociodemographic factors because of a lack of data and, in some

cases, a lack of methodological tools that allow incorporation in ENMs [26]. Second was the

availability of robust population abundance data based on routine sampling and temporal

divergence between population abundance data and climate. However, ours is a novel

approach that uses as input one of the most important risk factors (potential vector abun-

dance) and might be useful to establish or implement control measures at a regional level, as

well as alert health systems and authorities in areas with higher risk of disease transmission.

Understanding how geographic abundance patterns of some insects increase the human

risk of exposure to vector-borne disease agents and evaluating the effects of differences among

species (e.g., differences in dispersal capacity) on population abundance patterns and geo-

graphic distribution patterns are critical for targeting limited prevention, surveillance, and

control resources. This information will help public health entities efficiently direct surveil-

lance and vector control interventions and will allow optimization of resources allocated for

disease control by, for example, targeting places to monitor vector abundance, drug adminis-

tration, or prevention education campaigns and identifying areas for the most effective use of
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pesticides [102]. However, public health research and policy have the challenge of incorporat-

ing the ecological dimension into management and vector control strategies to any important

degree.

We conclude that, population abundances increase according to the proximity to the cen-

troid, indicating that abundance is limited by the set of current scenopoetic variables at coarser

scales (non-interactive variables) used to determine the ecological niche. Nevertheless, this

relationship may be affected by different factors, including the variation of environmental con-

ditions under the effect of the climate change. Thus, to assess how the population dynamic of

R. pallescens and T. maculata respond to climate change using this methodological approach is

an unexplored but important avenue for future investigation [17].
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