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Abstract

Epigenetics plays a fundamental role in cellular development and differentiation; epigenetic

mechanisms, such as DNA methylation, are involved in gene regulation and the exquisite

nuance of expression changes seen in the journey from pluripotency to final differentiation.

Thus, DNA methylation as a marker of cell identify has the potential to reveal new insights

into cell biology. We mined publicly available DNA methylation data with a machine-learning

approach to identify differentially methylated loci between different white blood cell types.

We then interrogated the DNA methylation and mRNA expression of candidate loci in CD4+,

CD8+, CD14+, CD19+ and CD56+ fractions from 12 additional, independent healthy individu-

als (6 male, 6 female). ‘Classic’ immune cell markers such as CD8 and CD19 showed

expected methylation/expression associations fitting with established dogma that hyper-

methylation is associated with the repression of gene expression. We also observed large

differential methylation at loci which are not established immune cell markers; some of

these loci showed inverse correlations between methylation and mRNA expression (such

as PARK2, DCP2). Furthermore, we validated these observations further in publicly avail-

able DNA methylation and RNA sequencing datasets. Our results highlight the value of min-

ing publicly available data, the utility of DNA methylation as a discriminatory marker and the

potential value of DNA methylation to provide additional insights into cell biology and devel-

opmental processes.

Introduction

Epigenetics refers to the heritable, but reversible, regulation of various genomic functions,

including gene expression. It provides mechanisms whereby an organism can dynamically

respond to changes in its environment and “reset” gene expression accordingly [1]. Further-

more, these mechanisms play a critical role in development and cell lineage specificity [2, 3], as

highlighted recently when epigenomic profiling revealed a linear differentiation model for

memory T-cells [4]. One such epigenetic mechanism is DNA methylation. Methylation of the

cytosine nucleotide within CpG dinucleotides in DNA is well documented in humans [5, 6].

DNA methylation can be developmentally ‘hard-wired’ (as in the case of imprinting [7]),

underpin cell identity (i.e. cell markers of differentiation [8, 6]) or dynamic and change in

response to environmental factors [9]. Therefore, the investigation of an individual’s
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methylation pattern can reveal a lifetime record of environmental exposures as well as poten-

tial disease specific marks [10, 11].

It is well established that epigenetics contributes significantly to the developmental fate of

cells and tissues [8]. For instance, epigenetic mechanisms contribute to the differentiation of

hematopoietic stem cells from bone marrow [12, 13]. Importantly, DNA methylation appears

to play a crucial role at specific stages along the separation of blood cell lineages (myeloid, lym-

phoid) and contributes to the establishment and functionality of the final differentiated cell

type [14]. Epigenetic marks, including DNA methylation, are increasingly recognised as poten-

tial discriminators of cell type [15]. This attribute has been utilised by a number of researchers

to develop methods which correct for and/or deconvolute the variability introduced by cell

mixtures in DNA methylation studies, particularly in blood samples [16–20]; a notable exam-

ple—the so-called Houseman algorithm (Houseman 2012)—has been incorporated in to stan-

dard bioinformatic pipelines, including the R minfi package [21], for DNA methylation arrays.

This behaviour of DNA methylation as a marker also suggests the possibility of such ’marks’

revealing new aspects of biology—for instance it may highlight previously unrecognised

immune cell populations.

DNA methylation as an epigenetic mark is easily quantified and evaluated from blood.

Many studies using Illumina array technology have made their data publicly available, provid-

ing an excellent resource for hypothesis generation and testing in silica prior to wet-lab experi-

mentation. We hypothesised that because of its role in differentiation and development new

biological insights could be revealed by looking at loci that discriminate between immune cell

types; the potential utility of these loci in cell discrimination might be previously unrecognised

and/or could be harnessed to sort and/or identify potential new cell sub-types. Therefore, we

performed an in silico discovery experiment using data from a study which examined the

DNA methylation profile of human white blood cell populations [22]. Reinius et al., investi-

gated DNA methylation in: T cells (CD8+, CD4+); B cells (CD19+); natural killer cells (NK

cells; CD56+); monocytes (CD14+); granulocytes (Gran; both CD16+ and Siglec8+ cells); neu-

trophils (Neu, CD16+), and eosinophils (Eos, Siglec-8+). The Reinus study was one of the first

to illustrate the potential power of DNA methylation as a biomarker, and its role in cell lineage

identity with the authors profiling DNA methylation in six healthy males and identifying dis-

criminatory DNA loci in “classic” immune cell marker loci. Here, we use a machine learning

approach which, as anticipated, identifies discriminatory DNA methylation marks in ‘classic’

immune cell markers, but also highlights significant differential methylation in “non-classic”

immune markers, and genes for which a role in immune function is yet to be reported. We

interrogate this further in an independent cohort and publicly available data at both the DNA

methylation and gene expression level.

Material and methods

Discovery analysis

DNA methylation analysis. The Reinus data was downloaded using the R package MAR-

MAL-AID [23]. All applicable sample information is available at the GEO page (GSE35069,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35069).

Raw intensity data (Illumina 450K idats) were loaded into R [24] using the Bioconductor

minfi package [21]. Background correction and control normalisation was implemented in

minfi. Probes were classed as failed if the intensity for both the methylated and unmethylated

probes was<1,000. Any probe which failed in at least one sample, was removed from the

entire dataset. We also removed all previously identified cross-reactive probes [25], and 33 457

probes which we previously identified as aligning to the human genome greater than once
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[26]. All analyses were performed on beta values, calculated as the intensity of the methylated

channel divided by total intensity including an offset ((methylated + unmethylated) + 100).

Glmnet penalised ridge-regression mixed with lasso in an elastic-net framework was used

as implemented via the R package glmnet [27] to explore methylation association between

each of the cell-types (CD8+, CD4+, CD19+, CD14+, CD56+, Neutrophils, Eosinophils, Gran-

ulocytes, as well as combinations of cell populations, PBMC and whole blood). The number of

variables (~450,000 CpG sites, Illumina 450K platform) far outweighs the number of cell-

types; as such it is accepted that conventional statistical analysis procedures that test each CpG

within an independent regression model suffer from multiple testing burden and reduced sta-

tistical power. To overcome this issue we chose to use the penalised regression procedures of

glmnet, which tests all markers simultaneously, i.e. in a single regression model. Glmnet was

specifically designed to overcome issues of large variable number (k) and small sample size (n)

and has been successfully applied to several genome-wide association studies of SNPs [28–30]

and recently methylation [31]. We have previously developed and reported on this method in

detail to identify aging associated DNA methylation loci [26]. The Flt-SNE software with asso-

ciated R wrapper function was used for t-SNE analysis [32]. Briefly, glmnet fits a generalized

linear model via penalized maximum likelihood. The regularization path is computed for the

lasso or elastic-net penalty at a grid of values for the regularization parameter lambda λ. The

elastic-net penalty is controlled by α, and bridges the gap between lasso (α = 1, the default) and

ridge (α = 0). The ridge penalty shrinks the coefficients of correlated predictors towards each

other while the lasso tends to pick one of them and discard the others. The elastic-net penalty

mixes these two; if predictors are correlated in groups, an α = 0 tends to select the groups in or

out together. We selected an alpha at the lower end of the range (0.05) to shift the elastic-net

model more towards the penalised-regression (ridge regression), allowing us to retain more

related features (CpG sites which share variance). For the glmnet modelling we used cross-vali-

dation to determine the optimal value of regularization parameter λ with both minimum

mean squared error (MSE) and minimum MSE + 1SE of minimum MSE. The optimal λ values

were then used for predictor variable selection.

Pathways enrichment. Functional enrichment was performed on each set of CpG sites

identified for each cell type in the ToppGene Suite webserver (https://toppgene.cchmc.org/)

using the ToppFun function. Bonferroni adjusted correction was used in the reporting of all

pathways results (adjusted P<0.05).

Validation analyses

Samples. Ethics was obtained from, and all experimental protocols were approved by, The

Health and Disability Ethics Committee NZ (HDEC, 15/NTB/153). All methods were carried out

in accordance with relevant guidelines and regulations. Written, informed consent was obtained

from all participants who were all over 18 years of age at the time of collection. Blood from 12

self-reported healthy individuals (n = 6 male, n = 6 female) between 26–31 years of age inclusive,

was collected into sterile K2 EDTA vacutainers (BD Biosciences), and the buffy coat isolated.

Cell sorting–FACS. Peripheral blood mononuclear cells (PBMCs) were Fc receptor

blocked, labelled with fluorescent antibodies specific for: CD3 (OKT3), CD4 (OKT4), CD8

(HIT8a), CD14 (HCD14), CD19 (HIB19) and CD56 (HCD56; all antibodies were from Biole-

gend) and dead cells were identified by DAPI exclusion. CD4+, CD8+, CD14+, CD19+ and

CD56+ fractions were collected (Influx cell sorter, BD Biosciences) directly into ice-cold FACS

buffer, immediately frozen on dry ice and stored at –80˚C.

DNA and RNA extraction. Both nucleic acids were extracted simultaneously from snap

frozen cells using a Qiagen All prep DNA/RNA kit as per the manufacturers protocol. High
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quality genomic DNA and RNA were obtained, with RNA RIN� 7.5. Sufficient quality and

quantity of DNA and RNA was obtained to facilitate targeted DNA methylation and mRNA

expression profiling for CD4+, CD8+, CD19+, CD14+ and CD56+ cell sorted samples.

Targeted DNA methylation analysis. Pyrosequencing was designed and performed by

EpigenDX (USA), who were provided with the Illumina probe information (Table 1).

Targeted gene expression analysis. 150ng total RNA was reverse transcribed using

VILO Superscript (Thermo Fischer). QRTPCR was performed in triplicate on 7ng cDNA

using TaqManGene expression assays (CD40LGHs00163934_m1, DCP2Hs00400339_m1,

WIPI2Hs01093807,POUF2Hs00922179_m1, CD19Hs01047412_g1, CD8AHs01555594_g1,

CD248Hs00535586_s1, PARK2Hs01038322_m1, FAR1Hs00386153_m1, SLC15A4
Hs01547421_m1, KLRB1Hs00174469_m1). Gene expression was normalised against the non-

variable endogenous control genes GAPDH and GUSB, using the ΔCt method (Ctcandidate-

MeanCtcontrols).

Statistics

All analyses were performed in R 3.5.2. Differential methylation and expression analyses were

performed in R using the default student t-test. P values were adjusted using the Benjamini-

Hochberg method.

Data

All raw and processed data are accessible via GitHub, see https://github.com/sirselim/

immunecell_methylation_paper_data [DOI:https://doi.org/10.5281/zenodo.3366393]. A

github repository and related site have been made available to explore t-SNE results interac-

tively (https://sirselim.github.io/tSNE_plotting/).

Results

Discovery—DNA methylation discriminatory markers for immune cells

We identified DNA methylation at 1173 CpG sites (S1 Table) which clearly differentiated spe-

cific immune cell populations using publicly available data from whole blood [16]; hierarchical

clustering and t-SNE analyses provide a visual presentation and highlight that these markers

Table 1. Annotation, methylation status and TaqMan probe information for the 11 selected CpG sites.

IlmnID CellType Cell meth

(mean)

Other meth

(mean)

Absolute

Difference

Percent

Difference

CHR Position Gene Symbol Feature TaqMan Probe

cg24462702 CD4 0.13 0.82 0.69 69.07 X 135730445 CD40LG 1stExon Hs00163934_m1

cg10837404 CD4 0.34 0.88 0.54 54.14 5 112356289 DCP2 3’UTR Hs00400339_m1

cg02665297 CD19 0.08 0.95 0.87 86.91 7 5270984 WIPI2 3’UTR Hs01093807_m1

cg21596498 CD19 0.12 0.92 0.8 80.33 19 42618407 POU2F2 Body Hs00922179_m1

cg27565966 CD19 0.12 0.87 0.75 74.94 16 28943198 CD19 TSS200 Hs01047412_g1

cg25939861 CD8 0.14 0.81 0.67 67.35 2 87020937 CD8A 5’UTR Hs01555594_g1

cg11067179 CD8 0.41 0.84 0.43 42.85 11 66083541 CD248 1stExon Hs00535586_s1

cg23244761 CD14 0.14 0.93 0.79 78.76 6 161796850 PARK2 Body Hs01038322_m1

cg16636767 CD14 0.21 0.89 0.69 68.55 11 13694647 FAR1 5’UTR Hs00386153_m1

cg13617280 CD56 0.25 0.88 0.63 63.42 12 129299462 SLC15A4;
MGC16384

Body;

TSS200

Hs00377326_m1

cg13995453 CD56 0.43 0.88 0.45 45.19 12 9759653 KLRB1 Body Hs00174469_m1

https://doi.org/10.1371/journal.pone.0241367.t001
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cluster the cell populations in a biologically meaningful way (Fig 1). Pathway analyses of the

genes to which these 1173 CpG sites mapped strongly supported their discriminatory nature,

and, as expected, enrichment for immune cell biological function was observed: enrichment

for CD56 (> 79 genes), CD4 (> 68 genes), CD8 (> 34 genes), CD14 (> 69 genes) and CD19

(> 194 genes) was observed. Furthermore, these results suggest that discriminatory CpG

marker loci may map to genes with a hitherto unrecognised role in immune cell discrimina-

tion and/or function.

The robust differentiation between cell types was explained by non-overlapping sets of

CpGs specific for each cell population: CD8+ (n = 70); CD4+ (n = 96); CD19+ (n = 347);

CD56+ (n = 112); CD14+ (n = 126); Granulocytes (n = 128); Neutrophils (n = 128), and Eosin-

ophils (n = 166). The majority of these sites were relatively hypo-methylated in the cell type of

discrimination and hyper-methylated in all other cell populations analysed. The proportion of

hypomethylated/total non-overlapping discriminatory CpGs [for a given cell type] was: CD8+

(46/70, 65.7%), CD4+ (71/96, 74%), CD19+ (344/347, 99%), CD56+ (111/112, 99%), CD14+

(126/126, 100%), Granulocytes (94/128, 73.4%), Eosinophils (165/166, 99%) with Neutrophils

being the exception (33/128, 24.2%).

Interestingly, the majority of CpG marker sites identified (~95% of CpGs) mapped to anno-

tated gene loci, with many in regions involved in regulating mRNA expression (e.g.

Fig 1. Demonstration of immune cell population discrimination using sets of identified epigenetic markers

(CpGs). A) Hierarchical clustering of all 1173 identified probes demonstrates perfect separation of cellular populations.

B) Plot of t-sne dimensions derived from all methylation sites for all 60 samples. Points on the plot represent individual

samples. C) 2D t-sne plot of selected 1173 methylation markers identified via glmnet method. Points on the plot

represent individual CpG sites. An interactive version of this panel is available (https://sirselim.github.io/tSNE_

plotting/).

https://doi.org/10.1371/journal.pone.0241367.g001
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promoters). For each cell type marker the proportion of CpG sites mapping to annotated loci

was: CD8+ (62/70); CD4+ (78/96); CD19+ (255/347); CD56+ (99/112); CD14+ (82/126);

Granulocytes (102/128); Eosinophils (136/166), and Neutrophils (108/128). For individual

marker information including annotation see https://github.com/sirselim/immunecell_

methylation_paper_data [DOI: https://doi.org/10.5281/zenodo.3366393].

The largest DNA methylation difference observed was 87% between CD19+ cells against all

others. This 87% difference was observed in two genes,WIPI2 and CARS2; whileWIPI2 has a

reported role in the immune system [33], to the best of our knowledge no such function has

been reported for CARS2 to date. Ranked by the largest change in methylation the top five

CpG sites mapping to annotated loci for each cell type were:

CD19+: 87% (WIPI2, CARS2), 83% (RERE), 82% (LOC100129637), 80% (POU2F2)

CD4+: 69% (CD40LG), 56% (PUM1), 54% (DCP2, BAG3), 48% (SF1)

CD8+: 67% (CD8A), 64% (CD8A), 51% (CD8B), 49% (CD8B, CD8A)

CD56+: 63% (SLC15A4), 52% (RASA3), 48% (MAD1L1), 45% (KLRB1/CD161),

43% (KLRB1/CD161)

CD14+: 79% (PARK2), 70% (CENPA, PARK2), 69% (KIAA0146, FAR1)

Eosinphils: 73% (FAM65B), 72% (KIAA0317, APLP2), 70% (MEF2A, CCDC88A)

Granulocytes: 60% (VPS53, PCYOX1), 59% (ARG1), 58% (CSGALNACT1), 56%

(SH3PXD28)

Neutrophils: 14% (CUL9), 12% (LASP1), 7% (GFl1), 6% (LRFN1, NFAT5)

Validation in independent samples

In order to validate our observations from the in silica discovery experiment we selected 11 dif-

ferentially methylated loci (Table 1) for analysis in 12 independent samples from self-reported

healthy individuals (n = 6 female, n = 6 male) with an age range of 26–31 years inclusive. This

sample size is equivalent per sex to that of the Reinius data [22] used in the discovery analysis.

Our validation concentrated on cell sorted populations for CD4+, CD19+, CD4+, CD8+,

CD56+, CD14+ from which it was possible to collect enough cells for simultaneous extraction

of DNA and RNA of sufficient quantity and quality.

Ten loci were selected for validation, two for each cell type (Table 1). The most differen-

tially methylated site for each cell type CD4+, CD19+, CD8+, CD56+, CD14+ was selected

(WIPI2, CD40LG, CD8A, SLC15A4, PARK2 respectively). A second site from the top 5 (see

above) was selected for each of CD19+, CD4+, CD56+ and CD14+ (POUF2, DCP2, KLRB1,

FAR1). For CD8+ all sites in the top 5 mapped to this marker, we therefore selected the

sixth top loci which mapped toCD248 (43% difference in methylation). In addition, CD19

(ranked 27th in terms of % differential methylation [75%] of annotated loci) was included

as a control.

DNA methylation. The eleven candidate loci were assayed by pyrosequencing in the 12

samples from the validation cohort. We observed a strong agreement with the expected dis-

criminatory patterns of DNA methylation for all loci examined (Figs 2 and 3). S2 Table pres-

ents pair-wise student T-test statistics for the DNA methylation data.

RNA expression. Given the role that DNA methylation plays in regulation of gene

expression we also explored the mRNA levels of the 11 candidate loci. We investigated gene

expression by QRTPCR in the 12 independent, validation samples. A clear differentiation

between immune cells types at the gene expression level was observed for PARK2, POU2F2,

DCP2, CD248, CD8A, SLC15A4, CD4A0LG and CD19 but not for FAR1, WIPI2, KLRB1

(Figs 2 and 3). S3 Table presents pair-wise student T-test statistics for the gene expression

data.
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Validation in publicly available data

DNA methylation. In order to further investigate the panel of 1173 CpG sites identified

in our initial analysis we interrogated their methylation in 3 publicly available data sets. One,

GSE82084, using the Illumina 450K platform (as per the Reinus data used in our discovery

analysis) and two (GSE103541, GSE110554) using the more recent Illumina EPIC platform. Of

Fig 2. Heatmap representation of DNA methylation and gene expression data for all 11 genes investigated. Expression and methylation measures were split

into quartiles and their levels coloured accordingly.

https://doi.org/10.1371/journal.pone.0241367.g002
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Fig 3. Boxplots illustrating DNA methylation and gene expression levels for all 11 gene investigated. Methylation and gene expression data for a

given gene are in adjacent boxplots.

https://doi.org/10.1371/journal.pone.0241367.g003
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the 1173 CpG sites 1025 were present on both platforms. The two EPIC studies performed

DNA methylation analysis of cell sorted immune cell populations from adults [17], whereas

the 450K study looked at DNA methylation in cord blood from term and preterm newborns

[34]. Fig 4 presents a 2D tSNE plot of all 1025 CpG sites which clearly shows separation of

immune cells populations. It is interesting to note that the T cells of neonates (orange/red tri-

angles) sit between the CD4+ and CD8+ T cells consistent with an undifferentiated state. We

also observed independent clustering of nucleated red blood cells from the same preterm new-

borns cohort, despite the fact that this cell-type was not in our training set.

RNA expression. To further explore expression of the 11 genes we selected for our valida-

tion of DNA methylation and RNA expression on independent samples we interrogated a pub-

licly available RNAseq dataset, GSE107011 [35]. We extracted data for the same five cell

populations (CD4+, CD8+, CD19+, CD56+ and CD14+) and then extracted expression data

(TPM, transcripts per million) for each of the 11 genes. Fig 4 presents the data and illustrates

the ability of mRNA expression from these 11 genes to clearly differentiate cell types. It is inter-

esting to note that effector memory/terminal effector CD8+ cells (purple circles) are distin-

guished from central memory/naive CD8+ cells (purple squares) as well as a separation of

Th17 CD4+ cells (yellow diamonds) from other CD4+ cells (yellow circles). Interactive ver-

sions of all figures are available online (https://sirselim.github.io/tSNE_plotting/).

Fig 4. tSNE plot of sorted-cells from 211 samples based on 1025 CpG sites overlapping between the three publicly available datasets. Points represent individual

samples.

https://doi.org/10.1371/journal.pone.0241367.g004
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Discussion

DNA methylation is exquisitely placed to reflect a cell’s differentiation trajectory. Using pub-

licly available data, and a machine learning approach we identified 1173 unique CpG sites at

which DNA methylation discriminated CD8+, CD4+, CD19+, CD56+, and CD14+ cell popu-

lations as well as granulocytes, neutrophils, and eosinophils. We validated DNA methylation

in two discriminatory CpG loci for each of CD8+, CD4+, CD19+, CD56+, and CD14+ in 12

independent samples.

The majority of the 1173 discriminatory CpG sites mapped to annotated loci, and gene reg-

ulatory regions in particular. This suggests that, as expected, DNA methylation is playing a key

role in immune cell differentiation and cell-type identification. An important implication of

this is that DNA methylation can therefore be potentially harnessed to reveal previously

unidentified aspects of biology, such as immune cell sub-populations. A good example of this

is the transcription factor FOXP3 which plays a key role in the development and function of

Treg cells [36]; originally FOXP3 expression was used to identify Treg cells until it was deemed

insufficient for the robust identification of suppressive Treg cells [37, 38]. However, recent

work has reported that hypomethylated CpG sites in four regions of FOXP3, CAMTA1 and

FUT7 can be used to distinguish subsets of Tregs from non-regulatory CD4+ T cells [39].

These findings strongly support our view that DNA methylation, including potentially loci

identified in the current study, could be used to inform similar experiments and reveal other

drivers of specific immune cell subtypes.

Furthermore, large differences in DNA methylation were observed, and validated, at CpG

loci in genes which, while their potential role in immune cell biology has been reported, have

not previously been recognised as differentiators of immune cell type, such asWIPI2 [33] for

CD19+,SLC15A4 [40–42] for CD56+ and PARK2 [43, 44] for CD14+ cells. We also identified

POUF2/OCT2 for which a role as a B-cell differentiator was recently reported [14]. In addition,

significant, cell type specific changes in DNA methylation were observed, and validated, in

genes which, to the best of our knowledge, have no previous reported role in immune biology

(FAR1, CARS2). Taken together this highlights the significant potential of such analyses to

uncover new facets of cell biology, and immunology. Many more additional loci from our in
silica analyses showed large differences in DNA methylation, and these warrant further investi-

gation with respect to their roles in immune cell function.

To further explore the potential relationships between our selected cell methylation markers

we used a t-SNE; a statistical method that attempts to identify higher dimensional relationships

between data points and assign a faithful representation of those points in lower dimensional

space (usually 2D) [45]. As a method t-SNE has been widely adopted in single cell sequencing

experiments to identify clusters of cell populations [46, 47]. The resultant t-SNE analysis of the

selected 1173 markers (Fig 1) clearly demonstrates distinct groupings of CpG sites into respec-

tive cell populations. There is a small degree of non-specific clustering of CpG sites. This could

well be due to higher order background ‘signal’, or it could potentially be pointing towards

underlying biological relationships that have yet to be established. The potential of this

approach is highlighted by our analyses of publicly available data and 1025/1173 ’candidate

CpG sites’ which overlapped between 450K and EPIC Illumina bead platforms. Fig 4 illustrates

how well these 1025 CpG sites performed in additional, independent data. Furthermore, our

initial analyses focused on samples from adults and as such we could not comment on their

performance in neonates. However, one of the three public datasets we explored was from a

study investigating DNA methylation in cord blood from term and preterm newborns. This

clearly shows separation of immune cell sub-types isolated from neonates with the CpG mark-

ers we identified. It also suggests that such ’biomarkers’ can potentially identify additional
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aspects of cell identity; for instance, the T cells of neonates (orange/red triangles) sit between

the mature CD4+ and CD8+ T cells consistent with an undifferentiated state. Furthermore, we

also observed independent clustering of nucleated red blood cells from the same preterm new-

borns cohort. We believe these observations support the tantalising possibility that DNA meth-

ylation can be harnessed to reveal new aspects of cell biology including the identification of

currently unrecognised/undistinguishable immune cell sub-types.

mRNA expression analysis of the genes to which the 11 validated DNA methylation dis-

criminatory loci mapped also revealed discrimination at the mRNA level for CD248, and

CD8A (CD8+), POU2F2 and CD19 (CD19+), PARK2 (CD14+), DCP2 (CD14+), SLC15A4
(CD56+), and CD40LG (CD4+). There were three genes (FAR1,WIPI2, KLRB1) for which this

was not observed. One potential explanation is the presence of multiple isoforms per gene,

such that the primer/probe combination for the QRTPCR analysis did not target the correct

isoform. This possibility warrants further investigation especially given the increasing body of

evidence that DNA methylation is an important modulator of alternative splicing [48–50]. We

also investigated the expression of the 11 genes in a publicly available RNAseq dataset from

immune cell sorted populations and saw a clear separation of the cell types with these 11

Fig 5. tSNE plot of RNA expression in publicly available data for sorted-cells for the 11 genes highlighted in this study (RNAseq data from GSE107011). Points

represent individual samples. CD8+ central memory/naive purple squares, CD8+ effector/memory/terminal effector (purple circles), CD4 Th17 cells (yellow diamonds),

other CD4 T-helper cells (yellow circles), CD14 monocytes—classical (blue circles), intermediate (blue triangles), non-classical (blue crosses). Interactive versions of all

figures are available online (https://sirselim.github.io/tSNE_plotting/).

https://doi.org/10.1371/journal.pone.0241367.g005
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transcripts (Fig 5). In addition, the t-SNE analysis hints at the power of these 11 transcripts to

provide a more nuanced separation of cell types. For example, we observed distinct separation

of CD8 T-cells into two clusters of sub-populations (Terminal Effector/Effector Memory and

Central Memory/Naive). Similar clustering is seen within CD4 T-helper cells, with Th17 cells

clustering apart from other T-helper sub-types. We also see sub-type clustering within CD14

monocytes, with three distinct clusters: non-classical; intermediate and classical (see zoomed

in section Fig 5). Therefore, as seen for the DNA methylation analysis in public data the

marker loci appear to be able to provide a greater level of distinction than they were initially

selected for. This speaks to the role of epigenetics in ’hard-wiring’ cell lineage and regulating

gene expression, and highlights the exciting possibility that DNA methylation could be

explored to uncover previously unrecognised/identified immune cell sub-types.

Here we have further interrogated 11/1173 CpG sites identified in our initial discovery anal-

ysis of cell sorted immune cell populations from six healthy adult males—validating our obser-

vations in an independent cohort, and publicly available datasets (including both males and

females). The public data also included a cohort of neonates demonstrating that the candidate

loci held up in newborn samples too. We have not investigated whether differences are

observed in individuals of varying ethnicity, although this would be an interesting avenue for

further investigation. We have only looked at 11 loci; we believe that further investigation of

the remaining sites with respect to their biological significance will likely reveal additional

insights.

Conclusion

In summary, this study highlights the value of mining publicly available data, the utility of

DNA methylation as a discriminatory marker, the potential value of DNA methylation to pro-

vide additional insights into immune cell biology and the tantalising possibility that DNA

methylation can be harnessed to reveal new aspects of cell biology including the identification

of currently unrecognised/undistinguishable immune cell sub-types.
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