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Abstract

I construct a dynamic social-network model of the COVID-19 epidemic which embeds the

SIR epidemiological model onto a graph of person-to-person interactions. The standard SIR

framework assumes uniform mixing of infectious persons in the population. This abstracts

from important elements of realism and locality: (i) people are more likely to interact with

members of their social networks and (ii) health and economic policies can affect differen-

tially the rate of viral transmission via a person’s social network vs. the population as a

whole. The proposed network-augmented (NSIR) model allows the evaluation, via simula-

tions, of (i) health and economic policies and outcomes for all or subset of the population:

lockdown/distancing, herd immunity, testing, contact tracing; (ii) behavioral responses and/

or imposing or lifting policies at specific times or conditional on observed states. I find that

viral transmission over a network-connected population can proceed slower and reach

lower peak than transmission via uniform mixing. Network connections introduce uncertainty

and path dependence in the epidemic dynamics, with a significant role for bridge links and

superspreaders. Testing and contact tracing are more effective in the network model. If lifted

early, distancing policies mostly shift the infection peak into the future, with associated eco-

nomic costs. Delayed or intermittent interventions or endogenous behavioral responses

generate a multi-peaked infection curve, a form of ‘curve flattening’, but may have costlier

economic consequences by prolonging the epidemic duration.

1 Introduction

I construct and compute a dynamic social network-based model of the COVID-19 epidemic

and use it to evaluate a range of simulated health and economic policies—herd immunity, dis-

tancing, lockdown, testing, quarantine, and contact tracing. Endogenous behavioral responses

are also analyzed. The analytical framework superimposes the classic SIR model of infectious

diseases ([1–4] among many others) onto a social-network graph of interactions. Previous

work on infection spread via networks is mostly theoretical and includes [5–10]. An economic

module can be overlaid onto the disease dynamics, similar to [11] or [3]. Additionally, since

the network model tracks individual nodes over time, heterogeneity (e.g., in savings, employ-

ment status; ability to pay rent or bills) can be incorporated.

SIR (or SEIR) Markov models characterize the spread of an epidemic over time in a popula-

tion of agents who pass through the states of ‘Susceptible’, (‘Exposed’), ‘Infectious’ and
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‘Resolved’ (recovered or dead). Biological and socioeconomic parameters determine the dura-

tion and transition probabilities between the states. Health and economic policies such as

physical distancing, testing and quarantine also influence the spread of the disease by affecting

the rate and number of contacts between agents.

The standard SIR framework assumes random (uniform) mixing of infectious persons with

the rest of the population. While helpful for simplifying the dynamics and computing out-

comes, this population-level random matching assumption abstracts from important elements

of realism and locality: (i) people are more likely to interact with members of their social net-

work, broadly defined (e.g., family, work, or distance based); (ii) health and economic policies

targeting disease mitigation, as well as individual behavioral responses, can affect the rate of

viral transmission via a person’s network of contacts vs. the population as a whole differently.

For example, [12] use Facebook data and show that areas with stronger social ties to two early

COVID-19 “hotspots” in the U.S. and Italy had more confirmed COVID-19 cases; (iii) social

contact heterogeneity can induce path-dependence and role for ‘superspreaders’ or ‘clusters’

in the epidemic dynamics, see [13, 14].

Incorporating local, social-network based transmission in the SIR epidemiological model

can yield quantitatively different outcomes and policy implications compared to the standard

framework with uniform mixing. Using simulations I show that, for the same biological

parameters, the standard SIR model can overstate the reproduction rate and infection peak of

the epidemic. Relative to the SIR model, the network structure and degree heterogeneity intro-

duces uncertainty and unpredictability in the epidemic dynamics and duration as well as in

policy outcomes, since the infection can spread in a non-uniform, state-dependent way. The

observed broad range of COVID-19 infection rates across countries, the presence of clusters

and superspreaders and the prolonged plateau of new daily infections in some countries

despite long lockdown periods may be related to the social network structure and the underly-

ing number and frequency of contacts.

An advantage of the network-augmented model, relative to the standard SIR model, is that

the network model (hereafter NSIR) allows tracking (including via contact tracing) and distin-

guishing infections occurring through social contacts vs. at the population-level (unknown ori-

gin or community infections). The NSIR approach also allows modeling and analyzing richer

behavioral responses, e.g., based on the disease state of an agent’s social contacts or deaths

among one’s contacts, in addition to responses based on aggregate states. The main challenge

to the network approach is the choice or calibration of the social network of contacts which is

a key model input.

The social-network augmented NSIR model allows the researcher to specify and vary, via

model and policy parameters, the relative rate of viral transmission within agents’ social net-

work vs. the population and thus nests the standard SIR model as a special case. Since, unlike

SIR, the NSIR model is simulated at the agent level it incorporates agent heterogeneity, via the

agent’s position in the network by construction, but also extendable in other economically rel-

evant dimensions. The NSIR model is solved via a stochastic Monte Carlo approach using the

Gillespie algorithm ([15, 16]), a numerical method for generating statistically correct trajecto-

ries (possible solutions) of a stochastic system.

The proposed network-augmented model of COVID-19 is used to assess a broad set of sim-

ulated health and economic policies and behaviors, applying to all or subset of the population

and including but not limited to:

(i) physical distancing—by varying the network structure (a reduction in the nodes’ degree /

social contacts) and/or by varying the network-level vs. population-level mixing parameter.
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(ii) testing and quarantine with or without contact tracing—by keeping track of and varying

each agent’s network of allowed contacts in the simulation.

(iii) policy timing and duration—imposing or lifting health or economic policies at specific

times or conditional on observed epidemic aggregates; both contiguous and intermittent

policy interventions are considered.

(iv) endogenous behavioral responses by the agents (e.g., self-quarantine, avoiding contacts)

based on observed infections or deaths among the agent’s contacts or in the population at

large.

I am not an epidemiologist and all analysis and conclusions in this paper should be inter-

preted with the appropriate caveats. In addition, at the time of writing there is still a lot of

uncertainty about the COVID-19 epidemiological parameter values and the policy outcomes

are sensitive to that (robustness is explored). My objective is therefore primarily descriptive—

to explore via simulations the implications, interactions and joint effects of epidemiological

dynamics, social networks and policy or behavioral counterfactuals on health and economic

outcomes.

My main findings are summarized as follows:

1. Viral transmission over a network-connected population can proceed slower and reach a

lower peak than transmission via uniform/random contacts as assumed by standard SIR

models. This is consistent with the findings of [17] using New York social interactions data.

The resulting longer epidemic duration could imply larger overall economic costs, e.g., if

accompanied by longer lockdown periods.

In the NSIR model with network-based viral transmission:

2. Lockdown, quarantine and physical distancing policies which reduce the agents’ contacts

are on average more effective in slowing down the viral transmission compared to in the

SIR model with uniform mixing. Even partial lockdown or distancing can break or signifi-

cantly reduce the transmission in the NSIR model by removing and isolating key network

links, paths and nodes while these policies are less effective with uniform mixing. Large-

scale and persistent testing and contact tracing are required to lower and flatten the infec-

tion rate curve. A low testing rate or a one-off mass testing campaign are not likely to be

effective because of the relatively short serial interval of COVID-19.

3. If lifted early, lockdown or distancing policies mostly shift the infection peak into the

future, with associated economic costs. Simulations show that one-, two- and four-month

distancing policies starting from 0.5% infected share initially steadily reduce the number of

active cases but could fail to contain the epidemic since a large number of susceptible non-

immune agents remains at large. Mass vaccination, herd immunity (at the cost of many

deaths), or a combination of mass-scale and persistent testing, contact tracing and enforced

(self-)isolation appear the only reliable ways to stop the epidemic from reigniting if lock-

down policies are lifted early. It may still take long to contain the COVID-19 epidemic

when a vaccine is available. Unlike the virus, a vaccine does not replicate and spread on its

own. Hence, a vaccine is only effective if introduced on a sufficiently large and/or optimally

chosen subset of the population. For example, [18] show that a non-uniform (proportional

to node degree) distribution of antidote in a network can control an epidemic while uni-

form antidote distribution cannot.

4. The epidemic dynamics are sensitive to policy timing and duration. The social-contacts net-

work structure and infection time path (which nodes are infected when) also affects the
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spread of the epidemic unlike in the SIR model. Delayed lockdown or distancing policies or

endogenous behavioral responses generate a multi-peaked infection rate over time, a form

of ‘curve flattening’, but may have costlier economic consequences by prolonging the epi-

demic duration.

5. Intermittent (“on”, “off”, “on” again) lockdown or distancing policies and behaviors are

demonstrated to be effective in flattening the infection curve. Intermittent policies can be

politically easier to implement and enforce but may entail larger overall economic or

healthcare costs.

6. Behavioral responses, through reducing the number or rate of social contacts based on

observed infections, on aggregate or in one’s own network, can be a powerful and economi-

cally less costly alternative to mandated lockdowns but could induce a cyclical pattern of

tightening and relaxation over a prolonged period.

2 The NSIR model

2.1 Setup

Consider a large population of N persons modeled as the nodes of a social network/graph G.

The graph edges capture (regular) social interactions which are possible vectors of infection

transmission. The assumed baseline network structure is an input of the model, however,

health policies (e.g., lockdowns, quarantine, etc.), can be interpreted as (temporarily) changing

the social network by eliminating edges (contacts). In addition to network-level contact, per-

sons/nodes can also interact with any other node (connected or not) with rate/probability p 2
[0, 1]. The limiting case p = 1 thus approximates the random mixing assumption in the stan-

dard SIR model.

Each node i = 1, . . ., N has an individual state xit at time t. The basic model states are five: S
for susceptible to the disease; E for exposed (infected but not yet infectious); I for infectious; R
for recovered and F for dead. Additional states for ‘tested positive’ (known infected) or ‘in

lockdown’ will be introduced in the policy simulations.

The NSIR model is initialized by randomly assigning #I 2 (0, N) nodes to the infectious

state, that is setting xi0 = I, i 2 I0 and the rest of the nodes to the susceptible state, xj0 = S for j 2
S0, where from now on Xt denotes the set of nodes/agents with state xit = X at time t.

Conditional on current state xit, the next state xit0 for node i is determined as follows. The

probability for any state transition not specified below, e.g., S to I or E to R is set to zero.

(a) susceptible agents

xit0 jðxit ¼ SÞ ¼
E with prob: pb

It
At
þ ð1 � pÞb

P
j2CGðiÞ

1xjt¼I

#CGðiÞ

S otherwise

8
>><

>>:

ð1Þ

where At denotes the number of active agents at t (for example, all living agents, At = N − Ft)

and where CG(i), with dimensionality (node degree) CG(i), denotes the set of contacts / edges

of node i in the social graph G. The notation 1xjt = I is an indicator function which equals 1 if

xjt = I and zero otherwise. The parameter β captures the contact rate and infection rate condi-

tional on contact with an infectious person. The expressions
It
At

and

P
j2CGðiÞ

1xjt¼I

#CGðiÞ
are the proba-

bilities that the contact is infectious, in the population or in one’s social network, respectively.

The first term (multiplied by p) in (1) captures the rate of infection from contact with an

infectious person in the population at large (e.g., public transit, shopping, etc.) This term
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corresponds to the uniform mixing (random meeting) transmission vector in the standard SIR

model. The second term in (1) (multiplied by 1 − p) captures viral transmission that occurs

because of an existing infection(s) among i’s social contacts in G, the set CG(i). In Section 3 I

show how (1) can be modified to include testing and quarantine/isolation.

(b) exposed agents

xit0 jðxit ¼ EÞ ¼

( I with prob: s

E with prob: 1 � s
ð2Þ

The transition from the exposed to the infectious state happens at rate σ set to match the

disease’s incubation period.

(c) infectious agents

xit0 jðxit ¼ IÞ ¼

R with prob: g

F with prob: m

I with prob: 1 � g � m

8
>>><

>>>:

ð3Þ

The expected recovery rate is γ. The fatality rate conditional on being infected is μ.

(d) recovered agents and deaths

xit0 jðxit ¼ RÞ ¼ R with prob: 1

xit0 jðxit ¼ FÞ ¼ F with prob: 1
ð4Þ

Death (state F) and recovery (state R) are absorbing states. Possible transition from state R
back to the susceptible state S is ruled out in the simulations but is very easy to incorporate via

an additional parameter. Base population birth or death rates can be also modeled but I

abstract from this here.

There are two main groups of parameters in the model. The parameters β (infectiousness),

σ (incubation period), γ (survivability) and μ (mortality) are assumed biologically fixed in the

baseline simulations. It is computationally feasible to allow state-based mortality rate, μ(It) (for

example, because of exceeding hospital capacity) as in [3]. In contrast, the parameter p and the

social network structure G on which agents interact are interpreted as socioeconomic variables

affected by policy or behavioral responses. In Section 3 I introduce additional policy parame-

ters and graphs to model testing, contact tracing, lockdowns, distancing and quarantine.

2.2 Simulation

The model is initialized by choosing the initial number of infectious nodes (I0), with the rest of

the N nodes set in susceptible S state. A baseline network graph, G of size N is also chosen (see

Section 4.1 for details and Section 6 for alternative specifications and robustness).

Model time evolves stochastically from t to t0 = t + τ, by having the time index t increased

by the amount τ computed from the state-transition probabilities in (1), (3) and (2) using Gil-

lespie’s algorithm, see [16]. One unit of time equals one day. Only the state of a single ran-

domly selected node is modified at each time increment τ. All other nodes retain their

previous states. The Matlab codes used in this paper (available at the author’s website) draw on

and significantly extend publicly shared Python code by Ryan McGee, see https://github.com/

ryansmcgee.

Formally, for each t, the Gillespie algorithm executes the following steps:

(i) draw two random scalars r1 and r2 from the uniform distribution on (0, 1)
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(ii) compute the total probability of any node changing to a new state using (1), (3) and (2),

call it P

(iii) use r1 to draw the time interval τ until the next state change event as t ¼ 1

P
ln 1

r1

� �
, using

that the state change time interval is exponentially distributed with mean 1

P
. Call t0 = t + τ.

(iv) use the draw r2 to select one of all positive-probability state transitions, xlt to xlt0 with xlt0 6¼

xlt implied by (1), (3) and (2), with corresponding transitioning node l 2 {1,..N}. The chance

of selecting a specific transition is proportional to its probability.

(v) perform the state transition from Step (iii) by updating node l’s state and keeping all other

nodes’ states the same as at t

(vi) forward model time to t0 = t + τ and go back to Step (i)

Model time is forwarded by larger intervals when transition events are relatively rare (e.g.,

few initial infections or low values of β, γ, σ and μ) and by small intervals when transition

events are frequent (many nodes with high total transition probability around the same t). The

total rates of susceptible, exposed, infectious, recovered and dead agents are calculated at any

model time t by adding up over i the individual states xit. For example, the total number of

infectious persons is It = ∑i 1xit = I.
In sum, the NSIR model allows keeping track of and simulating:

(i) each node’s individual disease state (S, E, I, R or F) over time

(ii) the evolution of aggregates over time, including total infections, total recoveries, total

deaths, etc.

(iii) daily changes in the aggregates (over model time intervals with length Δt = 1)

(iv) state transitions over time and over the social network G by using G’s adjacency matrix;

for example, this allows tracking the states of nodes with large vs. small number of contacts

(edges in G) and comparing and tracing the spread of the disease via social-contacts vectors

vs. at the population level (random mixing).

2.3 NSIR vs. SIR reproduction dynamics

2.3.1 Basic and effective reproduction numbers. In epidemiology the basic reproduction

number, R0 is the expected number of cases that the first infected person generates, when all

other agents are susceptible but not yet infected. In the standard S(E)IR model without social

network component,

dðEt þ ItÞ
dt

¼ b
ItSt

N
� rIt ¼ rItð

b

r
st � 1Þ

where r = γ + μ is the removal rate and st �
St
At

is the fraction of susceptible agents at time t out

of all active agents At. Early on, or with few deaths, At’ N yielding an effective reproduction

number

RSIR
t ¼

b

r
St

N
: ð5Þ
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Evaluating at S0’ N gives the familiar SIR R0 value, RSIR
0
¼ b

r. If br > 1 the epidemic grows

(if unchecked) as long as there is a sufficiently large fraction of susceptibles, st ¼
St
N >

1

RSIR
0

. In

contrast, if RSIR
0
< 1 the epidemic would die out on its own.

I define the effective reproduction number Rt in the NSIR model analogously. Define

sitðGÞ �

P
j2CGðiÞ

1xjt¼I

#CGðiÞ
;

corresponding to the agent i’s probability of infection from one of her social contacts in graph

G at time t. Using (1), in the (no-intervention) NSIR model we have,

dðIt þ EtÞ

dt
¼ pbItst þ ð1 � pÞb

X

i2St

sitðGÞ � rIt ¼

¼ rIt p
b

r
st þ ð1 � pÞ

b

r
St

It

P
i2St
sitðGÞ
St

� 1

� �

The number of infected agents (exposed plus infectious) would grow if the expression in

the brackets is positive. Hence, for st ’
St
N, define the NSIR model effective reproduction num-

ber RNSIR
t as

b

r
½p

St

N
þ ð1 � pÞ

St

It

P
i2St
sitðGÞ
St

� ð6Þ

At p = 1 this expression equals RSIR
t but in general, including at t = 0, the NSIR model

reproduction number RNSIR
t differs from RSIR

t and depends on the graph G. For example, [9]

emphasize the importance of the ratio between the second and first moment of the degree dis-

tribution for the infection growth rate.

2.3.2 Population vs. network transmission. I next compare the reproduction numbers

for the SIR model (p = 1) and the network-only transmission NSIR model (p = 0) for given val-

ues of It and St. Using (6), for p = 0 we have

RNSIR
t ¼

bSt

rIt

P
i2St
sitðGÞ
St

ð7Þ

where

P
i2St
sitðGÞ
St

� �stðGÞ

is the average chance of infection across all susceptible nodes i 2 St at time t, given the set I t of

infectious agents i with xit = I. Comparing (5) and (7), observe that

RNSIR
t ⋛ RSIR

t , �stðGÞ ⋛
It
N

ð8Þ

Intuitively, the standard SIR model assumes a uniform chance of infection for each suscepti-

ble agent which is proportional to the population infection rate
It
N. In contrast, in the network-

augmented NSIR model an individual’s chance of infection is heterogeneous and is a function

of the social network G. The average time-t infection probability in the network, �stðGÞ deter-

mines the reproduction number RNSIR
t . For example, consider the first infection, I0 = 1 of some

agent i0, at which RSIR
0
’ b

r. In contrast, the value of the NSIR effective reproduction number
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RNSIR
0

would depend on �s0ðGÞ, which is a function of the graph G and of which node was ini-

tially infected (path dependence).

Using (5) and (7), it is clear that the growth rate of the disease would differ in general in the

SIR (p = 1) vs. NSIR model (p = 0) and the counts It and St would generally differ in calendar

time t. Thus, to proceed with the comparison, I compare the SIR vs. NSIR reproduction num-

bers for the same cumulative infection count m for several example graphs G. To avoid poten-

tial confusion with calendar time, for the rest of this section I will use I(m) and S(m) to denote

the number of infectious and susceptible agents at the time of the m-th infection.

Result 1: For the same infection count, the SIR model effective reproduction number equals
that of the NSIR model on a complete graph.

Proof sketch: Suppose G is a complete graph (each node is connected to all other nodes)

and N is large. The first infection, m = 1 yields N − 1 susceptible agents with average chance of

infection sið1Þ ¼
1

N� 1
each and so

P
i2Sð1Þ

sið1Þ

Sð1Þ ’ 1

N. The second infection yields S(2) = N − 2 with

sið2Þ ¼
Ið2Þ
N� 1

each and so

P
i2Sð2Þ

sið2Þ

Sð2Þ ’
Ið2Þ
N . Continuing in the same way, for the m-th infection

there are S(m) susceptible agents with siðmÞ ¼
IðmÞ
N� 1

each and so

P
i2SðmÞ

siðmÞ

SðmÞ ’
IðmÞ
N —the SIR and

NSIR reproduction numbers are equal. If a formerly infectious node recovers or dies in the

process, then I(m) is reduced in both SIR and NSIR.

Example 1. Regular graph. Suppose G is a connected regular graph in which each node has

degree K 2 [2, N). After the first infection, K susceptible agents have infection probability

sið1Þ ¼
1

K while for the rest σi(1) = 0, yielding ∑i2S(1) σi(1) = 1. Then, since S(1)’N, we obtain

�sð1Þ ’ 1

N ¼
Ið1Þ
N , that is, RNSIR

0
¼ RSIR

0
. Consider now the second infection, of some node j1

which by construction is one of the contacts of the first infected node j0. Hence only K − 1 sus-

ceptible agents could be infected by j0 and j1 each. If a node h is connected to both j0 and j1 we

can think of splitting the total probability σh as 1/2 coming from each. Thus,
P

i2Sð2Þsið2Þ ¼

Ið2ÞðK � 1Þ 1

K and so �s1ðGÞ ’
Ið2Þ
N

K� 1

K which is strictly less than
Ið2Þ
N and so RNSIR < RSIR. A simi-

lar argument applies for further infections. As a result, for the same infection count m, the

average chance of infection in a regular-graph NSIR model is lower than the population infec-

tion rate
IðmÞ
N in the SIR model.

Example 2. Ring graph. Suppose G is a connected ring graph, such that each node i = 1,..N is

only connected to two nodes, i − 1 and i + 1 (where node index 0 maps to N and N + 1 maps to

1). For the first infection �sð1Þ ’
Ið1Þ
N and RNSIR

0
¼ RSIR

0
, as in Example 1. By construction, any

subsequent infectious node must be a contact of a previously infectious node, thus at any time

the set of infectious and recovered/dead nodes, I is contiguous (consists of nodes that are

neighbors on an arc j, j + 1, ..j + l). Hence, at each next infection count step, m = 2, 3, . . . there

are only at most 2 susceptible nodes in a ring graph (the outside neighbors of the set IÞ which

have positive probability of infection σi = 1/2. For example, if the set I consists of nodes 2,3,4,5

positioned in order on the ring graph, the end-nodes are 2 and 5. There would be 1 or 0 sus-

ceptible nodes that can be infected if an end-node of I has already recovered/died. For the rest

of the susceptible nodes σi = 0, since in a ring graph they are not connected to any nodes in I .

Therefore, �sðmÞ � 1

SðmÞ which is (much) smaller than
IðmÞ
N for m small. Thus, using (8) we obtain

RNSIR < RSIR. If, as time progresses, both end-nodes of the set I become recovered/dead

before a new node is infected (this can occur with positive probability) then the epidemic dies

out in the network model but not necessarily in the SIR model (if interior nodes in I remain

infectious).
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Example 3. Star graph. Suppose G is a star graph in which a single node j is connected to all

N − 1 other nodes and there are no other edges. If the first infected node is j then �sð1Þ ’ 1 >
Ið1Þ
N ¼

1

N and so RNSIR
0

> RSIR
0

. If the first infected note is instead one of the ‘rays’, then �sð1Þ ’ 1

N

but since the second infected node is necessarily j, we obtain again �sð2Þ ’ 1 >
Ið2Þ
N .

These examples show that the graph structure and the network node path followed by the

infection over time (the subgraph of infected nodes) are key determinants of the effective

reproduction number and hence infection growth (see also Fig 11 in Section 4.5). Degree het-

erogeneity combined with high-degree nodes infected early on could raise the NSIR reproduc-

tion number above the SIR value (see also [9]), while graphs in which the degree distribution is

relatively homogeneous are likely to have lower reproduction rates than in the SIR model.

Degree heterogeneity could also be critical in determining policy outcomes, e.g., the infection

reaching a superspreader can accelerate or re-ignite the epidemic—see Section 4.4 and Fig A

and E in the S1 Appendix for further discussion and examples.

2.3.3 Local vs. bridge links. The ring graph Example 2 suggests that policies and behav-

ioral responses (for example, related to large gatherings, travel, border closures) which restrict

the epidemic on a smaller or localized set of nodes can have significant impact on the effective

reproduction number and therefore on the overall infection count, hospitalizations, deaths

and related economic costs.

I illustrate this idea further via simulations on Fig 1 which plots the infection rate and total

death rate over time in the NSIR model with a regular graph G with degree d constructed in a

specific way (the Figure uses p = 0 and the baseline model parameters in Table 3 and no inter-

ventions). Fig 1 is just an example, for this section only (the main simulation results use the

graphs described in Section 4.1).

The regular graph in Fig 1 when d is even (d = 20 or 50) is constructed by setting all nodes

on a circle and then each node i is connected to the d/2 nodes immediately before (i − 1, . . .i −
d/2) and immediately after it (i + 1, . . ., i + d/2). The ring graph in Example 2 corresponds to

the case d = 2. Thus, for d even, each node is only connected to other nodes in its locality, that

is, an infectious node can only infect susceptible nodes near it (up to distance d/2).

In contrast, when d is odd(d = 21 or 51 in Fig 1) each node of G is connected to the (d − 1)/

2 nodes immediately before and after it (analogously to the d even case) but, in addition, to

node i + N/2, that is, the node “across” from i on the graph circle. This means that each infec-

tious node now has a positive probability of spreading the virus to a new, “far” area of the

graph G—a “bridge” link. Fig 1 shows that a minor difference in the graph degree (20 vs. 21

or 50 vs. 51) can have a significant effect on the infection and death rates. Specifically, when

bridge links are present in the social contacts graph G (the odd-degree cases d = 21 and 51) the

share of active infections and total deaths can be 2 or 3 times larger than in the ‘local contacts

only’ cases (even-degree, d = 20 and 50). In contrast, there is almost no difference between the

simulations using d = 18 vs. 20 or 48 vs. 50 (not displayed on the Figure). The conclusion is

that interventions that aim at restricting the epidemic on a local level and eliminate bridge

contacts (e.g., air travel) can be effective in suppressing the epidemic.

On Fig 2 I explore further the role of the network structure for viral transmission dynamics

and the infection rate over time. The Figure computes the infection curve for a series of graphs,

starting with a regular (ring-style) graph in which each node is only connected to nearby

nodes (the dotted line) and comparing it to three Watts-Strogatz graphs with the same median

degree 12 and number of nodes (N = 10, 000) but with different values for the parameter b that

governs the probability of re-wiring an edge to a new node. Larger values of b correspond to

more re-wiring. i.e., adding more bridging contacts with non-local nodes. The results show

that an increased number of cross-links added to the contacts graph can raise the infection
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peak, total infections, and cumulative deaths significantly (e.g., the peak infection rate is 0.8%

in the regular graph, b = 0 vs. 7.8% in the Watts-Strogatz graph with b = 0.5), consistent with

the theoretical discussion above.

3 Policies and scenarios

The NSIR model can be used or extended to incorporate a wide variety of health and socio-

economic policies and scenarios related to mitigating or failing to control the spread of the

disease.

1. Herd immunity—simulating the NSIR model without any policy intervention or behav-

ioral response.

Fig 1. Regular graphs example—Local vs. bridge links.

https://doi.org/10.1371/journal.pone.0240878.g001
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2. Testing

Testing is modeled by introducing an additional state P (“tested positive”). Assume for sim-

plicity that only infectious (state I) agents can test positive. The transition probabilities in (3)

are modified to:

xit0 jðxit ¼ IÞ ¼

R with prob: g

P with prob: y

F with prob: m

I with prob: 1 � g � m � y

8
>>>>>>><

>>>>>>>:

ð9Þ

where θ is the fraction of currently infectious agents tested per unit of time. Agents with xit 6¼ I
are assumed to always test negative (allowing the possibility of positive test for state E is sim-

ple). Keeping track of “tested negative” agents can be easily incorporated too (e.g., to keep

track of testing costs or testing coverage over time).

Fig 2. Watts-Strogatz graphs example.

https://doi.org/10.1371/journal.pone.0240878.g002
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The transition probabilities for the agents who have tested positive (state P) are:

xit0 jðxit ¼ PÞ ¼

R with prob: gP

F with prob: mP

P with prob: 1 � gP � mP

8
>>><

>>>:

ð10Þ

where the recovery and fatality parameters γP and μP can be the same of different than γ and μ
in (3) and (9).

The agents who test positive, xit = P are assumed to be isolated or in (self-)quarantine and

not mixing with others in the population; that is, At = N − Ft − Pt in (1). However, the P agents

could still infect contacts in their immediate social network Q, defined as a sub-graph of G
with the same nodes but fewer edges per node (see more details below). That is, the second

term in (1) is modified to

ð1 � pÞb

P
j2CGðiÞ

1xjt¼I þ
P

j2CQðiÞ
1xjt¼P

#CGðiÞ

 !

3. Contact tracing

The network aspect of the NSIR model is well-suited to study contact tracing, that is, follow-

ing up, identifying and isolating the contacts of agents who have tested positive. Contact trac-

ing is modeled by adding a parameter ϕ and a new term in (9), interpreted as the additional

probability of identifying an agent i as infectious (and moving i to state P) for each of i’s con-

tacts j who have tested positive.

xit0 jðxit ¼ IÞ ¼ P with prob: minf1; yþ �
P

j2CGðiÞ
1xjt¼Pg

4. Distancing and quarantine—physical (social) distancing can be incorporated in two

complementary ways, both of which are explored in the simulations in Section 4. The first way

of modeling distancing is by decreasing the value of the parameter p. This corresponds to set-

ting a lower rate of global (population level) interactions and higher rate of local (network-

level) interactions in (1). A second way of modeling distancing is by varying the network struc-

ture, that is, replacing the baseline social network G with another network D which is a sub-

graph of G with fewer edges connected to each node (lower degree).

Quarantine, an extreme form of distancing is modeled by setting p = 0 and assuming a very

small number or zero social contacts for each quarantined node (their narrow social graph Q).

5. Lockdown—assume that fraction λ 2 (0, 1) of all agents are locked down and only the

remaining fraction 1 − λ of agents interact, similar to [3]. This is done by introducing an indi-

cator variable (‘locked down’, L or ‘not locked down’, ¬L) for each node i and modifying (1) as

follows:

Probðxit0 ¼ E j xit ¼ S ^ :LÞ ¼ pb
ð1 � lÞIt

ð1 � lÞN � Ft
þ ð1 � pÞb

P
j2CGðiÞ

1xjt¼I^:L

#CGðiÞ

Probðxit0 ¼ E j xit ¼ S ^ LÞ ¼ b

P
j2CQðiÞ

1xjt¼I

#CQðiÞ

ð11Þ

The first term in (11) assumes that the probability of contact with a random person remains

unchanged for the agents not in lockdown (e.g., interact with others at work). An alternative

would be to assume reduced frequency of contacts, for example, pbð1 � lÞ ð1� lÞIt
ð1� lÞN� Ft

. Locked

down agents, the second line in (11), are assumed to be exposed only to their narrow social
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network Q, a sub-graph of G (e.g., close family) with the same number of nodes but fewer

edges per node.

6. Behavioral responses

The NSIR model allows incorporating a rich set of endogenous behavioral responses to the

epidemic. The agents can decide to reduce the number or rate of their contacts, based on

observable information or individual cost-benefit calculations (see also [19, 20] or [21] in non-

network models). Specifically, suppose p< 1 and define the following social-contact graphs:

E0 = G and Ek� Ek−1 for k = 1, . . .M, where� X denotes a sub-graph of X with the same nodes

but fewer edges/contacts per node. For example, if M = 2 we can think of E0 = G as the “normal

times” social network; E1� G as a “reduced contacts” network (e.g., work and necessity shop-

ping); and E2� E1 as a “close family” network.

In the simulations in Section 4.3 each agent is assumed to switch to a more restricted

(lower-degree) network, based on the observed infection rate in the population (aggregate-

level information) or, alternatively, based on positive case(s) in their own social network CG(i)
(individual-level information).

Each policy or behavioral scenario 1 through 6 can be imposed or lifted in the simulations

at a pre-specified model time t 2 (0, tmax) or conditional on reaching a specific aggregate state

value (e.g., number of positive tests or deaths per day, total positive cases, etc.). I investigate a

range of scenarios in the following sections.

4 Simulation results

4.1 Baseline parameters and initial conditions

Table 1 reports the baseline parameter values used in the model simulations. The baseline

expected removal rate r is set to 0.2 which corresponds to a 5-day average period of infectious-

ness ([22, 23]), following a 5.2-day average exposed stage duration (the parameter σ). I also

explore a longer infectiousness period, r = 0.1 in the robustness checks in Section 6. The base-

line infection fatality rate (IFR) is set to 0.37% using Streeck et al.’s German randomized study,

[24]. An 0.66% estimated IFR with Wuhan data, (e.g., [25]) and 1% IFR are also explored in

the robustness Section 6.2. The IFR value is important for the death total but, since μ is small

and death is an absorbing state, it otherwise changes very little the infection rate dynamics (see

Fig 13 in Section 6.2).

Table 1. Baseline parameter values and initial conditions.

Parameter Value Description Source, etc.

r 0.2 removal rate Anderson et al.; 5-day avg. duration post incubation

μ 0.0037r mortality rate 0.37% IFR, Streeck et al.

γ r − μ recovery rate based on r and μ
β 0.5 infectivity rate approx. 3-day initial doubling time/implied R0 = 2.5

σ 1/5.2 incubation, days−1 Wang et al.; median incubation period 5.2 days

θ 2%, 5% mass testing rate hypothetical / assumed

ϕ 10% contact tracing rate hypothetical / assumed

Init. condition Value Description

N 10,000 population / network size

I0 1, 50 initial number of infections

tmax 200, 500 maximum simulation duration in days

G n.a. modified Barabasi-Albert graph with median degree 10 (min = 0, max = 200)

Q n.a. modified Barabasi-Albert graph with median degree 1 (min = 0, max = 14)

https://doi.org/10.1371/journal.pone.0240878.t001
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The value of the COVID-19 infectiousness β is calibrated to fit the observed approximately

three-day early doubling time of the disease (e.g., [26]) and/or a basic reproduction number

R0 of 2.5. The calibrated parameters are actual as of early May 2020. Versions of most figures

using alternative parameter values, corresponding to slower infection growth and higher IFR

(r = 1/16, μ = .0066r and β = .156) are available on request. In the simulations below I set the

recovery and mortality rates for positive agents (in state P) to be the same as the baseline val-

ues, γP = γ and μP = μ.

A key ingredient of the NSIR model is the social contacts graph G. I use as baseline a modi-
fied (pruned) version of a Barabasi-Albert (B-A) graph, constructed starting from a Barabasi-

Albert graph with 9-edge preferentially attached nodes and then randomly removing a fraction

of edges to generate node degrees lower than 9. The resulting social contacts graph G has

median degree 10 and mean degree 12.6. The reason for choosing this baseline graph is that

neither the standard scale-free B-A graph nor the standard small-world Watts-Strogatz (W-S)

graph match well certain network properties documented in actual COVID-19 or other epi-

demic transmission networks (see [14], [13], [27–29]), namely broad degree heterogeneity and

long/heavy right tail (superspreaders).

Standard B-A graphs match well the breadth and long right tail of the degree distribution

(allow for superspreaders) but truncate the minimum node degree to a value close to the

median, essentially ruling out nodes with few contacts. Watts-Strogatz graphs capture well

short paths and local clustering realistic in many social networks but feature a relatively homo-

geneous degree distribution (all nodes have similar degree) and lack a long right tail, that is,

they exhibit insufficient heterogeneity and broadness in the number of contacts and lack of

superspreaders. The modified B-A graph G used in this paper matches both the broad hetero-

geneity of the degree distribution, including nodes with zero or low degree, and a long/heavy

right tail—features also emphasized in the theoretical analysis in Section 2.3. Robustness simu-

lations with W-S graphs are reported in Fig 2 and Section 6 showing that the main patterns

and results remain robust.

Fig B in the S1 Appendix compares the degree distributions of the baseline graph G with

that of a standard Albert-Barabasi graph (the input graph used in the edge removal procedure

described in Section 4.1) and a standard Watts-Strogatz graph with mean degree 12. Fig C in

S1 Appendix depicts the degree distribution of the baseline graph G and the closed-contacts

graph Q constructed in the same way as G but with larger number of removed edges.

4.2 Results

I report simulation results from different policy and behavioral scenarios in the NSIR model.

All graphs in this Section show sample simulation paths (one possible time path of the

dynamic system), however, the same pseudo-random number sequences are used so the

graphs are comparable across the scenarios. Summary Table 3 in Section 6.1 and Tables 1 and

2 in S1 Appendix in report average values from 100 simulations each, using the same parame-

ters but 100 different pseudo-random number sequences (these sequences are held constant

across the different parameter/policy specifications for comparability).

4.2.1 No intervention vs. testing and contact tracing. Fig 3 plots simulation paths in the

NSIR setting with network transmission (p = 0, the solid lines) and the SIR setting with uni-

form transmission (p = 1, the dashed lines) for three basic scenarios—no intervention, testing

and quarantine, and testing, quarantine and contact tracing. The Figure plots the percent of

infectious nodes (in state I) over time across the different scenarios and settings.

The black lines on Fig 3 assume epidemic dynamics absent any intervention and/or behav-

ioral responses (herd immunity). The blue lines use a testing rate θ = 0.05, that is, 5% of the
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currently infectious agents are assumed to be detected per day. i.e., a 25% average total chance

of positive test for an infectious agent. This hypothetical testing rate is much higher compared

to current daily testing rates in the world so these results should be interpreted as a “mass test-

ing” counterfactual. The simulations assume persistent testing at rate θ, not a one-off testing

campaign. A one-off campaign would only detect fraction θ of the currently infectious agents

and thus is much less effective. The agents who test positive (enter state P) are assumed to be

quarantined and interact only on a close-contacts social network Q (see Section 3). The red

lines on Fig 3 assume contact tracing at rate ϕ = 0.1 added to the mass testing and quarantine.

A 0.1 contact tracing rate means 10% additional daily probability of an agent testing positive

for each of the agent’s contacts who have tested positive. Recently recovered or dead contacts

can be easily incorporated.

The simulation results depicted on Fig 3 confirm that testing and contact tracing slow the

infection growth rate and reduce the total infected, peak infected and deaths in both main

model settings (see also Table 3), however, these reductions are larger in the NSIR, p = 0

Fig 3. No intervention, mass testing, quarantine and contact tracing. Notes: the black lines assume no policy interventions or behavioral

responses. The light blue lines assume mass testing rate θ = 0.05 and putting positive cases (state P) in quarantine, network Q. The red lines add

contact tracing at rate ϕ = 0.1 to the testing and quarantine setting.

https://doi.org/10.1371/journal.pone.0240878.g003
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setting. Tables 1 and 2 in S1 Appendix further quantify these results by reporting averages over

100 simulations. The larger policy impact in the network setting is especially pronounced for

contact tracing (Table 2 in S1 Appendix)—the decrease in total infections or deaths in the

NSIR setting can be double that in the SIR setting, relative to the respective no-tracing baseline.

Intuitively, testing and contact tracing in the network setting (p = 0) can isolate high-degree

infectious nodes (superspreaders) early and thus reduces the infection rate by a larger amount

—this effect is absent in the uniform-mixing SIR, p = 1 model setting, as previously discussed

in Section 2.3.

Tables 1 and 2 in S1 Appendix also show that a 0.1% testing rate has very small effect on the

infection aggregates, except a 3.9% reduction in deaths in the p = 0 setting. To make a serious

dent in overall infections and deaths, very intensive testing and quarantine is required (θ =

10%), with the downside of a significantly prolonged (+41%) epidemic duration. Table 2 in S1

Appendix further shows that, holding the testing rate constant, increasing the intensity of con-

tact tracing yields additional large reductions in total infections, deaths and the infection peak

with this effect being stronger in the NSIR, p = 0 model.

4.2.2 Distancing policies. In this Section I simulate several physical distancing policies in

the NSIR model with network-level transmission, p = 0. The duration and timing of the policy

is represented by the shaded area on the graphs. During the distancing period it is assumed

that all agents’ interactions occur on the truncated social network Q defined as a sub-graph of

the original social network G whereby each node’s degree is randomly scaled down (an agent’s

contacts are reduced by 10 times on average). To explore different policy lengths and timings

all simulations are initialized with 0.5% infectious agents; the timelines on Figs 2 and 3 and

Table 3 are relative to that moment. Shorter or less strict policies can be effective at lower ini-

tial infection rates.

Fig 4 (panels A to F) exhibits six different example scenarios which vary the assumed dis-

tancing policy duration (‘short’—30 days; ‘medium-long’ – 60 days; ‘long’—120 days) and the

policy timing (‘early’, at t = 0; or ‘delayed’, at t = 30). At the calibrated parameters, distancing

policies of short and medium-long duration fail to contain the epidemic in the simulated out-

comes. In panel C, even a 4-month long distancing policy imposed at the 0.5% infection rate

mark may only delay the epidemic (this happens in 20% of the simulation runs with different

random seeds; in the remaining runs policy C contains the epidemic with 1.6% total infection

rate and 0.01% death rate). Scenario C also illustrates how the network path dependency in the

NSIR setting relative to the SIR model (which node infects when) matters (see Fig E in the S1

Appendix). In example scenario F the epidemic is successfully suppressed by imposing a suffi-

ciently long (120 days) distancing policy with delay.

The simulation results in Fig 4 show that delaying the introduction of a distancing policy

may be beneficial in some cases—the left-side panels with the right-side panels. Intuitively, an

appropriately-timed delayed policy can create a two-peaked infection curve (as opposed of a

single high peak), which is a form of “curve flattening”. However, such delays may possibly

overwhelm a country’s health system capacity (not modeled here) or result in larger economic

costs, an issue explored further in Sections 5 and 6.

In Fig 5 (panels G through L) I evaluate intermittent distancing policies, that is, policies

consisting of two separate periods of physical distancing (contacts on social network Q), with

“back to normal” (contacts on social network G) time in between. The notation (x)-y-(x) in the

panel captions means x days of distancing, followed by y days of policy relaxation, followed by

x days of distancing again. Current events as of May 2020 suggest that such intermittent poli-

cies may be easier to implement or enforce politically in many countries.

There are two main takeaways from the hypothetical policy evaluations in Fig 5 (see also

Table 3 in Section 6). First, two shorter distancing periods spaced farther apart (as in panels I
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or J of Fig 5) could be more effective in flattening the infection peak compared to a single lon-

ger distancing period imposed early on (panels B and C of Fig 4) or compared to two early dis-

tancing periods close to each other (panel G of Fig 5). On average, scenario I results in 7%

(6.6%) less total infections and 4% (2.5%) lower annualized economic cost than scenario B

(scenario G). Second, the policy timing matters a lot—for example, longer distancing period

Fig 4. Distancing policy—duration and timing.

https://doi.org/10.1371/journal.pone.0240878.g004
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Fig 5. Intermittent distancing policies.

https://doi.org/10.1371/journal.pone.0240878.g005
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early on, or a second period of distancing that is too late, are less effective in flattening the

infection peak (compare panels K and L with panels H and J in Fig 5).

4.2.3 Lockdown policies. On Fig 6 I simulate and compare the effectiveness of a lockdown

policy with fraction of locked down agents λ equal to zero (no lockdown), 30%, 70% and 90%

for the pure SIR model (p = 1) and the network-only NSIR model (p = 0). The lockdown inter-

vention is defined as in Section 3 and is assumed indefinitely long (there is no testing or con-

tact tracing). The simulations are initialized with 0.5% initial infection rate. The main

difference between the lockdown and the distancing policies explored in the previous sub-sec-

tion is that lockdowns affect both the population-level transmission and the network-level

transmission, by reducing the contact rate for fraction λ of the population, see (11). In contrast,

Fig 6. Lockdown effectiveness.

https://doi.org/10.1371/journal.pone.0240878.g006
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the distancing policies defined in Section 4.2.2 only affect network-level transmission (replac-

ing the graph G by Q) but apply to all agents.

In the SIR model with only population-level uniform mixing (p = 1, the left-side panels of

Fig 6), the effectiveness of lockdowns is limited since both the numerator and denominator in

the infection probability term b
ð1� lÞIt
ð1� lÞN� Ft

in (11) are reduced nearly proportionately for low

death counts Ft and hence the reproduction number among the agents not in lockdown

remains high. Expression (11) assumes that the individual contact rate for agents not in lock-

down remains the same as without lockdown; the lockdown effectiveness would be higher if

the contact rate is also reduced, e.g. as in [3]. The simulation shows that even a 90% (indefi-

nitely long) lockdown only reduces the infection rate and peak but does not eliminate the epi-

demic. In contrast, in the NSIR model with network-level transmission only (p = 0, the right-

side panels of Fig 6), a mild λ = 30% lockdown flattens the infection curve significantly by tak-

ing out many potential contacts and vectors of transmission while a moderate 70% (indefi-

nitely long) lockdown contains the epidemic. While these are simulated examples, the robust

implication is that the global vs. network-level mixing degree (the parameter p) plays a key role

in lockdown efficiency.

In Fig 7 I further investigate the effectiveness of a 70% lockdown with different finite dura-

tions in the network-only NSIR model, p = 0, staring from a 0.5% initial infection rate. With-

out testing (the left-side panels), lockdowns with duration shorter than 120 days mostly delay

the infection peak but do not contain the epidemic. Summary Table 3 in Section 6 further

quantifies that a 30-day lockdown only reduces total infections by 0.5% and the infection peak

by 5% on average. A longer 90-day lockdown in contrast reduces total infections by 49%, the

infection peak by 52% and total deaths by 48% on average, relative to the no-intervention

benchmark. These averages are, however, composed by two types of outcomes—the 90-day

lockdown either fully contains the epidemic or only delays the peak and makes a small dent in

infections and deaths (see Fig 7 for the latter case). These results do depend on the assumed

Fig 7. Lockdown length.

https://doi.org/10.1371/journal.pone.0240878.g007
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initial infection rate (0.5% in Fig 7)—the minimum required lockdown period is shorter if

started at a lower infection rate.

Next, Fig 8 explores several illustrative example simulations of lockdowns followed by relax-

ation. A short or inefficiently timed (panels A, B, C, E) and/or lax (C, D) lockdown may result

in (i) a slow and prolonged decline in infections, with asymmetry in the growth rates of infec-

tion ramp-up vs. decrease (e.g., as observed in Italy or Spain) and (ii) a second, larger and/or

longer epidemic wave (panels B, E). In contrast, in panel F a strict well-timed lockdown

reduces the infection rate significantly below the peak, although in this simulation the epi-

demic carries on at lower intensity for a long time.

4.2.4 Lockdown exit—role of testing and contact tracing. I next perform simulations to

investigate the complementarity between lockdown policies and follow-up testing and contact

tracing. Specifically, Fig 9 considers a 30-day lockdown for 70% of the population in the NSIR

model with p = 0. I simulate alternative lockdown exit scenarios, varying the testing and/or

contact tracing rate. All agents who test positive are assumed to be quarantined or (self-)isolat-

ing and interact on the reduced degree close-contacts graph Q with average node degree 1

defined in Section 4.1.

The values for the testing rate θ and the contact tracing rate ϕ used in the simulations on

Fig 9 are hypotheticals, corresponding to continuous mass testing and contact tracing. The

results show that opening up social and economic interactions after a relatively short lockdown

without testing or with little testing in place can soon result in a new, higher infection peak

and larger total number of deaths, because of the large remaining fraction of susceptible per-

sons. Second, testing and contact tracing are complementary—mass testing combined with

intensive contact tracing can significantly mitigate the epidemic while mass testing alone may

be insufficient to prevent a new infection wave. The simulations suggest that, for the calibrated

parameters, very high rates of testing and tracing are needed to prevent a new peak after a

short 30-day lockdown. Prolonging the lockdown period (assuming that moving it forward in

time is not possible) is likely to be more effective in reducing infections and deaths although it

carries larger economic (and possibly political) costs.

In the Appendix (Fig D in S1 Appendix) I perform the same set of simulations for the SIR

model with global transmission only, p = 1. Comparing Fig 9 with Fig D in S1 Appendix

reveals that testing and contact tracing are less effective with population-level mixing com-

pared to in the network-contacts model, for the reasons discussed in Section 4.2.1.

4.3 Behavioral responses

The NSIR model allows incorporating behavioral responses by the agents, based either on indi-

vidual-level information (from their own social contacts) or aggregate-level information. In

Fig 10 and Table 3 I analyze five simulated scenarios of behavioral responses in the network-

only NSIR model, p = 0. Behavioral response scenarios A, B and C assume testing rate θ = 0.05

and model a (e.g., fear-driven) reduction in an agent’s number of contacts if the agent learns

that one of his social contacts has tested positive, that is, if xjt = P for some agent j 2 CG(i). This

behavioral response works as self-triggered contact tracing.

Formally, a susceptible agent i for whom 9j 2 CG(i) with xjt = P at some time t, switches to a

lower-degree social network ~Q with contacts C~QðiÞ where ~Q is a sub-network of G with lower

degree per each node. The median degree of network ~Q is set to 5 in simulation A and to 1 in

simulation B. Scenarios A and B assume a permanent switch, to assess the upper bound of the

effect. Compared to the baseline setting, Fig 10 (a single simulation path) and Table 3 (average

over 100 simulation paths, see Section 6.1) show that these behavioral responses reduce the

infection rate, peak and death toll by significant amounts. The total number of infected is
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Fig 8. Lockdown success or failure.

https://doi.org/10.1371/journal.pone.0240878.g008
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reduced on average by 25% in scenario A and 48% in scenario B; the infection peak is reduced

by 45% and 60% respectively, and the total death count is reduced by 17% and 41% respec-

tively (see Table 3).

Behavioral response simulation C (see Fig 10 and Table 3) assumes that the switch to the

restricted-contacts network ~Q is temporary. Specifically, a susceptible individual i with xit = S
switches to graph ~Q only for the times t for which s/he has a social contact who has tested posi-

tive and still in state P, i.e., 9j 2 CG(i) with xjt = P while i uses the baseline social network G
otherwise. Such adaptive behavior still lowers the infection peak but the reduction in the over-

all infection and death rates is smaller compared to that in simulations A and B—15% reduc-

tion in total infections and 10% reduction in total deaths (see Table 3).

Fig 9. Lockdown exit, testing and contact tracing.

https://doi.org/10.1371/journal.pone.0240878.g009
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Fig 10. Behavioral responses—endogenous distancing and relaxation.

https://doi.org/10.1371/journal.pone.0240878.g010
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In behavioral response scenarios D and E (Fig 10, middle and bottom panel and Table 3) I

assume that agents react to new positive cases in the population. Specifically, the susceptible

agents observe the infection aggregates and choose to reduce their contacts by switching from

graph G to graph ~Q if there is a large increase Δ in new active cases Pt (Δ is set to 100 per

10,000), over the preceding 20 days. The agents revert back to contact graph G if there are less

new cases than the threshold Δ over the preceding 20 days. Simulation D uses a 2% testing rate

θ while simulation E uses 5% testing rate. Fig 10 shows that these behavioral responses result

in multiple but low infection peaks, corresponding to alternating periods of endogenous dis-

tancing and relaxation. Compared to the scenarios with 2% or 5% testing only and no endoge-

nous behavioral response, the behavioral response scenarios D and E reduce total infections by

on average 16% and 25%, the infection peak by 34% and 63%, and total deaths by 7% and 22%,

respectively (see Table 3).

4.4 Superspreaders

As explained earlier, the effective reproduction number in the NSIR model depends on the

network structure and the social contacts of the currently infectious nodes. To illustrate this

point further I explicitly look at the role of superspreaders, that is, nodes with a large number

of edges. Specifically, I take the baseline no-intervention p = 0 simulation from Fig 3 and com-

pute the percent increase in the effective reproduction number RNSIR
t , as defined in (7), regis-

tered immediately after a ‘superspreader’ node becomes infectious (see row 3 in Table 2).

I define as superspreaders the ten nodes with largest degree in the baseline graph G. From

these ten nodes, seven become infected in the simulation, listed in Table 2. The immediate

change (increase) in Rt because of a superspreader node turning infectious (row 3 in Table 2)

is compared to the average preceding Rt change (computed as the average change in Rt over

the preceding 10 model time-steps / state transitions) in row 4. These results show that super-

spreaders can lead to significant ‘jumps’ in Rt in the NSIR model. In contrast, in the SIR

model Rt changes continuously no matter which node becomes infections since only the total

number of currently infectious nodes It matters for the effective reproduction number, see (5).

Fig A in the S1 Appendix illustrates further the importance of superspreaders and node

degree heterogeneity in the NSIR model, compared to the SIR model with population-level

transmission. Fig A in S1 Appendix compares the infection curves resulting from a single ini-

tial infectious person who is either a superspreader (node 34 with degree 200) or an average

spreader (node 21 with degree 10). I do this for p = 1 (random matching, SIR setting), p = 0.5

(mixed NSIR) and p = 0 (network-only NSIR). In the SIR setting the identity of the initial

spreader (or any later one) has no effect on the infection dynamics by construction—only

the total number of infectious It matters. In contrast, in settings with network-transmission

(p< 1) an early superspreader results in much earlier and higher infection peak. In the p = 0

setting the initial superspreader node generates large number of secondary cases very quickly,

who in turn infect others, leading to 758 infected nodes (7.6% of the population) at t = 60 as

opposed to only 24 infected nodes at t = 60 in the simulation with average initial spreader.

These examples highlight the necessity for quickly identifying superspreaders or for restricting

Table 2. Impact of superspreaders on the reproduction number Rt .

superspreader node # 34 29 18 19 36 57 22

node degree 200 188 180 142 138 131 124

Rt change from superspreader 9.9% 3.0% 2.2% 2.6% 2.1% 5.1% 5.6%

average preceding Rt change .006% −.01% .008% −.04% .003% −.04% −.05%

https://doi.org/10.1371/journal.pone.0240878.t002
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the situations in which superspreader scenarios are common (e.g., mass gatherings, bars,

cruise ships, etc.), as also documented in the medical literature (e.g., [13] or [14]).

4.5 Effective reproduction number

I compute and compare the effective reproduction number Rt across different model scenar-

ios. In general, for any scenario, with corresponding endogenous St, It and Et, we can compute

(agents who tested positive, if any, are included in It):

RNSIR
t ¼

X

i s:t: xit¼S

Probðxit0 ¼ Ejxit ¼ SÞ

rIt
:

The top panel of Fig 11 plots the reproduction number of the SIR model (p = 1) vs. the

NSIR model with network transmission only (p = 0) in the absence of any interventions or

behavioral responses. The lines in the top panel are plotted against cumulative infection count,

as analyzed in Examples 1-3 above. The infection count is not equally spaced in calendar time

since there are many new infections when the disease is peaking than in the its early or late

stages. The figure shows that for the chosen modified Barabasi-Albert graph G the NSIR

model has lower reproduction rate Rt than the SIR model, with the gap being the largest in the

early stages (see Appendix B for more formal discussion on comparing the reproduction num-

bers in the SIR vs. NSIR models).

The middle and bottom panels in Fig 11 plot the reproduction number RNSIR
t over actual

calendar time (days) for several of the simulation scenarios considered in the previous sections.

Compared to the SIR model (p = 1) baseline (the thick dashed line on Fig 11), network-level

transmission (p< 1) ‘flattens’ the reproduction number—for the assumed social network G,

the value of RNSIR
t is initially below that of the SIR model but it is higher later on (after approxi-

mately 60 days on the figure) and may stay around 1 for a prolonged time if the infection rate

is slowed down by testing and contact tracing (see the bottom panel). The impact of distancing

policies in bringing RNSIR
t below 1 is fast and strong, however, the Figure also shows that, when

the policy is lifted, the reproduction number may quickly rise above 1 again.

5 Economic module

As a simple illustration of the economic costs analysis of the COVID-19 epidemic using the

NSIR model, I follow [11] to define and compute an index of economic activity based on the

number and relative productivity of active vs. quarantined or sick agents in the economy.

Clearly this measure is very rough and excludes indirect (e.g., additional costs from deaths and

hospitalization or psychic costs), long-term (job loss, inability to pay debts, destruction of

employment attachment), sectoral (e.g., hospitality vs. IT), or general equilibrium effects asso-

ciated with the (duration of) epidemic or lockdown policies.

Define the following simple index of economic activity over time, Yt which keeps track and

varies with the numbers of active and healthy agents vs. locked-down / quarantined agents vs.

sick or dead agents.

Yt ¼
1

N
½ð1 � lÞðSt þ Et þ Rt þ aItÞ þ lrðSt þ Et þ Rt þ aItÞ þ raPt�

where λ 2 [0 1] is the fraction of agents in lockdown, ρ 2 (0, 1) is the factor with which the pro-

ductivity of locked down agents is reduced, and α is the fraction of infectious agents (It or Pt)

who are asymptomatic (assumed as productive as healthy agents). The rest, 1 − α of sick agents

are assumed to have zero productivity. All “tested positive” agents are assumed in quarantine
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Fig 11. NSIR model—effective reproduction number Rt .

https://doi.org/10.1371/journal.pone.0240878.g011
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(productivity ρ). In the simulation results reported in Table 3 and Fig 12 I assume ρ = 0.5 as

in [11] and α = 0.18 as estimated in [30]. The lockdown rate λ is a policy variable. A value of

1 for the index Yt is interpreted as “normal times”, that is, all agents being healthy and fully

productive.

Fig 12, the top panel plots the economic index for the NSIR model with network transmis-

sion (p = 0) and the scenarios in Fig 3 in Section 4.2.1. In the middle and bottom panel I illus-

trate the effect on Yt of various policies defined earlier. In these simulations it is assumed that

during the distancing period all agents’ productivities are reduced by the factor ρD = 0.7. These

results are just illustrative and assume large economic costs from broad lockdown or distanc-

ing (self-isolation).

Table 3 in Section 6 reports the economic loss measured by the index Yt across the multiple

scenarios considered. Specifically, column “GDP loss” reports the average losses, compared to

the baseline Yt = 1 and annualized to account for the different durations of the epidemic. Col-

umn “max GDP fall” in Table 3 displays the largest decrease in the economic index Yt over the

epidemic duration. As expected, because of the mandated reduction in production, the dis-

tancing or lockdown scenarios entail the largest average (up to 9% annualized decrease in Yt)

Table 3. Summary of simulation results.

Scenario total infected total deaths peak infectious peak day1 epidemic duration1 GDP loss2 max GDP fall3

no intervention, p = 1 89.5% 0.34% 11.7% 47 145 1.3% 9.3%

no intervention, p = .5 87.7% 0.33% 10.8% 49 150 1.3% 8.6%

no intervention, p = 0 81.6% 0.31% 8.5% 58 170 1.2% 6.7%

all simulations below use the NSIR model with p = 0

mass testing, θ = 2% 77.4% 0.28% 7.4% 62 182 1.2% 6.0%

mass testing, θ = 5% 70.6% 0.26% 5.8% 69 206 1.1% 4.8%

5% testing and 10% contact tracing 64.6% 0.24% 4.9% 70 221 1.1% 4.0%

accelerating testing4 77.6% 0.29% 7.6% 60 173 1.2% 6.1%

distancing policy A 78.6% 0.30% 7.9% 110 219 3.7% 30.3%

distancing policy D 75.1% 0.28% 4.9% 99 254 3.6% 31.7%

distancing policy E 73.0% 0.28% 4.3% 131 330 6.1% 31.7%

distancing policy F 24.5% 0.09% 3.2% 48 151 8.6% 31.7%

distancing policy I 68.8% 0.26% 7.5% 111 243 5.9% 33.2%

distancing policy J 31.2% 0.12% 3.6% 79 173 7.6% 31.6%

distancing policy L 36.3% 0.14% 4.0% 76 152 7.4% 31.1%

lockdown, 70%, 30 days 81.1% 0.31% 8.1% 101 214 4.1% 35.3%

lockdown, 70%, 90 days5 30.4% 0.12% 3.1% 68 163 8.6% 35.3%

lockdown, 70%, 90 days, 5% testing 15.2% 0.06% 1.4% 45 132 7.7% 35.3%

behavioral response A6 61.6% 0.23% 4.9% 66 207 1.0% 4.0%

behavioral response B6 43.5% 0.17% 3.6% 58 193 0.8% 3.0%

behavioral response C7 68.8% 0.25% 5.5% 65 218 1.1% 4.5%

behavioral response D8 64.8% 0.24% 4.9% 45 292 1.1% 3.9%

behavioral response E8 52.6% 0.19% 2.3% 46 423 1.0% 1.9%

Notes: All values are averages over 100 simulations with different random seeds. The same random seeds are used in each scenario. Each simulation is initialized at 0.5%

infection rate (I0 = 50). 1. The infection peak and duration are computed relative to that initialization. 2. GDP loss = annualized decrease in the economic index Yt

defined in Section 5.1; 3. max GDP fall = largest instantaneous fall in Yt; 4. Initial rate θ = .01 increasing by 10% every 10 days; 5. The epidemic is contained (approx. 2%

total infected) in 64% of these simulations and in 80% of the 90-day lockdown, 5% testing simulations in the next row. 6. agents with contacts who tested positive reduce

their graph degree (#contacts) on average in half (A) or 10 times (B) thereafter; 7. agents reduce their #contacts only during periods in which they have a contact who

tested positive; 8. agents reduce their graph degree upon observing large number of new active cases over the previous 20 days.

https://doi.org/10.1371/journal.pone.0240878.t003
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and maximum economic losses (up to 35% decrease), with the losses increasing in the inter-

vention duration. The second largest economic costs are observed in the no-intervention sce-

narios (7–9% maximum decrease in Yt), because they result in a large share of infected agents

who are assumed less productive. In contrast, the lowest economic losses result in the testing /

contact tracing and behavioral response simulation scenarios, where the combination of no

mandated lockdown and low infection shares mitigates economic costs.

Clearly, these results should be interpreted only as illustrative of the productivity losses and

the trade-off of between lockdown/distancing vs. infections/deaths since only direct reductions

in productivity or output are considered and multiple other factors are omitted: additional

cost of deaths, healthcare costs, job losses or (except in the behavioral response scenarios)

reductions in economic activity due to fear (e.g., restaurants, travel), etc.

Fig 12. Economic impact illustration—NSIR model.

https://doi.org/10.1371/journal.pone.0240878.g012
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6 Summary and robustness

6.1 Summary of results

Table 3 summarizes the simulation results from the previous sections (see there for the corre-

sponding discussion). Each Table row reports averages over 100 simulations with the same

model parameters and policy setting but different pseudo-random number generator seeds

that are held constant across the rows (scenarios).

6.2 Alternative specifications and robustness

There is still a lot of uncertainty and variation in the COVID-19 epidemiological parameter

estimates and other model ingredients in the current early state of the literature. The baseline

parameters I have used in this paper are believed to be current as of early May 2020, however,

depending on different data sources and clinical studies, different authors use different values

for the removal and mortality rates tied in the model to the parameters r and μ (see Section 2),

e.g., larger mortality rate or slower removal rate. Note that the observed removal rate may be

‘contaminated’ by policy effects (e.g., if health authorities isolate symptomatic individuals) so

using data from policy-treated time periods and locations to estimate the epidemiological

parameters should be treated with caution.

In Fig 13 (top panel) I explore the implications of using alternative epidemiological parame-

ters relative to the baseline calibration in Section 4.1. In simulation ‘slower removal A’ I keep

the initial doubling time the same, so β − r = 0.3 but assume lower removal rate r = 0.1, corre-

sponding to a longer, 10-day on average, infectious period instead of 5 days (this raises the SIR

R0 to 4). This creates a higher infection peak and shifts the active infected curve It forward in

time, since there is slower exit from state I. Alternatively, in specification ‘slower removal B’, I

assume r = 0.1 but keep R0 = 2.5 as in the baseline (i.e., use β = 0.25). The result is a higher

infection peak but the infection rate curve moves back in time as the epidemic spreads slower

due to the lower infectiousness rate. A higher mortality rate, μ = 0.0066r or μ = 0.01r, corre-

sponding to IFR of 0.66% or 1%, has a very minor effect on the infection curve. It does, how-

ever, impact total deaths Ftmax (not reported on the Figure) since they are a fraction μ of

cumulative infections, Ftmax’ μ(N − Rtmax). Finally, I keep r = 0.2 as in the baseline but explore

raising the SIR R0 to 5 (i.e., β = 1)—this results in a much earlier and higher infection peak.

The middle panel of Fig 13 displays simulations exploring lower initial infection rates I0 =

0.1% or I0 = 0.01%. The result of these alternative initial conditions is largely just a time shift in

the infection curve, suggesting that in empirical work it is important to carefully calibrate the

initial condition to match the infection peak.

Finally, in the bottom panel of Fig 13 I perform simulations with alternative specification of

the social contacts graph G—by assuming a higher density of contacts (median node degree

equal to 13, instead of 10 in the baseline); lower density of contacts (median node degree 8); or

a Watts-Strogatz graph G with mean degree 12. The specification using a denser graph moves

the infection peak slightly forward and upward in time, while the opposite is true for the speci-

fication with less dense graph. Otherwise I find that the shape of the infection curve It is not

very sensitive to these alternative assumptions about the contacts graph G. A necessary step for

future empirical work is to calibrate the network G using actual data, e.g., as in [17].

7 Conclusions

I analyze the combination and interaction of a compartmental epidemiological model and a

network model of social contacts (an NSIR model). I explore, via calibration and simulations,

how network-based transmission and the network structure affect the epidemic dynamics as
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well as the outcomes and effectiveness of a broad range of policy interventions and behavioral

responses, compared to the standard SIR model with population-level uniform mixing.

I find that viral transmission over a network-connected population can proceed slower and

reach lower peak compared to transmission via uniform/random mixing. Network-based viral

transmission introduces uncertainty and path dependence in the epidemic dynamics, with

important role for bridge links and superspreaders. Testing, quarantine and contact tracing

tend to be more effective in the network model, as these policy interventions can quickly iso-

late infectious nodes with a large number of contacts. Similarly, interventions that can break

Fig 13. Alternative specifications.

https://doi.org/10.1371/journal.pone.0240878.g013
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major transmission vectors across local sub-populations, such as restrictions on non-local

travel or bans on mass gatherings are also very effective. Other implications of the NSIR model

remain in line with those in the standard SIR models. If lifted early, distancing policies mostly

shift the infection peak into the future, while intermittent interventions or endogenous behav-

ioral responses can generate a flattened, multi-peaked infection curve but may have costlier

economic consequences by prolonging the epidemic duration.

The main advantage of the network approach, compared to standard aggregate SIR-type

models is that the NSIR model captures heterogeneity and locality of social contacts as possible

vectors of transmissions. This allows a micro-level, agent-based modeling of health and eco-

nomic policy outcomes and individual behavioral responses. In addition, the social contact

heterogeneity induces path-dependence and role for superspreaders or clusters in the epidemic

dynamics (see [13] or [14] for empirical evidence). The main challenge to the network

approach is that, in addition to the standard epidemiological parameters governing disease

incubation, infectiousness, recovery and mortality, the specification and identification of the

social contacts graph, initial conditions and node path followed by the epidemic require addi-

tional attention in future empirical work. Adding further detail, including agent-level, on the

economics side of the model can also yield important insights.

Supporting information

S1 Appendix.

(PDF)

Author Contributions

Formal analysis: Alexander Karaivanov.

Investigation: Alexander Karaivanov.

Methodology: Alexander Karaivanov.

Software: Alexander Karaivanov.

Visualization: Alexander Karaivanov.

Writing – original draft: Alexander Karaivanov.

Writing – review & editing: Alexander Karaivanov.

References
1. Kermack W. and McKendrick A., A contribution to the mathematical theory of epidemics. Proceedings

of the Royal Society A, 115(772): 700–721; 1927.

2. Atkeson A., What will be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease

Scenarios. NBER Working Paper 26867; 2020.

3. Alvarez F., D. Argente and F. Lippi, A Simple Planning Problem for COVID-19 Lockdown. working

paper, University of Chicago; 2020.

4. Wang H., Wang Z., Dong Y., Chang R., Xu C., Yu X., et al, Phase-adjusted estimation of the number of

coronavirus disease 2019 cases in Wuhan, China. Cell Discovery, 6(1); 2020. https://doi.org/10.1038/

s41421-020-0148-0

5. Pastor-Satorras, R. and A. Vespignani, Epidemic spreading in scale-free networks. arXiv:cond-mat/

0010317; 2000.

6. Newman M., The spread of epidemic disease on networks. arXiv:cond-mat/0205009; 2002.

7. Dottori M. and Fabricius G., SIR model on a dynamical network and the endemic state of an infectious

disease. Physica A, 434: 25–35; 2015. https://doi.org/10.1016/j.physa.2015.04.007

8. McGee R., SEIRSplus Python code and documentation, 2020. https://github.com/ryansmcgee/seirsplus

PLOS ONE A social network model of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0240878 October 29, 2020 32 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0240878.s001
https://doi.org/10.1038/s41421-020-0148-0
https://doi.org/10.1038/s41421-020-0148-0
https://doi.org/10.1016/j.physa.2015.04.007
https://github.com/ryansmcgee/seirsplus
https://doi.org/10.1371/journal.pone.0240878


9. Reich O., G. Shalev and T. Kalvari, Modeling COVID-19 on a network: super-spreaders, testing and

containment. working paper, 2020.

10. Zhao P., A Social Network Model of the COVID-19 Pandemic. medRxiv 2020.

11. Berger D., K. Herkenhoff and S. Mongey, An SEIR Infectious Disease Model with Testing and Condi-

tional Quarantine. working paper; 2020.

12. Kuchler T., D. Russel and J. Stroebel, The geographic spread of COVID-19 correlates with structure of

social networks as measured by Facebook. NBER Working Paper 26990; 2020.

13. Adam D., P. Wu, J. Wong, E. Lau, T. Tsang, S. Cauchemez, et al, Coronavirus 2 (SARS-CoV-2) infec-

tions in Hong Kong. pre-print; 2020.

14. Althouse B., E. Wenger, J. Miller, S. Scarpino, A. Allard, L. Hebert-Dufresne, et al, Stochasticity and het-

erogeneity in the transmission dynamics of SARS-CoV-2. medRxiv; 2020.

15. Doob J., Markoff chains—Denumerable case. Transactions of the American Mathematical Society. 58

(3): 455–473; 1945.

16. Gillespie D., Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical

Chemistry 81(25): 2340–2361; 1977. https://doi.org/10.1021/j100540a008

17. Azzimonti M., A. Fogli, F. Perri and M. Ponder, Social Distance Policies in Network Cities. working

paper; 2020.

18. Borgs C., Chayes J., Ganesh A. and Saberi A., How to Distribute Antidote to Control Epidemics? Ran-

dom Structures and Algorithms 37(2); 2010.

19. Chang R. and A. Velasco, Economic Policy Incentives to Preserve Lives and Livelihoods. NBER Work-

ing Paper 27020; 2020.

20. Keppo J., E. Quercioli, M. Kudlyak, A. Wilson and L. Smith, The Behavioral SIR Model, with Application

to the Swine Flu Epidemic. working paper; 2020.

21. Toxvaerd F., Equilibrium Social Distancing. working paper, Cambridge U.; 2020.

22. Anderson S., A. Edwards, M. Yerlanov, N. Mulberry, J. Stockdale, S. Iyaniwura, et al, Estimating the

impact of COVID-19 control measures using a Bayesian model of physical distancing. pre-print; 2020.

23. Fernandez-Villaverde J. and C. Jones, Estimating and Simulating a SIRD Model of COVID-19 for Many

Countries, States, and Cities. working paper; 2020.

24. Streeck H., B. Schulte, B. Kuemmerer, E. Richter, T. Hoeller, C. Fuhrmann, et al, Infection fatality rate

of SARS-CoV-2 infection in a German community with a super-spreading event. medRxiv pre-print,

2020.

25. Verity R., Okell L., Dorigatti I., Winskill P., Whittaker C., Imai N., et al, Estimates of the severity of coro-

navirus disease 2019: a model-based analysis. Lancet Infectious Diseases 20: 669–677, 2020. https://

doi.org/10.1016/S1473-3099(20)30243-7

26. Farboodi M., G. Jarosch and R. Shimer, Internal and External Effects of Social Distancing in a Pan-

demic. working paper, Becker-Friedman Institute; 2020.

27. Tsiotas D. and Magafas L., The Effect of Anti-COVID-19 Policies on the Evolution of the Disease: A

Complex Network Analysis of the Successful Case of Greece. Physics 2: 325–339; 2020. https://doi.

org/10.3390/physics2020017

28. Beraud G., Kazmercziak S., Beutels P., Levy-Bruhl D., Lenne X., Mielcarek N., et al, The French Con-

nection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infec-

tious Diseases. PLOS ONE 10(7): e0133203; 2015. https://doi.org/10.1371/journal.pone.0133203

29. Keeling M. and Eames K., Networks and Epidemic Models. J. R. Soc. Interface 2: 295–307; 2005.

https://doi.org/10.1098/rsif.2005.0051

30. Mizumoto K., Kagaya K., Zarebski A., Chowell G., Estimating the asymptomatic proportion of coronavi-

rus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan.

Eurosurveillance 25(10); 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

PLOS ONE A social network model of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0240878 October 29, 2020 33 / 33

https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.3390/physics2020017
https://doi.org/10.3390/physics2020017
https://doi.org/10.1371/journal.pone.0133203
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
https://doi.org/10.1371/journal.pone.0240878

