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Abstract

The robustness of networks against node failure and the response of networks to node

removal has been studied extensively for networks such as transportation networks, power

grids, and food webs. In many cases, a network’s clustering coefficient was identified as a

good indicator for network robustness. In ecology, habitat networks constitute a powerful

tool to represent metapopulations or -communities, where nodes represent habitat patches

and links indicate how these are connected. Current climate and land-use changes result in

decline of habitat area and its connectivity and are thus the main drivers for the ongoing bio-

diversity loss. Conservation efforts are therefore needed to improve the connectivity and

mitigate effects of habitat loss. Habitat loss can easily be modelled with the help of habitat

networks and the question arises how to modify networks to obtain higher robustness. Here,

we develop tools to identify which links should be added to a network to increase the robust-

ness. We introduce two different heuristics, Greedy and Lazy Greedy, to maximize the clus-

tering coefficient if multiple links can be added. We test these approaches and compare the

results to the optimal solution for different generic networks including a variety of standard

networks as well as spatially explicit landscape based habitat networks. In a last step, we

simulate the robustness of habitat networks before and after adding multiple links and inves-

tigate the increase in robustness depending on both the number of added links and the heu-

ristic used. We found that using our heuristics to add links to sparse networks such as

habitat networks has a greater impact on the clustering coefficient compared to randomly

adding links. The Greedy algorithm delivered optimal results in almost all cases when add-

ing two links to the network. Furthermore, the robustness of networks increased with the

number of additional links added using the Greedy or Lazy Greedy algorithm.

Introduction

Habitat loss and fragmentation due to changes in climate and land use are one of the main

drivers of the ongoing global biodiversity crisis [1–5]. The loss and fragmentation of habitat

lead to a decrease in habitat connectivity, impeding the movement of individuals between
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patches [6, 7]. This dispersal is crucial for species survival, as it facilitates interaction such as

the exchange of genes between different populations and thus allows for the existence of

metapopulations—a “population of populations” [8–10]. As a consequence of the constantly

intensifying climate and land-use change, it is important for species conservation that we par-

ticularly try to preserve and improve habitat connectivity by creating dispersal corridors

increasing a landscape’s permeability [11–14].

Graph theory provides powerful tools to represent and analyse habitat connectivity in

highly fragmented landscapes [15–18]. Here, metapopulations are represented by habitat net-

works where nodes represent habitat patches and links indicate how these are connected [16,

19, 20]. With the help of habitat networks, the loss of habitat can easily be represented by

removing nodes and reduced connectivity by removing links from the network [21–23].

Accordingly, many studies apply graph-theoretic tools to evaluate the effect of climate and

land-use change and to find solutions for these effects in landscape planning [24–26].

The resilience of networks against node and link removal, also called network robustness,

has been studied in a variety of networks, such as transportation networks, power grids, and

food webs [27–31]. A network’s clustering coefficient was identified as a good proxy for

robustness in a variety of networks such as habitat networks of herbivores and brown bears

[32–34]. The clustering coefficient of a network was proposed by Watts and Strogatz [35] and

is defined as the average of the local clustering coefficient of its nodes. A node’s clustering coef-

ficient measures how close its neighbourhood is to a complete network in terms of the relative

density of links in its neighbourhood. We exploit the relationship between the clustering coef-

ficient and network robustness and improve a network’s robustness by maximising the net-

work’s clustering coefficient.

The question we pose in this work is: Where should additional links best be created within

a habitat network to maximise its clustering coefficient? We propose an algorithm to identify

the missing link of a network that leads to the biggest increase in network robustness when

added to the network, by using the clustering coefficient as an indicator. We introduce two dif-

ferent heuristics, a Greedy algorithm [36] and a deducted Lazy Greedy algorithm, to maximize

the clustering coefficient if multiple links can be added. To speed up the two algorithms, we

developed a method to update the clustering coefficient of a network after adding one link as

opposed to calculating it without any prior knowledge. Both approaches can be applied to any

network, regardless of whether or not it is based on a spatial component. We test these

approaches and compare the results to the optimal solution for different generic networks

including a variety of standard networks independent of space as well as spatially explicit land-

scape based habitat networks.

In a last step, we simulate the robustness of habitat networks against habitat loss as pro-

posed by Heer et al. [51] before and after adding multiple links and investigate the increase in

robustness depending on both the number of added links and the used heuristic. The robust-

ness simulation combines the simulation of habitat loss by randomly removing habitat patches

from the network with the simulations of metapopulation dynamics to evaluate the metapopu-

lation’s robustness. Our proposed methods thus provide tools to facilitate landscape restora-

tion by identifying which location leads to the largest improvement when additional links are

added in these places.

Methods

Outline of analysis

We present the algorithm to update the clustering coefficient after one link is added and the

Greedy and Lazy Greedy algorithms to add more than one link. We evaluated the effect of
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adding links using the proposed algorithms on the clustering coefficient and therefore on the

habitat network’s robustness. To evaluate the effect of the proposed algorithms on the cluster-

ing coefficient, we added two links to a variety of networks using (1) the Greedy algorithm, (2)

the Lazy Greedy algorithm, and (3) a purely random approach. The clustering coefficients of

the resulting networks were then compared to the clustering coefficient of the original network

as well as the optimal solution, which was found by complete enumeration, i.e. iterating over

all pairs of potential links. We tested our algorithms on different network types, including

sparse standard networks (random, small-world, and regular) [37], dense standard networks,

and habitat networks based on artificial landscapes and a generic insect species with both ter-

restrial and aquatic life stages created by Streib et al. [38].

Finally, we evaluated the effect of modified habitat networks on metapopulation robustness.

To this end, we simulated and evaluated the metapopulation robustness as presented by Heer

et al. [51] and studied the increase in robustness after adding links using the Greedy algorithm,

the Lazy Greedy algorithm, and a random insertion approach. For these simulations, only the

landscape-based habitat networks were taken into account as the standard networks are in

general poor representatives of habitat networks.

Notation

We use the following notation throughout the manuscript. Let G = (V, E) be a simple, undi-

rected, loopless network with node set V and link set E� V × V.

Let (u, v) 2 V × V \ E be a pair of unconnected nodes in G. To be able to compare the net-

work G with the extended network that arises from G by adding the link (u, v) to G, we use the

following notation and set G0≔ (V, E [ {(u, v)}). If we want to emphasize the link (u, v), we

will write G + uv≔ G0.
For a node w 2 V, we set N(w) ≔ {v 2 V : (w, v) 2 E} as the set of neighbours of w, dw≔

|N(w)| as the degree, i.e. the number of neighbours, of w in G and d0w the degree of w in G0. A

triangle in a network G is a clique of three nodes {u, v, w}, i.e. all three nodes are connected

with each other by links: (u, v), (u, w), (v, w) 2 E. We set T(w) ≔ |{(u, v) 2 E : u, v 2 N(w)}| as

the number of triangles in G that involve w and T0(w) as the number of triangles in G0. Further-

more, with N(u, v) ≔ N(u) \ N(v) we denote the set of common neighbours of u and v and

k≔ |N(u, v)| the number of common neighbours (Fig 1).

Fig 1. Example network to illustrate notation. G = (V, E) with n = 8 nodes, 10 links, V = {a, b, c, d, e, u, v, w}, and E =

{(a, b), (a, w), (a, c), (b, u), (b, w), (u, e), (w, c), (w, d), (e, v), (d, v)}. We choosem = 1 link from the set E ¼ V � VnE of

all links not included in G. G0 is the network G after link (u, v) (represented as dashed line) was added: G0 ≔ G + uv.
ThenN(w) = {a, b, c, d}, dw ¼ d0w ¼ 4, T(w) = T0(w) = 2 (the triangles abw and acw) and CðwÞ ¼ 2�2

4ð4� 1Þ
¼ 1

3
. For u we

obtain du = 2 and d0u ¼ 3 and similarly T(u) = 0 and T0(u) = 1 (the triangle uev).N(u, v) = {e} and k = |N(u, v)| = 1. The

clustering coefficient of G equals CG ¼ 1

8
� 1

3
þ 0þ 0þ 1

3
þ 2

3
þ 1þ 0þ 0

� �
¼ 1

8
� 7

3
¼ 7

24
and the clustering coefficient of

the extended network is CG0 ¼ 1

8
� 1

3
þ 1

3
þ 1

3
þ 1

3
þ 2

3
þ 1þ 0þ 1

� �
¼ 1

8
� 4 ¼ 1

2
.

https://doi.org/10.1371/journal.pone.0240940.g001
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The clustering coefficient of a node v 2 V is defined as

CðvÞ ¼

( 2TðvÞ
dvðdv � 1Þ

if dv > 1

0 if dv ⩽ 1

:

It measures how close its neighbourhood is to a complete network in terms of the relative den-

sity of links in its neighbourhood. If all links between neighbours of v are present, then TðvÞ ¼
1

2
dvðdv � 1Þ and the clustering coefficient takes its maximum value of 1. If no links between

neighbours are present, then T(v) = 0 and thus C(v) = 0.

The clustering coefficient of a network G with n≔ |V| nodes is defined as the average over

the clustering coefficient of its nodes:

CG ¼
1

n

X

v2V

CðvÞ

and can take any value between 0 and 1. Computing the clustering coefficient of a network

with n≔ |V| nodes has an OðnoÞ complexity with ω ⩽ 2.376 [39]. The most complex part of

computing the clustering coefficient is finding triangles in a network, which can be done in

OðnoÞ using the adjacency matrix and fast matrix multiplication. Letm 2 N be the number of

links we want to add to the network and E � V � VnE a set of missing links to choose thesem
links from. Fig 1 gives an example for each variable introduced here.

Our aim is to improve a network’s robustness by adding links to the network. As the clus-

tering coefficient is a good proxy for robustness [23, 32–34], we want to identify those links

that should be added to the network to maximize the clustering coefficient. Mathematically,

we want to solve the following problem:

Problem 1. Let G = (V, E) be a network as above, E � V � VnE, and m ⩾ 1 be given. Find a
subset fe1; . . . ; emg � E such that G0≔ (V, E [ {e1, . . ., em}) has maximum clustering coefficient.
In other words, find a solution to

max CG0
s:t: G0 ¼ ðV;E [ fe1; . . . ; emgÞ

fe1; . . . ; emg � E:

Example 1. Consider the network G = (V, E) from Fig 1.We set E ¼ V � VnE and m = 1, i.e.
we allow all unconnected pairs of nodes to be connected and the task is to identify m = 1 pair that
maximizes the clustering coefficient when connecting the pair and adding the link to G. Problem
1 has two solutions, the pair (u, v) as well as the pair (d, e), which both increase the clustering
coefficient to 0.5. If we set m = 2 in the same problem, we obtain the unique solution (b, e) and
(d, e) with a new clustering coefficient of 0.625.

In some cases, we want to add any link to the network in order to maximize the clustering

coefficient and it makes sense to find those potential links {e1, . . ., em} within all pairs of

unconnected nodes. In this case we set E≔V � VnE. However, especially when considering

habitat networks, we may want to restrict this set to only some pairs of unconnected nodes.

For habitat networks, for example, we may want to restrict the set to those pairs of uncon-

nected nodes that are within a certain (Euclidean) distance from each other. This represents

the assumption that the species in focus has a limited dispersal distance independent of the

underlying land-use class [40].
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Update clustering coefficient

We first aim to solve Problem 1 form = 1, i.e., we want to find the pair of nodes ðu; vÞ 2 E,

such that the network G0 = G + uv has maximum clustering coefficient.

A naïve approach to find the relevant nodes u and v is to iterate over all unconnected pairs

of nodes, connect those, and calculate the clustering coefficient of the extended network from

scratch. This has a run time of OðjEjnoÞ, as we iterate over jEj pairs and calculate the clustering

coefficient each time from scratch. To speed up the process, however, we can exploit the fact

that adding the link does not affect the clustering coefficient in most nodes. To see this, con-

sider the degree of each node in G as well as the number of triangles it is part of. The degrees of

the nodes in G0 equal the degrees of the nodes in G, except for the two nodes u and v, as adding

(u, v) to G increases the degrees of u and v by exactly one. The number of triangles in u and v
each increases by the number of common neighbours of u and v, as each common neighbour

w 2 N(u, v) introduces the triangle uvw and every triangle that does not use the link (u, v) also

exists in G. Similarly, the number of triangles for each common neighbour of u and v increases

by exactly one. The number of triangles does not change for every other node that is not u, v
or a common neighbor of u and v. Accordingly, we can calculate the clustering coefficient of

G0 by adding the difference caused by u, v and every common neighbour w of u and v to the

original clustering coefficient CG:

CG0 ¼ CG þ
1

n
DCðuÞ þ DCðvÞ þ

X

w2Nðu;vÞ

2

dwðdw � 1Þ

 !

ð1Þ

with

DCðuÞ ¼

( 2kðdu � 1Þ� 4TðuÞ
duðd2

u � 1Þ
if du > 1

1 if du ¼ 1

:

See S1 File for the proof of Eq 1.

It follows from Eq 1 and Fig 2, that adding a link to a network may also result in a smaller

clustering coefficient compared to the original network. If u and v have no common neigh-

bours, the sum over all common neighbours in Eq 1 is empty (and thus equals 0) and

DCðuÞ ¼
2 � 0 � ðdu � 1Þ � 4TðuÞ

duðd2
u � 1Þ

¼
� 4TðuÞ
duðd2

u � 1Þ
⩽ 0:

Fig 2. Varying effects of adding a link to a network on the clustering coefficient. (a) Original network with

clustering coefficient CG ¼ 0:3�8. (b) Network after connecting two nodes with no common neighbours, CGþe1 ¼ 0:2�7.

(c) Network after connecting two nodes with a common neighbour, CGþe2 ¼ 0:�7.

https://doi.org/10.1371/journal.pone.0240940.g002
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Similarly, ΔC(v) ⩽ 0 and

C0G ¼ CG þ
1

n
DC uð Þ þ DC vð Þ þ 0ð Þ⩽CG:

Using Eq 1, we can update the clustering coefficient after adding a new link (u, v) to a net-

work G = (V, E) with known clustering coefficient C.

Algorithm 1 Update clustering coefficient
1: procedure UPDATECLUSTERING(G = (V, E), CG, (u, v))
2: Cmax  0
3: T  Triangles(G)
4: CN  CommonNeighbours(u, v)
5: k = |CN|
6: if du > 1 then
7: Cmax  Cmax þ

2kðdu � 1Þ� 4TðuÞ
duðd2u � 1Þ

8: else Cmax  Cmax + 1
9: if dv > 1 then
10: Cmax  Cmax þ

2kðdv � 1Þ� 4TðvÞ
dvðd2v � 1Þ

11: else Cmax  Cmax + 1
12: for w 2 CN do
13: Cmax  Cmax þ

2

dwðdw � 1Þ

14: Cmax  
Cmax
jVj

15: Cmax  Cmax + CG
16: return Cmax

Algorithm 1 takes a network G = (V, E), its clustering coefficient C, and a pair of uncon-

nected nodes u and v as input and returns the clustering coefficient of the extended network

G + uv using Eq 1. It finds the set of common neighbours of u and v, calculates ΔC(u) and ΔC
(v), and then iterates over the set of common neighbours of u and v and increases the sum of

ΔC(u) and ΔC(v) by 2

dwðdw� 1Þ
for each common neighbour w. The result is then averaged over

the number of nodes in G and added to the original clustering coefficient. Eq 1 proves the cor-

rectness of this algorithm.

We use Algorithm 1 to develop a faster algorithm than the naïve one to find a solution of

Problem 1 form = 1. It iterates over the set E of all possible pairs of nodes and calculates the

new clustering coefficient by updating the clustering coefficient of the original network.

Algorithm 2 Maximize clustering coefficient
1: procedure MAXIMIZECLUSTERING(G = (V, E), E)
2: CG  Clustering(G)
3: T  Triangles(G)
4: Cmax  CG
5: for ðu; vÞ 2 E do
6: C = UpdateClustering(G, CG, (u, v))
7: if C > Cmax then
8: Cmax  C
9: emax  (u, v)
10: return Cmax, emax

Algorithm 2 iterates over all potential links, uses Algorithm 1 to update the clustering coef-

ficient and returns a link that yields the maximum clustering coefficient. As Algorithm 1 with

input (u, v) returns the clustering coefficient of the extended network G + uv, and Algorithm 2

iterates over all potential links, it returns an optimal solution of Problem 1 form = 1 in

Oðno þ jEjdmaxÞ, where dmax is the maximum degree of the nodes in V.
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The algorithm solves Problem 1 reasonably fast form = 1. When adding multiple links,

however, every combination of potential links needs to be checked, slowing the procedure sub-

stantially down even for only two links: There are jEj
m

� �
combinations of potential links and exe-

cuting Algorithm 2 for each combination has a complexity of O no þ jEj
m

� �
jEjdmax

� �
. We thus

introduce two heuristics, Greedy and Lazy Greedy, that identify the maximum clustering coef-

ficient of a network when multiple links can be added.

Greedy

The Greedy algorithm successively adds one link that maximizes the clustering coefficient of

the current network. Starting with a network G, the algorithm iterates over the set E of all pos-

sible pairs of nodes and connects the pair u, v with the biggest increase in the clustering coeffi-

cient (see Algorithm 2). It then iterates again over all possible pairs of nodes in G0 to find the

second link and continues, untilm links were found.

Algorithm 3 Greedy
1: procedure GREEDY(G = (V, E), E, m)
2: for i 2 [1, m] do
3: C, ei = MaximizeClustering(G = (V, E), E)
4: G = G + e
5: return e1, . . ., em

We can calculate the clustering coefficient and the number of triangles once and then

update these numbers. In that case, the Greedy algorithm calculates the solution in

Oðno þ jEjdmaxmÞ, as it executes Algorithm 2 exactlym times. However, the solution found by

the Greedy algorithm 3 is not necessarily optimal: Consider the network depicted in Fig 3a

and assume we can add two links. The Greedy algorithm will add the links shown in Fig 3b,

while the links shown in Fig 3c lead to a higher clustering coefficient.

Lazy Greedy. For even faster calcuations—at the cost of optimality—we introduce a sec-

ond heuristic, that iterates over all potential links once and then picks them links that have the

highest increase in the clustering coefficient if they were to be added individually.

The Lazy Greedy algorithm executes Algorithm 2 once and sorts the results afterwards.

Using quick sort, sorting can be done in OðjEj log ðjEjÞÞ and we obtain a run time of Oðno þ
jEjdmax þ jEj log ðjEjÞ [41, 42]. Similar to the Greedy algorithm, the Lazy Greedy algorithm

does not necessarily find the optimal solution to Problem 1. Fig 3 also serves as example of a

Fig 3. Example of non-optimal behaviour of the Greedy algorithm. (a) Original network with clustering coefficient

C = 0. (b) Network with two links selected using the Greedy algorithm and clustering coefficient C ¼ 0:�5. (c) Optimal

solution with clustering coefficient C ¼ 0:60�5. The value corresponding to the dashed lines show the increase of

clustering coefficient by adding the corresponding link to the network in (a). After adding one of the links depicted as

dashed lines to the network in (c), the contribution of the other link increases to 0:3�5, as the two nodes incident to that

link now have one common neighbour more (see Eq 1).

https://doi.org/10.1371/journal.pone.0240940.g003
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non-optimal solution, as the Lazy Greedy algorithm will select the same links as the Greedy

algorithm.

Algorithm 4 Lazy Greedy
1: procedure LAZYGREEDY(G = (V, E), E, m)
2: CG  Clustering(G)
3: T  Triangles(G)
4: results  new Array
5: for ðu; vÞ 2 E do
6: C = UpdateClustering(G, CG, (u, v))
7: append (u, v, C) to results
8: results  sort results by C
9: return results[1], results[m]

Random approach

We compared the described heuristics to the results of a random approach, where links were

added uniformly at random to a network.

Networks

We tested the described heuristics on a variety of network types, namely landscape-based habi-

tat networks created by Streib et al. [38] with random, clustered, and contiguous allocation of

habitat patches / nodes as well as networks common in mathematics (random, regular, and

small-world networks) [37]. The random, regular, and small-world networks represent a vari-

ety of network structures and are widely used in many disciplines, such as engineering, social

sciences, finance, biology, and also ecology [35, 37, 43–46]. Fig 4 shows examples of the

networks.

Landscape-based habitat networks. The landscape-based habitat networks were set up

by Streib et al. [38] based on a generic insect species with aquatic and terrestrial life stages,

landscapes consisting of different landscape types associated with varying dispersal cost, and a

50 km × 50 km section of a real stream network from southwest Germany. The stream net-

work section was divided into 25 tiles of 10 km × 10 km areas and intersected with an artificial

landscape consisting of open agricultural land, forestry land, and urban area with associated

dispersal costs. A subset containing 10% of the pixels in the real stream network were chosen

as habitat patches. We considered 3 types of habitat patch arrangements leading to 3 types of

landscape-based habitat networks, namely (1) random (with all habitat patches randomly

selected along streams with equal probability), (2) clustered (with only some habitat patches

randomly selected along streams with equal probability and the others randomly selected

along streams with equal probability within a given radius around any of the initially selected

habitat patches), and (3) contiguous (with a smaller fraction of habitat patches randomly

selected along streams with equal probability and a larger fraction of others randomly selected

along streams with equal probability within a given radius around any of the initially selected

habitat patches, leading to a more contiguous arrangement of the habitat patches compared to

the clustered allocation). Reflecting the different stream structures in the different landscape

tiles, this results in habitat networks with 54 to 111 habitat patches. Habitat patches were con-

nected with the help of a least-cost path analysis based on the dispersal cost in the underlying

landscape. If the cummulative dispersal cost between two habitat patches was less than the

maximum dispersal cost, the two patches were considered to be connected and a correspond-

ing link was added to the network. Differing from Streib et al. [38], we assumed shorter dis-

persal ranges of about 1300m through open agricultural land to simulate particular sensitive

species. These dispersal ranges translated to maximum dispersal costs of 650 (as we assumed a
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cost of 50 to traverse a 25m × 25m area of open agricultural land, see [38] for further informa-

tion). To ensure that all network types have similar distributions of the number of links, we

finally adjusted the maximial dispersal costs to 900 for random, 650 for clustered, and 400 for

contiguous habitat allocation. In total we analysed 250 networks per network type random,

clustered, and contiguous. See Fig 4(a)–4(d) for examples of the networks.

Standard networks. We created standard networks (random, regular, and small-world)

using algorithms from the Python package NetworkX [47]. In random networks, two nodes

are connected purely at random with uniform distribution and nodes usually have very similar

degrees. They were generated using the algorithm proposed by [48]. Regular networks are net-

works, where every node has the same degree [37]. Small-world networks are a mixture of reg-

ular and random networks and represent the small-world phenomenon from the social

sciences [37, 49]. While most nodes are not connected to each other, neighbours of a node are

connected with particularly high probability. In other terms, small-world networks are highly

clustered and at the same time also exhibit particularly low average shortest path distances. We

used the algorithm proposed by [50] to construct small-world networks.

We created two sets of these standard networks varying in their number of links per net-

work. For sparse standard networks, all parameters were set to create networks with a number

Fig 4. Networks examined. (a)–(c): Landscape-based networks. Dark-blue dots indicate nodes (habitat patches), black lines indicate links (dispersal pathways). The

light-blue lines indicate the underlying stream network structure. (a) random allocation of habitat patches, (b) clustered allocation, (c) linear allocation. (d)-(f):

Standard networks. (d) regular network, (e) small-world network, (f) random network.

https://doi.org/10.1371/journal.pone.0240940.g004
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of nodes and corresponding links similar to the landscape-based networks. This led to very

sparse networks with only 4% of links present. Dense standard networks were also created

with a number of nodes similar to the landscape-based networks, however the parameters

were chosen such that about 75% of the potential links were present. S3.1 Table in S1 File

shows the parameters and algorithms used to create the standard networks and Fig 4(e)–4(f)

show examples of the networks.

In total, we analysed 250 networks per network type with the number of nodes between 50

and 111.

Effect of used algorithms on the clustering coefficient

We evaluated the effect of the two proposed algorithms on the clustering coefficient and com-

pared the results to randomly adding links. To this endm = 2 links were added to each of the

created networks using (1) the Greedy algorithm, (2) the Lazy Greedy algorithm, and (3) a

purely random approach. We compared these results with the clustering coefficient of the orig-

inal network and the optimal solution, which was found by iterating over all pairs of potential

links.

In this analysis, we considered both standard and landscape-based networks, as the heuris-

tics to maximize the clustering coefficient can be applied to any network. We defined the set of

potential links to be the set of all unconnected pairs of nodes E ¼ V � VnE.

Effect of used algorithms on robustness of habitat networks

In a last step, we evaluated how much the added links improved the robustness of landscape-

based habitat networks against habitat loss. We applied the simulations introduced by Heer

et al. [51] to simulate habitat loss and evaluate the habitat network’s robustness. For the simu-

lations, a random habitat loss scenario was assumed where habitat patches (i.e., nodes) and

corresponding links get lost permanently purely at random. On the remaining networks, ran-

dom local extinctions were simulated, in a way that depends on the local-extinction risk of spe-

cies and each patch’s neighbourhood. Empty habitat patches could then be recolonised

through dispersal from connected colonised habitat patches, in a way that depends on the dis-

persal range of species and each patch’s neighbourhood. These extinction and recolonization

processes were continued until a stationary distribution was reached. From this we obtain the

fraction of colonised habitat patches. These simulations of habitat loss and subsequent extinc-

tion and recolonization processes were repeated for different degrees of habitat loss to obtain a

robustness curve describing the fraction of colonised habitat patches in dependence on the

fraction of lost habitat patches. Based on this robustness curve, we used the ‘area under the

curve’ (AUC) as a measure to quantify metapopulation robustness. See S1 File and [51] for

more details on the robustness simulation.

We compared the heuristics Greedy and Lazy Greedy with randomly adding links to the

network and added 5 to 30 links in increments of 5. Baseline of these simulations was the

robustness of the original habitat networks and we compared the increase of robustness origi-

nating from adding links using the different algorithms.

As the robustness simulations were specifically designed to evaluate the robustness of meta-

populations on habitat networks, we considered the landscape-based habitat networks in this

section only. We restrict the set of potential links E to those unconnected pairs of patches that

are at most 2500 m apart from each other:

E≔ fðu; vÞ 2 V � VnE j distEuclðu; vÞ < 2500mg:

This represents the real world assumption, previously used in [38], that our generic species can
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traverse at maximum 2500 m of open agricultural land with the dispersal distance reducing for

areas with lower permeability such as urban area and forestry.

Results & discussion

Effect of used algorithms on the clustering coefficient

To compare the different algorithms, we added two links to the networks using each of the

algorithms and calculated the difference in the clustering coefficient between the extended net-

work and the original one. The optimal solution of adding two links to the landscape-based

networks increases the clustering coefficient by 0.05 on average. For the sparse networks, the

optimal solution resulted in a mean increase between 0.02 (regular networks) to 0.04 (small-

world networks). All three dense network types showed no increase in the clustering coeffi-

cient after two links were added (Fig 5).

Our proposed algorithms Lazy Greedy and Greedy return results close to the optimal solu-

tion with Lazy Greedy being slightly worse. For both the Greedy and optimal solution the

mean increase in the clustering coefficient was 0.030 over all network types and for the Lazy

Greedy solution the mean increase was 0.029.

Adding two links randomly decreases the clustering coefficient for almost all landscape-

based networks with a mean decrease of 0.15. The clustering coefficient for standard networks

(both sparse and dense) remains unchanged by adding two links randomly.

Fig 5. Greedy and Lazy Greedy algorithm applied to landscape-based and sparse networks lead to a higher

increase in the clustering coefficient compared to randomly adding links. The horizontal axis shows the different

network types, the vertical axis shows the change in clustering compared to the original network. The colour coding of

the box-plots indicates the different algorithms.

https://doi.org/10.1371/journal.pone.0240940.g005
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For sparse networks, this implies that applying our heuristics to identify new links has a

much larger impact on the clustering coefficient compared to the random approach. The same

holds for habitat networks, which are usually sparse, leading to the conclusion that both the

Greedy and Lazy Greedy heuristic are preferable to randomly adding links to a habitat net-

work. For dense networks, however, adding two links has almost no impact on the clustering

coefficient, independent from the considered method. As the majority of nodes in dense net-

works has a particularly high degree, the impact of an additional link decreases (see Eq 1),

which explains the different results for dense networks. Furthermore, the clustering coefficient

of dense networks is already rather high, leading to a smaller potential increase as well.

To quantify, how close the Greedy and Lazy Greedy algorithms approximate the optimal

solution, we compared the clustering coefficient of the optimal solution with that produced by

the Greedy and Lazy Greedy algorithm. The Greedy algorithm returned the optimal solution

in 97.6% of the 2250 networks and the discrepancy between the clustering coefficient of the

optimal solution and that produced by the Greedy algorithm was at most 3.8%. The Lazy

Greedy algorithm, on the other hand, returned the optimal solution in only 76.0% of all net-

works and the discrepancy went up to 63.6%, increasing the clustering coefficient to 0.03

instead of 0.05 in that particular case (Fig 6).

Effect of used algorithms on robustness of habitat networks

The robustness of networks increased with the number of additional links, when the links

were added with the help of the Greedy or Lazy Greedy algorithm. The correlation between

the mean increase in robustness and number of additional links is r = 0.8 for the Greedy algo-

rithm and r = 0.76 in case of the Lazy Greedy algorithm. If the links are added randomly, the

increase in robustness is much smaller and the correlation between robustness and number of

additional links drops to r = 0.54 (Fig 7).

Fig 6. The Greedy algorithm returns an optimal solution in almost all cases. The vertical axis shows the quotient

between optimal solution and solution of the heuristic. Only non optimal results are shown.

https://doi.org/10.1371/journal.pone.0240940.g006
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These results strongly suggest that using the presented algorithms to identify the links that

should be added to a habitat network results in a much higher increase in robustness com-

pared to randomly adding links.

Conclusion

We introduced two heuristics to maximise the clustering coefficient of a network by adding

links. These methods work particularly well for sparse networks and yield a much higher

increase in habitat network robustness compared to randomly adding links. Both the Greedy

and Lazy Greedy heuristic return results close to the optimal solution for addingm = 2 links.

While the Lazy Greedy algorithm is faster for largem, the Greedy algorithm returns results

closer to the optimal solution and we suggest to apply the Greedy algorithm if possible.

Habitat connectivity is crucial for species survival, and habitat restoration efforts need to

consider the robustness of habitat networks against habitat loss to increase connectivity and

mitigate effects of future habitat loss. Our study shows that the location of links—and not only

the number of links—has a large impact on metapopulation robustness, and presents a fast

way to determine the best location for further links. It is the first study—to the best of our

knowledge—that maximises the clustering coefficient of networks by adding links.

The heuristics presented here can be used to plan restoration efforts and increase habitat

connectivity, as they provide locations in the habitat network that would lead to the largest

increase of metapopulation robustness if they were connected. Simultaneously, our study

shows that the location of links has a large impact on metapopulation robustness and thus

emphasizes the importance of further mathematical models to improve habitat restoration

strategies.

In summary, we presented two heuristics that identify which parts of a network need to be

connected to obtain a higher network robustness. These heuristics work particularly well for

Fig 7. The robustness of networks increases with the number of additional links added using the Greedy or Lazy

Greedy algorithm. The horizontal axis shows the number of links added to the network, the vertical axis the change in

robustness. Colours indicate the algorithm used and each box shows the results over all landscape-based habitat

networks.

https://doi.org/10.1371/journal.pone.0240940.g007
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habitat networks and increase metapopulation robustness with increasing number of links

added.
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