
RESEARCH ARTICLE

Predictive topology refinements in distributed

stream processing system

Muhammad Hanif1, Choonhwa LeeID
1*, Sumi Helal2

1 Division of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea, 2 School of

Computing and Communications, Lancaster University, Lancaster, United Kingdom

* lee@hanyang.ac.kr

Abstract

Cloud computing has evolved the big data technologies to a consolidated paradigm with

SPaaS (Streaming processing-as-a-service). With a number of enterprises offering cloud-

based solutions to end-users and other small enterprises, there has been a boom in the vol-

ume of data, creating interest of both industry and academia in big data analytics, streaming

applications, and social networking applications. With the companies shifting to cloud-

based solutions as a service paradigm, the competition grows in the market. Good quality of

service (QoS) is a must for the enterprises, as they strive to survive in a competitive environ-

ment. However, achieving reasonable QoS goals to meet SLA agreement cost-effectively is

challenging due to variation in workload over time. This problem can be solved if the system

has the ability to predict the workload for the near future. In this paper, we present a novel

topology-refining scheme based on a workload prediction mechanism. Predictions are

made through a model based on a combination of SVR, autoregressive, and moving aver-

age model with a feedback mechanism. Our streaming system is designed to increase the

overall performance by making the topology refining robust to the incoming workload on the

fly, while still being able to achieve QoS goals of SLA constraints. Apache Flink distributed

processing engine is used as a testbed in the paper. The result shows that the prediction

scheme works well for both workloads, i.e., synthetic as well as real traces of data.

Introduction

With the evolution of cloud computing from a set of promising virtualization and data center

technologies to a centralized paradigm for the delivery of the computing as a service to cus-

tomers (like other utilities such as water, gas, and electricity) in a pay-as-you-go manner, adap-

tation of the technology by enterprises is growing fast by days, and so is the number of cloud-

based companies offering cloud services to end customers. This has subsequently resulted in

an exponential rise of distributed streaming frameworks, capable of dealing with “big data”,

“fast data”, and data streams alike, allowing for quick and characterized decisions. The applica-

tions of these engines can be seen in several types of data, including but not limited to, social

media posts, search queries, sensor logs, etc, an example of which could be on a local news

broadcast, where social media feeds regarding a specific event or tragedy are analyzed in

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hanif M, Lee C, Helal S (2020) Predictive

topology refinements in distributed stream

processing system. PLoS ONE 15(11): e0240424.

https://doi.org/10.1371/journal.pone.0240424

Editor: Rashid Mehmood, King Abdulaziz

University, SAUDI ARABIA

Received: March 24, 2020

Accepted: September 27, 2020

Published: November 5, 2020

Copyright: © 2020 Hanif et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: C. Lee 2020R1A2B5B01001758 National

Research Foundation of Korea https://www.nrf.re.

kr/ C. Lee 2019-0-00458 Institute of Information &

communications Technology Planning &

Evaluation (IITP) http://www.iitp.kr.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-6564-2392
https://doi.org/10.1371/journal.pone.0240424
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240424&domain=pdf&date_stamp=2020-11-05
https://doi.org/10.1371/journal.pone.0240424
http://creativecommons.org/licenses/by/4.0/
https://www.nrf.re.kr/
https://www.nrf.re.kr/
http://www.iitp.kr

seconds [1], and Google’s Zeitgeist pipeline can detect any exceptional queries within search

parameters on the event in question quickly [2].

To fulfill these analytical applications needs, several distributed stream processing systems

have been developed, which can process large and fast continuous streams of data on the fly

and respond to the user queries within near real-time. Examples of prominent streaming

frameworks include: Millwheel developed by Google [2], Apache Storm [3], Spark Streaming

[4], Ptail and Puma created by Facebook [5], Microsoft’s Naiad [6], and Apache Flink [7].

These systems, despite their differences in terms of design and technical detail, do have a few

similarities, namely in terms of: a) Data Parallelism: distributed stream processing systems

exploit parallelism to scale the processing to a cluster level. Data parallelism essentially splits a

larger dataset into more manageable subsets, through either physical or logical partitioning,

which then allows the tasks to be executed in parallel across the subsets. b) Incremental Pro-

cessing: most of the distributed stream processing systems have the competence to process

data incrementally, as opposed to batch processing where each operator processes all the data,

then forwarding the gathered data onto the next operator, in a repeated loop, resulting in a sig-

nificant delay of the final result.

Apache Flink is considered to be one of the most auspicious, open-sourced, distributed

real-time stream frameworks to date, having the capacity to deal with rapidly large data

streams in a flexible and dependable way. Flink has meritoriously done for stream processing

what Hadoop [8] has done for batch processing. Flink is built on the principle of working

coherently over unbounded data streams to be executed as a stream of fault-tolerant data flows

and related streaming applications such as fraud detection in real-time banking transactions,

real-time stream analytics of business applications, iterative algorithms like graph processing

and machine learning. Recent distributed streaming frameworks have already corrected sev-

eral of the issues plaguing big data applications, but there are still lingering issues [9], namely

with the topological readjustment of the operators used in these systems, usually resulting in

cluster performance and QoS degradation.

Achieving QoS marks is crucial for meeting Service Level Agreements (SLAs) in terms of

latency, throughput, or application performance with the customers. It is a primary reason of

heavy investment taking place in the field for the enterprises that provide streaming as a ser-

vice to the end customers. More customers would likely stick with the enterprises that provide

satisfactory QoS. However, the process is further complicated due to uncertainty and unpre-

dictable situations at run-time. Recent research efforts revealed a deficiency in dealing with

dynamism inherent in distributed stream processing systems, which includes:

• Topology reconfiguration: rectifying a topology when dealing with an active application, can

usually lead to the obstruction of said application’s execution, including all interconnected

elements of the application. For instance, topology rebuilding might be necessary to fulfill a

user request of incrementing or decrementing certain parameters.

• Error Estimation: system administrators and users can often underestimate or overestimate

their application needs because of a lack of understanding of requirements due to complexi-

ties. As a result, it becomes extremely hard for users to find a right combination of parame-

ters that can suitably fit current and anticipated application workload.

• Dynamic Workload: streaming applications receive data from a large number of sources

(like sensors, system logs, IoT devices, etc.). Thus, highly variable load spikes in data can

occur, depending on the day and time of the year as well as application popularity. Thus esti-

mating the workload behavior (event and data arrival pattern, I/O behavior, distribution of

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 2 / 27

https://doi.org/10.1371/journal.pone.0240424

service time, and network usage) is crucial for the performance and optimum utilization of

the whole system.

• Workload assessment knowledge: there is a habitual performance degradation and poor

QoS, as topologies are mapped to nodes regardless of the knowledge of the workload, as

by default in the streaming processing systems. This leads to over- or underutilization of

resources of individual nodes or even the whole system in some cases.

To guarantee a service level agreement in terms of application performance, latency, and

error rates, what is required of stream processing systems is the ability to connect system con-

figuration and application performance. Based on the prediction of incoming workload fluctu-

ations, the topological refinement of the system should be able to be adjusted accordingly.

Several state-of-the-art distributed stream processing frameworks support the ability to manu-

ally change the operator distribution and topology. However, to the best of our knowledge,

none of the major frameworks has implemented the mechanism to automatically refine the

topology with respect to the changes in the incoming workload. There are two cases we should

consider to make topology adjustments. First case is when the incoming data rate exceeds the

system capacity to process it and unprocessed data accumulate, causing a back pressure and

in due course making the system inoperable. Second case is when the incoming data rate is

very low and the buffer needs to wait for the incoming data to be available and then fired to

process it accordingly. As a result, the refined topology would allow the system to yield higher

performance.

In a previous work [10], we introduced an architecture for topology refining using a simple

prediction mechanism. One key component of the proposed architecture is our topology-

refining scheme for Flink framework. However, one missing piece of the puzzle in the work

was a suitable mechanism for workload prediction. In this paper, we present our TRS(Topol-

ogy Refining Scheme) system capable of refining and re-adjusting the topology of streaming

processing systems on the fly at run-time based on autoregressive and moving average work-

load prediction models. The key contributions of this work are as follows. First, we proposed a

stream pipeline system which takes workload prediction and user SLA into account in order to

select a physical topological plan to run streaming applications. We designed a workload pre-

diction module using a combination of Moving Average (MA) model [11] and Autoregressive

(AR) model [12] with added feedback step so as to predict the incoming workload of the sys-

tem. The prediction module can be considered as a special case of ARIMA model [13]. Fur-

thermore, a hybrid model of support vector regression (SVR) and ARIMA model is employed,

which yields better prediction results than other single models due to the fact that it is capbable

of capturing both linear and nonlinear features. Most importantly, the prediction is then used

to refine the topology of the system. Finally, we conducted an evaluation study of the system

using both real and synthetic workloads.

The rest of the paper is as follows. Section 2 explicates distributed stream processing system

model, Section 3 introduces the architectural design of an adaptive stream processing system.

Section 4 provides an evaluation of our system and Section 5 gives a brief taste of related work

in the area. Finally, Section 6 represents a conclusion of our work, as well as any future steps

that we might take for this project.

Distributed stream processing system

With the advancement and adaptation of cloud computing and related technologies by enter-

prises, we have seen a subsequent rise in the number of relevant big data applications in a vari-

ety of fields such as online banking systems, real-time streaming analytics, online traffic

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 3 / 27

https://doi.org/10.1371/journal.pone.0240424

analysis systems, Internet of things (IoT), social media feeds, etc. These systems are creating

real-time unbounded data on a large scale. To handle such a vast amount of seemingly limitless

data in an efficient and expansive manner, a host of streaming processing systems emerged,

including Dataflow model [14], Samza [15], Storm, and Flink. These frameworks deal with any

and all arriving, real-time streams that is distributed to each of the nodes in the cluster. Mod-

ern state-of-the-art distributed stream processing allow the job graph’s operators to be dupli-

cated throughout the cluster, decreasing latency and raising the throughput.

Typically a distributed streaming system is comprised of nodes working together as a clus-

ter to run applications over it in a distributed manner. The resources for the executions of

tasks in a Flink cluster are Task slots. Task managers and individual worker nodes all have at

least one or more task slots, with each slot having the capacity to execute a pipeline of parallel

tasks [16]. Every pipeline is composed of a number of sequential tasks, such as map, reduce,

join, filer, sink, and union functions. As illustrated in Fig 1, Flink has the ability to run both

batch and streaming application’s tasks simultaneously. The batch task is treated as a special

case of streaming tasks. The user code coordinates with the job manager, with the actor system

acting as a medium. The job manager then delegates each of the available operators in the task

managers located in the cluster to execute any operations in their respective task slots.

Let’s assume that we have a Flink application that must run on the cluster. The application’s

code is analyzed and outputed as a dataflow graph, utilizing either the default or the user-speci-

fied parallelism for all operators and functions. The graph is then pipelined through to the client

section of the system, where the client forwards the refined program outline, as a dataflow

graph, towards the job manager. The communication between client and job manager happens

through their actor system. The job manager then translates the received plan into a physical

execution plan, allocating operators based on the set parallelism. As seen in Fig 1, the pipeline

contains the order of Source-Map-Reduce-Sink operators. With this particular case, we

assigned the Map Function a parallelism of three, as well as a Reduce Function parallelism of

four. The job manager then gives task pipelines to task managers through an actor system. Each

task manager then distributes the tasks into the available task slots to be executed accordingly.

Fig 1. Program code transformation and operator distribution by job manager in Apache Flink framework.

https://doi.org/10.1371/journal.pone.0240424.g001

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 4 / 27

https://doi.org/10.1371/journal.pone.0240424.g001
https://doi.org/10.1371/journal.pone.0240424

The majority of streaming engines have the capability to utilize event-time windows, mir-

roring the actual occurrence of said events, but in many realistic situations, such as the New

York City Yellow Taxi Trip Records [17] and the German Credit Cards dataset [18], there

always exists the chance of a spike in the workload cycle, which can vary as a daily, weekly, sea-

sonal or even unexpected cycle occurs, as seen in Fig 2. We generated synthetic workload to

mimic different patterns of spikes and show how the system adapts itself accordingly in section

4. Daily spikes in the cycle typically arise in the mornings or evenings, typically the busiest

times of day, while the weekly spikes usually happen on business days (Monday evening

through to Saturday morning). Seasonal spikes typically occur over the holidays, like Christ-

mas, while unexpected spikes can happen at any point in time across the year. To handle this

immense workload, a system is required to have the capability of scaling upwards or down-

wards in terms of the operator’s parallelism in the pipeline, depending on any arriving data

streams.

Multiple modern, distributed streaming engines have the capability to manually alter the

operator’s distribution topology. This capability notwithstanding, according to our research,

no framework has managed to provide us with the required capabilities or features needed to

automatically alter the operator’s distribution topology, factoring in the arriving workload.

Recognizing this deficiency, we developed a streaming processing system architecture capable

of predicting the incoming workload and refining the system topology according to the near

future prediction of the incoming workload.

Adaptive topological refining system

Architectural design

One of the key challenges of stream processing systems is elasticity, which enables the underly-

ing system to be dynamic and adaptive towards the fluctuation of incoming event and data

streams. However, adapting the system to the incoming workload requires an insight into

the system operation and incoming workload. Also, with the Stream Processing as a Service

(SPaaS) that enables users to build and operate custom managed streaming applications, the

service providers may also be liable for not delivering the minimum required QoS. The main

idea behind SPaaS is to allow the user to focus on business application logic, while the platform

provides the scale, operations, and domain expertise.

Fig 2. Workload Spikes: a) Daily spikes are in the mornings or in the evening. b) The weekly are in the weekdays

starting from Monday evening till Saturday morning. c) Seasonal spikes could be around Christmas and New Year

holiday’s season. d) Unplanned spikes can occur at any time of the year.

https://doi.org/10.1371/journal.pone.0240424.g002

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 5 / 27

https://doi.org/10.1371/journal.pone.0240424.g002
https://doi.org/10.1371/journal.pone.0240424

One approach that has been explored for other cloud services such as PaaS, SaaS, etc. for

years is based on workload prediction. Accurate predictions of a user’s future service requests

enable the service provider to meet the QoS targets according to the SLA agreement. In this

paper, we focus on seasonal request pattern applications such as requests to a Web or online

gaming servers, and e-commerce [19–21]. To overcome the unpredictability in workload pat-

terns and minimize estimation errors in forecasting incoming streams of data, we proposed an

adaptive topology refining mechanism. As diagrammed in Fig 3, our system architecture is

composed of user/system administrator request queue, data steam input gathering module,

brokering module, workload analyzer module, workload prediction modeling module, topol-

ogy generator, and physical topology selection module. The input gathering module gathers all

incoming input from various sources (IoT sensors, transaction logs, etc.), per the users request.

The collected data is then sent as a data stream to a data broker, like Kafka or Amazon Kinesis,

which then siphons the input data to the system’s workload analyzer module.

The module utilizes the recently arrived data to approximate the metric amounts to be used

in the system’s analytical algorithms, before forwarding it to the prediction module. Then, the

workload prediction module, which is based on the implementation of a hybrid model of SVM

and ARIMA time series process (detailed in the next section), produces predictions accord-

ingly. The developed predictions are then verified according to the cluster usage and SLA con-

straints, before being sent to the topology generator, which will develop a topology according

to a concrete and refined understanding about the arriving workload. The system verifies it in

accordance with the SLA agreement, and if all the conditions are met, an execution plan is cho-

sen to suit the topology. If not, the job manager petitions for an enhancement of the topology.

The resource manager provides a number of resources to aid in the execution of the applica-

tion, utilizing the open slots in the task managers. This procedure is redone, until the coveted

results are obtained, and QoS objectives are met to match the SLA agreement set by the user.

Problem definition

Most of the state-of-the-art distributed stream processing systems execute data-parallel appli-

cations over a shared-nothing cluster. The logical representation of such application is in the

form of directed acyclic graph G = (V, E), where V represents vertices as operators and E
represents edges as data dependencies between these operators. Vertices with no upstream

Fig 3. System architecture: System administrator and users push requests to the system through event and data

gathering component of the systems, which then tunnel it to the brokering agent. The broker passes it to the

workload analyzer that in turn passes the analysis results to the workload prediction model. The prediction results are

then checked with the cluster usage and SLA constraints and are then passed to the topology generator to generate

topology. If the resulting topology meets SLA requirements while considering cluster usage prediction, then the

execution plan is selected; otherwise topology is refined, and the process is repeated.

https://doi.org/10.1371/journal.pone.0240424.g003

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 6 / 27

https://doi.org/10.1371/journal.pone.0240424.g003
https://doi.org/10.1371/journal.pone.0240424

operators are source operators and those with no downstream operators attached are sink

operators. Vertices with no upstream operators are source operators and those with no down-

sream operators attached are sink operators. DSPS systems translate logical DAG to a physical

execution plan that maps operators to provisioned resources. A logical topology is the logical

execution plan of the topology which is then translated into a physical topology that specifies

the physical instances or worker threads of each logical operation. Let graph G0 = (V0, E0) rep-

resents the physical execution plan. V0 are the operator instances of the corresponding vertex

in V and edges are the incoming data links. Fig 4 illustrates the logical execution plan and its

corresponding physical execution plan through directed acyclic data flow graphs with a source,

map, and a sink operator, this phenomenon is known as chaining. In case of distributed execu-

tion, Flink system chains operator subtasks togather into tasks. Each thread execute a single

task accordingly. Chaining operators into tasks reduces the overhead of thread-to-thread

handover and buffering, and help achieve better trade-off between throughput and latency.

Source executes with three instances, map and sink with four instances each.

Suppose we have a logical DAG data flow with s1, s2, . . ., sn source operators, and e1, e2, . . .,

em edges, with each source operator with the rates corresponds to it as ν1, ν2, . . ., νk. The default

and maximum parallelism of the operators are defined through configuration files or set in

the code program using the defined API of the Apache Flink core. Source operators of the

distributed data applications such as server logs, sensors, stock market feeds, or transaction

logs generate records at a rate νk, defined by application. For application to have optimized

throughput, all the operators must have the ability to process the data upstream operators

without any delays or bottlenecks. Our topological refining scheme targets workload changes

based on the prediction results and tries to refine the topology with minimal increase in

latency or data loss.

Operator mapping technique

Most of the distributed stream processing systems currently circumvent optimal operator

mapping with the physical machine through only supporting pre-defined operator locations

with pinned operators in the network. This leads to situations where the system administrator

is responsible for efficient operator placement. This situation is infeasible for a dynamic and

large scale distributed system with thousands of queries to process. Some of the distributed sys-

tems such as Medusa [22] try to solve this by balancing the incoming workload among the

Fig 4. Logical and physical execution plan represented through directed acyclic data flow graphs.

https://doi.org/10.1371/journal.pone.0240424.g004

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 7 / 27

https://doi.org/10.1371/journal.pone.0240424.g004
https://doi.org/10.1371/journal.pone.0240424

nodes. This approach is only good for a single data centre and leads to poor performance in

the presence of a wide-area network. PIER [23] build a distributed database on top of DHT

with the location of operators and corresponding relational tables, leading to effectively map-

ping operators with resources randomly through hashing.

The main challenge with the operator mapping mechanism is that systems usually do not

have any knowledge or heuristic measures about the incoming workload. Therefore, random

placement of the operators with the default parallelism does not guarantee the system to main-

tain SLA agreement. We design our operator-mapping algorithm to satisfy conditions such as

scalability, adaptive and can maintain SLA agreement to be more efficient. It is essential for it

to be scalable in case of both resources as well as operator distribution capabilities. It has the

ability to adapt to changes in conditions and workload behavior. In addition, it does not

breach SLA agreement while mapping different operators to resources. The system generates

logical topology based on the workload prediction model and check whether it will breach

SLA agreement if deployed. If not, then it will generate physical topology based on this logical

one and will recheck the SLA breach, if it meets the plan will be deployed. Otherwise, the

topology refinement module will be called to refine the topology according to the changes in

both the cluster usage and available resources.

Workload prediction

The challenge of workload prediction is mainly handled through two different approaches: reac-

tive approach and proactive approach. Reactive approach is when the system reacts to the

changes based on predefined thresholds. Proactive approach is to take preemptive measures to

imminent changes before its occurrence through future load prediction. Proactive is achieved

through methods that can monitor and forecast workload capture the relationship between

application QoS targets and workload pattern changes to refine and readjust the topology of the

system at run-time. In order to achieve more accurate predictions in time series forecasting, a

combination of key approaches has been adapted. A time series may have seasonal patterns as

well as non-linear patterns. Seasonal patterns can be modeled by traditional statistical methods

like Autoregressive Integrated Moving Average (ARIMA) model, while non-linear patterns can

be modeled using nonlinear models such as support vector regression (SVR). The workload

prediction module adapts its prediction using a hybrid model of SVR and a variation of autore-

gressive integrated moving average (ARIMA) time series process [13]. We will first briefly

explain time series modeling and then will cover the fitting of the model to our situation.

Linear modeling. A time series is defined as a sequence of consecutive data points

indexed or graphed with respect to time. Our assumption about time is that it is a discrete vari-

able called Xt representing the observation or data node at time t, and 2t represents the zero-

mean random noise term at time t. Moving average model, MA(q), refers to the moving aver-

age model of order q and considers the process in Eq 1:

Xt ¼
Xq

i¼0

bi2t� i þ 2t ð1Þ

where βi is a coefficient. Similarly, the autoregressive model, i.e. AR(k), refers to the autore-

gressive model of order k and is represented under the conditions to satisfy Eq 2:

Xt ¼
Xk

i¼0

aiXt� i þ 2t ð2Þ

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 8 / 27

https://doi.org/10.1371/journal.pone.0240424

The above equation can be detailed in a way that it assumes each Xt is a noisy linear combi-

nation of previous k data points. The only difference between this and the traditional multiple

regression model is that Xt is regressed based on past values of Xt. After a combination of MA

(q) and AR(k) model, autoregressive moving average model, i.e., ARMA(k, q), arises, which

provides a flexible modeling platform. The notation ARMA(k, q) refers to the model with k

autoregressive terms and q moving-average terms. The Xt is represented through Eq 3:

Xt ¼
Xq

i¼0

bi2t� i þ
Xk

i¼0

aiXt� i þ 2t ð3Þ

where 2t are zero-mean noise term. In order to make the process stationary, constraints need

to be applied to the weight of AR(k) part. An invertible and stationary ARMA(k,q) model can

be represented either as an infinite autoregressive model, i.e., AR(1) or an infinite moving

average model, i.e., MA(1). It is known that the ARMA(k,q) with comparison to AR(1) and

MA(1) has the feasibility to generate stationary stochastic processes with an only finite num-

ber of parameters [24].

As evidence suggests, modern time series real-world data is not realizations of a stationary

process. In such cases, to manage such strong correlations effectively is through a differential

mechanism. For example, computing first-order differences of Xt using Eq 4:

rXt ¼ Xt � Xt� 1 ð4Þ

Moreover, second-order differences in Xt using Eq 5:

r2Xt ¼ rXt � rXt� 1 ð5Þ

In case ther2Xt sequence satisfies an ARMA(k,q) model, then Xt satisfy Autoregressive

integrated moving average, i.e., ARIMA(k,d,q) model, which can be calculated using Eq 6:

rdXt ¼
Xq

i¼0

bi2t� i þ
Xk

i¼1

air
dXt� i þ 2t ð6Þ

Eq 6 is parameterized by three terms k, d, q, and weights vector α belongs to Rk
and β

belongs to Rq. The ARMA(k,q) becomes a special case of ARIMA(k,d,q) with the differences

of order zero. Predictions with ARIMA(k,d,q) can be viewed as reversion of different order of

differential process. For example, if a time series sequence Xt satisfies ARIMA(k,d,q), then the

d-th order differential at time t + 1 can be predicted asrdXt + 1 and prediction of data point at

time t + 1 will be calculated as ~Xt in Eq 7:

~Xt ¼ r
d ~Xt �

Xd� 1

i¼1

riXt� i ð7Þ

The prediction module receives historical workload in a preparatory step so that the

ARIMA(k,d,q) to be fit on them. After the system becomes operational, it predicts from one to

ten-time interval in advance. In our case, we select a single time interval for simplicity pur-

poses. The length of the time interval can be adjusted as application-specific to fit best accord-

ingly. The prediction results are being kept in a buffer which updates itself by adding new

reading and removing the oldest reading in the buffer. The values of p and q are determined

through analyzation of autocorrelation occurrences of historical data, respectively. The ran-

domness of the data stream is determined through the autocorrelation plot. The autocorrela-

tion values approach zero for time-lagged values in case of randomness. Otherwise, some

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 9 / 27

https://doi.org/10.1371/journal.pone.0240424

autocorrelation values approach 1 or -1. The autocorrelation plot is a combination of time lags

on the horizontal axis and autocorrelation coefficient Rh on the vertical axis calculated as in Eq

8:

Rh ¼
Ch

C0

ð8Þ

where Ch is the auto-covariance function defined as in Eq 9:

Ch ¼
1

N

XN� h

t¼1

ðXt �
�XÞðXt� h �

�XÞ ð9Þ

where N is the number of samples, and �X is an average of samples Xt, t = 1,2,3. . ..N, and C0 is

the variance function and is defined as in Eq 10:

C0 ¼
1

N

XN

t¼1

ðXt �
�XÞ2 ð10Þ

Nonlinear modeling. The SVR model is based on the structured risk minimization

(SRM) principle that performs minimization of the upper bound of the generalization error

[25]. Suppose fXi;Yig
l
i¼1

be a training set where X 2 <d is the i-th input vector, Yi 2 < is the i-
th prediction output of xi, d is the embedding dimension of the time series, and l is the number

of training samples. SVR tries to find the best function from a set of possible functions in the

form as in Eq 11:

ff jf ðXÞ ¼WTX þ b;w 2 <d; b<g ð11Þ

Where w is the weight vector estimated by the minimizing the regularized risk function as in

Eq 12 and b is bias or threshold.

1

2
jjwjj2 þ C

Xl

i¼1

LðYi; f ðXiÞ ð12Þ

It is significant to minimize the regularized risk to find the best function, where C> 0 is a

regularized factor, ||.|| is a 2-norm, and L(., .) is a loss function. In order for the SVR to perform

a nonlinear mappings into a higher dimensional space, it needs to use kernels as in Eq 13.

f ðXÞ ¼
Xl

i¼1

ðai; ai
�ÞkðXi;XÞ þ b ð13Þ

Where α and α� are lag-range multipliers and k(Xi, X) is a kernel function.

Hybrid modeling. In order to capture both the linear and nonlinear features of the work-

load, a hybrid model is a good alternative for prediction of most of the real-world workload

scenarios. ARIMA and SVMs models have abilities to model features in linear or nonlinear

domains. Therefore, a hybrid model of ARIMA component and SVM component called

ARIMA-SVR is proposed to improve the overall forecasting performance. The hybrid ARI-

MA-SVR model can be represented as in Eq 14.

Zt ¼ Yt þ Nt ð14Þ

Where Yt is linear component and Nt is the nonlinear component of the model. Both Yt and Nt

are estimated from the dataset. ~Nt is the predicted value of the ARIMA model at time t.

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 10 / 27

https://doi.org/10.1371/journal.pone.0240424

Suppose εt is the residual at time t as obtained from the ARIMA model. Then, it can be repre-

sented as in Eq 15.

εt ¼ Zt �
~Yt ð15Þ

The residuals are modeled by the SVMs and can be represented as in Eq 16.

εt ¼ f ðεt� 1; εt� 2; . . . :; εt� nÞ þ Dt ð16Þ

where f is a nonlinear function modelted by SVM and Δt is the random error. Therefore, the

hybrid forecast is as in Eq 17.

~Zt ¼
~Yt þ

~Nt ð17Þ

where ~Nt is the predicted value from Eq 16.

The historical workload information is fit to the model which leads to a desired prediction.

The prediction is in turn given to the topology generator to have an intelligent decision

accordingly. Furthermore, reducing the effort of the system administrators requires better pre-

diction results of the workload behavior where prediction module gradually learns from his-

torical data pipeline using machine learning techniques. Such direction of using advance

machine learning techniques to predict the workload behavior may be a good path for future

research in this regard.

Performance metrics

a) Throughput. One of the crucial tasks of the distributed stream processing system is to

find optimal operator placement or select physical nodes that should host the operators and

map them with each other. An operator placement metric quantifies the quality of a given

placement or mapping. There are challenges with factoring mapping operators to physical

resources in a distributed cluster including re-usage of existing operators, application query

performance, and workload knowledge.

Distributed streaming framework provides users with a rich metric API set. The average

throughput per second is calculated by getting the number of output records at the sink opera-

tor by a remote procedure call to the API function as in Eq 18 below:

Throughput ¼
�N
T

ð18Þ

where Ň is the result as the number of output records at the sink operator return by the API

function, while T is the time since submission of the application to the platform.

b) Latency. Latency is one of the complex metrics to be estimated in streaming applica-

tions, considered a difficult metric to gather especially on the scope of a big data stream.

Therefore, it is achieved through sampling of records from the mainstream periodically and

estimating each sample’s latency individually as needed. Sampling of all records is conducted,

as the inclusivity of all elements in the calculation will affect the system’s performance. Individ-

ual records are marked at source operators using a watermarking mechanism and the sink

operator that uses this extra information in the watermark of the records so that only marked

records will be used for the calculation.

In this manner, the sink operator can identify the exact records for the latency computa-

tions. Record marking at a source operator can be done in recurring intervals, or through a

random selection algorithm. The Job Manager (master node) calculate the latency through the

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 11 / 27

https://doi.org/10.1371/journal.pone.0240424

following Eq 19:

Latency ¼ tfinish � tstart ð19Þ

where tfinish is the finish time of the marked sample and tstart is the arrival time of the sample

record in the execution pipeline.

The proposed system gets the current latency and compares it with the target latency based

on the service level agreement. In case the current latency is greater than that of target latency,

the system alerts the actor system in the resource manager about the SLA breach. It then sig-

nals the resource manager to refine topology by increasing the number of running threads. In

case the current latency is less or equal to the target latency, the system gives a green signal to

the actor system about the current topology generated by the topology generator and an execu-

tion plan is selected based on the current topology. The system repeats the procedure for the

throughput as well; it compares the current throughput with the target throughput based on

user SLAs. In case the current throughput is less than the target throughput, the system refines

topology. In the end, the resource manager selects a physical execution plan based on the gen-

erated logical topology for the system.

Implementation and evaluation

Topological Refining Scheme is a standalone plugin type of process with the ability to be inte-

grated as a black box within other state of the art systems. Those systems must have the ability

to collect and send information about certain things such as records produced, read, and wait-

ing time and so on. We choose Apache Flink as our test bed as it has the ability to collect met-

rics like produced records, read records, processed records, frequency of input and output etc.

as well as easy to extend its runtime with very low overhead. In addition, it has the capability to

adjust its parallelism or number of threads that run in parallel on the fly. The high-level inte-

gration architecture is shown in Fig 5. The workload predictor estimates the metrics and stores

it in a database. The Topology Manager monitors this metric repository and updates the paral-

lelism if new updates in the metrics occur. It checks the metric repository periodically every

two minutes. We selects a two minute period for the sake of simplicity as well as to avoid extra

overhead from the system. The topology manager implemented an actor system to communi-

cate with the job manager’s actor system. Every time an update occurs in the topology, the Job

manager halts the system and takes a snapshot of the job state, and redeploys the job with its

refined topology.

In this article we used two different benchmark datasets which represents real world appli-

cation scenarios called New York City Yellow Taxi Trip Records [17] and the German Credit

Fig 5. Program code transformation and operator distribution by job manager in Apache Flink framework.

https://doi.org/10.1371/journal.pone.0240424.g005

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 12 / 27

https://doi.org/10.1371/journal.pone.0240424.g005
https://doi.org/10.1371/journal.pone.0240424

Cards dataset [18]. The NYC TLC trip record data is provided by the New York City Taxi and

Limousine Commission. The data set is comprised of Yellow, Green, and For-Hire Vehicle

(FHV) types of trip records. We performed our experimentation using the Yellow taxi trip rec-

ords, because this data is representative of real-world applications and scenarios. The data has

features capturing the following details: pick-up and drop-off dates/times, pick-up and drop-

off locations/zones, itemized fares, trip distances, driver-reported passenger counts, payment

types, and rate types. For this dataset we did experimental study to predict hourly, daily, and

weekly drop-offs for certain zones or entire city based on the input query as illustrated in Fig

6. The dataset is given as an input stream to the system which then extracts certain features

like hour, day of the week, month, and drop-off zone for each taxi ride. The number of rides

for each time zone is then calculated, after which the data is normalized using min-max scaler

to a range of 0 to1 accordingly. Afterwards, the dataset is divided into a 70 percent train dataset

and a 30 percent test dataset. The second dataset used in our evaluation study is the popular

Statlog German Credit (SGC) dataset. The data is available at the UCI Machine Learning

Repository [18]. We used the numeric verion of the dataset. It includes 1000 borrowers records

grouped in two different classes of accepted applicants of 700 instances and of rejected or bad

applicants of 300 instances. All the instances have 20 input attributes including 13 categorical

fields and 7 numerical fields as detailed in Table 1. We transformed the categorical attributes

into numerical ones.

The system evaluation occurs in two folds with the experimentation of prediction system

using both synthetic and real traces of data to examine and evaluate the effectiveness and

robustness of the module as well as checking its effect on the topological refining system. As

for the synthetic workload evaluation, we generated synthetic workload to mimic different

possibilities of spikes as mentioned in an earlier section that can occur in real-world workload

including daily, weekly, seasonal, and unplanned spikes. Fig 7 shows that in each type of spikes

plotted, horizontal axis plots time while the vertical axis plot the numbers of requests or rec-

ords per time unit. In each different spike plot, three things are plotted, i.e., workload, its mov-

ing average to smooth out the original workload, and its prediction results. In the daily cycle

(Fig 7a), the time units used are hours plotted at the horizontal axis against a number of rec-

ords or events per minutes. There are spikes around mornings, noon, and evening time, and

the forecasting for each spike is handled and predicted accordingly. In case of weekly spikes

(Fig 7b), the time units used are days plotted at horizontal axis against number of requests at

vertical axis. The figure shows that there is an increase in the number of events starting on

Monday till Wednesday, after Wednesday it starts declining till the weekend and the process

repeat itself for the upcoming weeks. Fig 7b shows that moving average smooth over the

Fig 6. Data flowchart for prediction of hourly, daily, and weekly drop-offs for certain zones or the entire city in

TLC dataset.

https://doi.org/10.1371/journal.pone.0240424.g006

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 13 / 27

https://doi.org/10.1371/journal.pone.0240424.g006
https://doi.org/10.1371/journal.pone.0240424

workload and then the system predict the cycle accordingly. In the case of seasonal spike (Fig

7c), the time unit used is months plotted against number of events occurrence and is predicted

as expected. Moreover, in Fig 7d is the unplanned spike with random time units plotted

against number of data records. The prediction algorithm was able to predict the unplanned

spike in the synthetic workload as well.

For our second set of experiments, we use German credit card dataset [18]. We tried to

evaluate the data system with different experimental settings, including changing the moving

average value ranging from 60 to 10. We use nine-tenth of the data for training purposes. The

Table 1. Features applied to assess the credit risk in the German credit dataset.

Features Description Type Values Range

G1 Status of existing checking account Categorical 1-4

G2 Duration in months Numerical 4-72

G3 Credit history Categorical 0-4

G4 Purpose Categorical 0-10

G5 Credit account Numerical 276-18424

G6 Savings account Categorical 1-5

G7 Present employment since Categorical 1-5

G8 Instalment rate in % of disposable income Numerical 1-4

G9 Personal status and sex Categorical 1-5

G10 Other debtors/guarantors Categorical 1-3

G11 Present residence since Numerical 1-4

G12 Property Categorical 1-4

G13 Age in years Numerical 19-75

G14 Other instalment plans Categorical 1-3

G15 Housing Categorical 1-3

G16 Number of existing credits at this bank Numerical 1-4

G17 Job Categorical 1-4

G18 No of people being liable Numerical 1-2

G19 Have telephone or not Categorical 1-2

G20 Foreign worker Categorical 1-2

https://doi.org/10.1371/journal.pone.0240424.t001

Fig 7. Synthetic workload spikes: The moving average results shows its occurrence till 24 hours, while the

prediction is shown for three hours in the near future as well. The moving average is used to smooth the data for the

prediction algorithm to fit with different spikes such as daily, weekly, seasonal, as well as unplanned ones. The

prediction for spikes shows its adaption to the ups and downs in the workload.

https://doi.org/10.1371/journal.pone.0240424.g007

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 14 / 27

https://doi.org/10.1371/journal.pone.0240424.t001
https://doi.org/10.1371/journal.pone.0240424.g007
https://doi.org/10.1371/journal.pone.0240424

event occurrence rate corresponding to such periods are transformed into a time series process

and the values of p, d, and q are defined. The model updates itself upon new events arrivals

with the placement of new events at the front of data stream and removing the oldest events

from the end of the data stream, and the fitting process repeats accordingly. The output of

the prediction module is a number and a different confidence percentile range can also be

extracted subsequently for each value. Fig 8 presents actual workload values, i.e., values

observed in data stream with its different moving averages 60, 30, and 10 and predicted values.

Fig 8. Number of requests vs. time, prediction is shown with varying values of moving averages 60, 30, and 10.

https://doi.org/10.1371/journal.pone.0240424.g008

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 15 / 27

https://doi.org/10.1371/journal.pone.0240424.g008
https://doi.org/10.1371/journal.pone.0240424

The moving average shows the smoothing seasonality and trend component of the graph. Var-

ious error metrics are used in the evaluation of the accuracy of the prediction.

We ran linear regression on the workload and the values are presented in Table 2. The

regression analysis output shows us the fitness of the linear regression equation on the dataset.

Multiple R represents the correlation coefficient and measure the strength of linear relation-

ship. R Square is the coefficient determination and shows the number of points falling on the

regression line. Adjusted R Square adjusts the model terms in numbers. Standard Error is the

estimated value of standard deviation. Observation shows the sample size. In case of ANOVA,

SS represents the sum of squares, MS is the value of regression SS over the degree of freedom,

F is overall F test for null hypothesis, and Significance F is significance associated P-value. As

per our experiments, we did not use this part of the figure in a meaningful way. The last part

of the figure shows different values for the intercept and slop. Coefficients give least squares

estimate, the standard error is least-square estimate of standard error, T Stat is T statistic for

alternative hypothesis vs. null hypothesis, and the last is lower and upper boundaries for confi-

dence interval. The linear regression equation is as in Eqs 20 and 21:

y ¼ mxþ b ð20Þ

y ¼ slope � x � intercept ð21Þ

Fig 9 plots point-to-point comparison of actual and predicted values. As for the moving

average, it was with its variation of 60, ARIMA (2,3,2) model to forecast, and a hybrid model

of ARIMA-SVR to predict the workload fluctuations accordingly. The simulation results show

that ARIMA (2,3,2) model has been found to be the more parsimonious which is also consid-

ered to be sufficient for the residual analysis. The ARIMA-SVR model yields better forecasting

results than other models, which can be attributed to to the hybrid model’s ability to capture

both linear and nonlinear features.

Fig 10 plots both actual prediction values and range (upper and lower boundaries) of a con-

fidence interval for 95 percent. The low 95 percent and high 95 percent contains the limits for

the 95 percent confidence interval for the prediction. The confidence intervals output can be

used in cases of tradeoff decision between QoS for SLA and utilization or utilization and

response time. Fig 9 also confirms that although using high limits of confidence intervals mini-

mizes the underestimation occurrences, it causes a decrease in prediction accuracy by making

it close to 78 percent on average.

Table 2. Linear regression results.

Regression Statistics

Multiple R 0.0039569

R Square 1.565E-05

Adj. R Square -0.0009863

Standard Error 2708.3369

ANOVA

df SS MS F Significance F

Regression 1 114623.31 114623.31 0.015627 0.900543

Coefficients Std. Error t Stat P-value Lower 95.0%

Intercept 3279.2197 171.41881 19.129870 9.732E-70 2942.83

Slop 0.0370875 0.2966836 0.1250068 0.900543 -0.5451077

https://doi.org/10.1371/journal.pone.0240424.t002

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 16 / 27

https://doi.org/10.1371/journal.pone.0240424.t002
https://doi.org/10.1371/journal.pone.0240424

The normalized error of the credit workload is plotted against the time units showing that

in most cases, the error is below a threshold value, as shown in Fig 11. In some cases, the result

goes beyond the lower limit of the threshold because of the absolute error instead of root mean

square deviation. Our approach, when applied to a workload eradicate seasonality, irregularity,

and trend component and shows the general trends as expected with a certain degree of

inaccuracy.

Although the prediction module can generate prediction all the time, to show its impact on

QoS of user applications, another set of experiments are designed. The evaluation of the pro-

posed TRS system was done through a use case scenario where the topology generator has

given a default dataflow graph of map operator with parallelism 3 and reduce operator with

parallelism four as shown in Fig 12. The scenario is described in details in our previous work

[10]. The extended version of the module checks for the QoS targets of SLA agreement and

available resources on a cluster. If the system does not achieve the QoS goals, it will request the

resource manager for additional resources and repeat the process. Assuming the generated

topology fulfills all QoS goals, which would gratify the SLA agreement, a physical execution

Fig 9. Comparison of MA, ARIMA and ARIMA-SVR model’s prediction accuracy.

https://doi.org/10.1371/journal.pone.0240424.g009

Fig 10. Prediction with an upper and lower limit of 95% confidence interval.

https://doi.org/10.1371/journal.pone.0240424.g010

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 17 / 27

https://doi.org/10.1371/journal.pone.0240424.g009
https://doi.org/10.1371/journal.pone.0240424.g010
https://doi.org/10.1371/journal.pone.0240424

plan is created by the data flow module, with a reformed parallelism of 3 for the map operator

and 5 for the reduce operator. This increase in the reduce operator parallelism is due to the

reason that reduces operator impedes in this use case. It is the responsibility of the job manager

to transmit a signal and assign the task to available task slots on the registered task managers.

Fig 11. Normalized error based on absolute error in case of moving average 60.

https://doi.org/10.1371/journal.pone.0240424.g011

Fig 12. Use case scenario: Topology generator has given a default dataflow graph of map operator with

parallelism 3 and reduce operator with parallelism 4. The system increases the parallelism of reduce task to 5 in

order to achieve a higher QoS. Adapted from [10].

https://doi.org/10.1371/journal.pone.0240424.g012

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 18 / 27

https://doi.org/10.1371/journal.pone.0240424.g011
https://doi.org/10.1371/journal.pone.0240424.g012
https://doi.org/10.1371/journal.pone.0240424

In our use case scenario, the blue, yellow, and brown operators are assigned to task manager 1,

while burlywood and orange operators are assigned to task manager 2.

The system’s hardware and software specifications are listed in Table 3. We use Apache

Flink as a testbed for the evaluation of the system, as it is one of prominent distributed stream

processing engines, which provides API for the ease of end-users and system administrators.

We conducted our experiment using a virtual machine-based cluster and Ganglia was installed

on the cluster. A total of three cases utilize 2 vCPUs, and 2 GiB memory respectively. Ganglia

were selected to be used for evaluation purposes. Ganglia monitor the performance of the clus-

ter as a whole as well as each machine’s performance and usage. A YARN cluster with default

parallelism of 3 was used as the base cluster to execute applications over it.

Furthermore, we ran an Apache Flink equivalent implementation of Hash join algorithm

program in order to conceptualize that the proposed system has the ability to work with both

the streaming and batching jobs accordingly. The pseudo-code of the algorithm is as shown in

Fig 13. A Hash join alludes to a type of join command, wherein one table is designed to be

compact to fit into the memory, while the other, larger table that cannot fit is read from a disk

instead. The hash join algorithm consists of two operations, Hash phase and Join phase. Hash

Table 3. Cluster configuration.

Hardware / Software Configuration

Cluster Virtual Machine Cluster

Nodes 2 vCPU, 2GB

Number of Instances 3

Flink Version 1.5

Ganglia Version 3.7.2

https://doi.org/10.1371/journal.pone.0240424.t003

Fig 13. Pseudo-code of hash join algorithm: Join one small and one large table to create multi-map with the

ability of hash-based lookup or search.

https://doi.org/10.1371/journal.pone.0240424.g013

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 19 / 27

https://doi.org/10.1371/journal.pone.0240424.t003
https://doi.org/10.1371/journal.pone.0240424.g013
https://doi.org/10.1371/journal.pone.0240424

phase creates a multi-map from one of the two tables, preferably the smaller table, to minimize

its memory size and creation time. Its creation process is mapping from each join column

value of the table to all the rows that contain it. The multi-map must have the ability to support

hash-based lookup in order to scale better as compared to linear search. Hash phase scan for

the matching rows through looking in the multi-map and join the rows accordingly. In other

words, this program is a distinctive kind of join command, which firstly obtains the location of

the hash input table as well as the input data stream table, then invokes the join command to

combine the hashing and the data stream as needed.

We benchmark the performance of the system with parallelism 1 as default parallelism and

compare it with prediction-based topological changes accordingly. The smaller table size is

varied from 1 to 7 GB, while the larger table is kept constant at 10 GB. Fig 14 shows the average

execution time of five runs of the hash join application where one (smaller in size) dataset is

used as hash dataset to be joined with a larger dataset as detailed earlier. The join with one

Gigabyte is pure in-memory join. The other joins spill data to disk partially. The results show

that performance remains stable, until the hash table fits into memory, and gracefully decrease

as the hash join function starts spilling data into disk. Our proposed TRS system has the ability

to outperform the default system with the increase in the input data stream. The system shows

significant improvements for the prediction-based topology configuration of the system. We

plan to implement the system on top of the other distributed streaming processing systems,

design experiments/use-cases and evaluate the system more thoroughly in the near future.

In order to demonstrate the generality of the scheme with varying number of parallel

threads, we plotted the default parallelism of the Apache Flink, ARIMA based TRS, and the

decisions taken by ARIMA+SVR TRS optimization. For this set of experiments, we averaged

the values of over ten experimental runs and plotted the values in Fig 15. The default number

of threads was set to four for the Map operator and two for the Join operator. The graph shows

the number of threads running for the Map and Sink operator over time from the start until

the solution reached a point of convergence. In the case of the default system, the number of

Map operator’s threads stays at four and Sink operator’s thread stays at two throughout the

entire lifespan of the experiment. After applying the TRS with an initial under-provisioned

configuration, it changes the number of threads for Map operator to 10 and Sink operator to

Fig 14. Execution time vs. build size: Execution time of hash join with one data set varying from 1GB to 7 GB and

the other is kept constant at 10 GB.

https://doi.org/10.1371/journal.pone.0240424.g014

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 20 / 27

https://doi.org/10.1371/journal.pone.0240424.g014
https://doi.org/10.1371/journal.pone.0240424

four to cope with the changes in the incoming workload. The system converges to the value of

17 for the Map operator and 8 for the Sink operator. In case of the hybrid model of SVR and

ARIMA based TRS system, the map operator climbs up to 17 threads in a single step and then

converges on 32 threads running in parallel. Finally, the Sink operator jumps to four and then

converges to 16 threads running in parallel. Note that the small table has 17 sub-partition and

the TRS system converges to it in just after two scaling decisions by correctly estimating the

optimal parallelism in two steps.

Related work

Cloud computing popularized the big data technologies to a new level with providing services

online in a pay-as-you-go manner such as SPaaS (Streaming processing-as-a-service). With

the number of enterprises offering cloud-based solutions to end-users and other enterprises,

there has been a boom in the volume of data, creating interest of researchers from both indus-

try and academia in big data analytics, streaming application, and social networking applica-

tions. This also has renewed the concern of QoS in streaming application, calling for adequate

solutions that have the ability to adapt to workload changes. Basically, the problem can be tack-

led in two ways: workload prediction and system adaptation.

Workload prediction in cloud technologies is a well-researched topic. Many peers in the

field have presented a variety of prediction models: one example includes, a pattern matching

technique that is presented for grid-like workloads in cloud-based systems by finding similar

occurrences in the past [26]. Event-aware workload prediction by Sladescu et al. [27] used

ANN to predict workload burst in their proposal, Gong et al. [28] presented a mechanism to

accurately predict the resources required in keeping with the application workload prediction.

Islam et al. [29] applied ANN & linear regression based prediction system to develop resource

management and provisioning strategy. Tran et al. [30] make use of the ARIMA model in

Fig 15. Comparing the default parallelism, TRS parallelism, and ARIMA+SVR TRS parallelism based on the

incoming workload using Hash-Map Implementation with varying data set.

https://doi.org/10.1371/journal.pone.0240424.g015

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 21 / 27

https://doi.org/10.1371/journal.pone.0240424.g015
https://doi.org/10.1371/journal.pone.0240424

order to predict the workload on servers. It targets long-term prediction up to 168 hours,

whereas we target short term forecasting to be updated about workload changes at all time.

Furthermore, we use the predictions to achieve QoS targets and maintain SLA constraints

accordingly. A look-ahead resource allocation algorithm [31] applies ARMA model to predict

workload in clouds to minimize cost. It predicts workload in accordance with the limited hori-

zon, whereas our work focuses on achieving QoS targets to meet SLA constraints. Stochastic

models are linear models with bounded capability to predict nonlinear data. In order to effec-

tively predict nonlinear data, a number of researchers both in academia and industry used sup-

port vector machines (SVMs) such as artificial neural networks (ANNs) to predict horological

and time series data in the past decade [32–34]. These models are machine-learning techniques

that have been successfully applied in regression, classification, and forecasting. SVM can be

divided into support vector classification (SVC) and support vecotor regression (SVR) that try

to solve classification and regression problems, respectively. To improve prediction accuracy

in time series forecasting, Choubin et al. [35] exemplify the effectiveness of adaptive neuro-

fuzzy inference system (ANFIS) model in forecasting the SPI across different time scales. As

opposed to ANFIS, ARIMA+SVR is a combination of linear and nonlinear model which is

more suitable for time series workloads. Apart from that, ARIMA-ANN, coupling discrete

wavelet transform (WA) and artificial neural networks (ANNs) as WA-ANN, multiple linear

regression (MLR), multiple nonlinear regression (MNLR), HMM-based models, and com-

bined HMM-Fuzzy models are also effective forecasting tools among the hybrid models [36–

38].

The relevancy of steaming frameworks has been on the rise, resulting in an increase in proj-

ects focused on exploiting parallelism in stream processing. Apache S4 [39], Strom [3], and

Flink [7] illustrate programs and queries as directed acyclic graphs (DAGs) with parallel opera-

tors. S4 allows the scheduling of parallel instances of operators, but cannot control said opera-

tors as a result. Storm permits its users to specify a parallelization level, while simultaneously

supporting stream partitioning based on key intervals; however, it also ignores the operator’s

states and has limited runtime scalability. System S [40] provides intra-query parallelism by

way of a fine-grained subscription model able to express all sorts of stream connections but

does not have an automated manager for the said mechanism. Hizrel [41] proposed a solution;

A MatchRegex operator allows System S to discern tuple patterns in parallel. The approach

does not factor in dynamic repartitioning and state as specific to an automata-based pattern

detection mechanism. Stromy [42] utilizes consistent hashing and a logical ring to situate these

new nodes, once the scale-out process has been completed. However, it omits congestion as a

factor, as opposed to our proposed TRS system. Pattern-sensitive partitioning model [43] uses

time series analysis to predict the incoming workload and estimates the parallelism of opera-

tions on the basis of queuing theory. This model is capable of attaining a high degree of paral-

lelism for event patterns that could only be persistently detected in a sequential manner or at a

lower parallelization degree. One study considered the giddiness of resource performance to

maintain the throughput of the application at minimum resource cost using a heuristic

resource adjustment method [44]. The proposed approach uses two greedy heuristics, central-

ized and sharded, which make use of the variable-sized bin packing algorithm. Multi-Objective

Hybrid fruit fly Optimization (MOHFO) [45] adopted Bald Eagle Search (BES) optimization

behaviour to amplify the searching ability for fruit fly optimization algorithm to achieve SLA-

aware dynamic resource management in cloud data center. It follows a dynamic virtual

machine consolidation and deployment scheme to attain a trade-off among resource wastage

and SLA violations while TRS refine topology using workload prediction as heuristics. Profil-

ing-based server consolidation framework [46] tries to minimize the number of physical

machines used in data centers, while SLA into account using n integer programming model. It

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 22 / 27

https://doi.org/10.1371/journal.pone.0240424

forecasts the micro architecture level interference through offline profiling phase. Zeitler and

Risch [47] proposed a parasplit operator, intended as a partitioning stream statically based on

a cost model, providing a customized stream splitting for the scalable execution of continuous

queries over massive data streams. Alternatively, our proposition determines the paralleliza-

tion level at runtime, according to established performance metrics. Backman et al. [48] segre-

gated and spread operators across the various nodes within the stream processing framework

to decrease the processing latency through load balancing in accordance with the simulated

estimation of latency. They attained their latency reduction goals through their parallelism

model, optimized by the latency-oriented operator scheduling procedure coupled with the

diversification of the computing node responsibilities. StreamCloud [49] fashions elasticity

into the Borealis Stream Processing Engine [50], and utilizes a query compiler to convert high-

level queries into graphs of relational algebra operators, whilst utilizing a hash-based paralleli-

zation designed for the semantics of joins and aggregates. It alters the parallelism level by

dividing queries into sub-queries while utilizing a balancing feature to regulate resource

usages. Auto-parallelization [51] solves the profitability issue associated with the automatic

parallelization of all-purpose distributed data stream processing applications. Their proposed

solution can dynamically moderate the number of channels used to achieve high throughput

and high resource utilization. In addition to its ability in handling partitioned stateful opera-

tors through run-time state migration. Whereas our work takes the workload into account and

refines topology of the system to meet QoS targets of applications.

Heinze et al. [52] proposed an online parameter optimization method, enabling the system

to provide monetary compensation to obtain the offered QoS. It focused on latency and policy

rather than throughput and mechanism. Reactive-Scaling [53] offers a flexible elastic strategy

for applying constraints over latencies in a scalable streaming framework while lowering

resource footprints. Their queueing theoretic latency model provides a latency guarantee by

adjusting the task-wise level of parallelism in a fixed size cluster. It should be noted though

that our proposed methodology can be used as a black box within both systems [52] [53]. Mai

et al. [54] presented a novel control-plane design with the ability to support constant monitor-

ing and feedback in order to enable the systems to reconfigure dynamically. They clouts the

key understandings of embedding control-plane messages in data channels to gain low latency

and introduce asynchronous execution of policies to avoid global synchronization. Dhalion

[55] addresses the issue of the task tuning of various configuration to achieve service level

objectives and its maintenance in the presence of unpredictable changes in the underlying

environment. The authors implemented their proposed system on top of twitter Heron and

demonstrated its scaling capabilities accordingly. Finally, Fang et al. [56] addressed the prob-

lem of poor balancing in the presence of workload variance through key-based workload

partitioning and tries to dynamically assign the workload to operators. They formulate the

rebalancing operation as an optimization problem with objectives of diminishing state migra-

tion cost, controlling size of routing table, and balancing the work among worker nodes.

While this work can handle short-term distribution fluctuation, our proposed algorithm has

the ability to adapt to long-term, seasonal, and unplanned workload imbalances as well.

Concluding remarks and future directions

There are growing concerns about the QoS of recent cloud services like stream-processing-as-

a-service. With the increase of enterprises shifting from legacy systems to recent cloud technol-

ogies, competitiveness grows day by day. In such a competitive environment, the service pro-

viders need to focus on the QoS now more than ever to maintain their SLA agreement. One of

the key factor affecting the QoS is variability in workload, as the systems need to be able to

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 23 / 27

https://doi.org/10.1371/journal.pone.0240424

adapt accordingly. In order to thwart the problem, we proposed TRS system, a topology refin-

ing solution for stream processing systems, based on workload prediction mechanism. The

prediction is made through a model based on a combination of SVR and ARIMA models with

fine adjustments to make it work on the fly. The idea behind the proposed system is to increase

the overall performance by keeping the topologies optimized all the time according to incom-

ing workload, while still being able to satisfy QoS targets to maintain SLA constraints. In the

next step, the authors plan to explore more efficient and promising ways to predict incoming

workload such as different combinations of Particle Swarm Optimization (PSO), SVR,

ARIMA, and Artificial Neural Network (ANN). Furthermore, we want to consider options to

implement the TRS scheme on top of other state-of-the-art distributed streaming processing

frameworks and design experiments and use-cases to evaluate the system more thoroughly.

Supporting information

S1 File. Data set1: The dataset used in the evaluation of the proposed system. This file con-

tains a subset of the NYC TLC dataset used in evaluation of the proposed system.

(CSV)

S2 File. Data set2: The dataset used in the evaluation of the proposed system. This file con-

tains the Statlog German credit card dataset used in evaluation of the proposed system.

(RAR)

S3 File. Code-Backup: The coding backup of the proposed system. This zip file contains the

code-backup of the proposed system and its related files.

(ZIP)

Author Contributions

Conceptualization: Muhammad Hanif, Choonhwa Lee.

Formal analysis: Muhammad Hanif.

Funding acquisition: Choonhwa Lee.

Methodology: Choonhwa Lee.

Supervision: Choonhwa Lee, Sumi Helal.

Validation: Muhammad Hanif.

Visualization: Muhammad Hanif.

Writing – original draft: Muhammad Hanif.

Writing – review & editing: Choonhwa Lee, Sumi Helal.

References
1. Lam W, Liu L, Prasad S, Rajaraman A, Vacheri Z, Doan A. Muppet: MapReduce-style Processing of

Fast Data. Proc VLDB Endow. 2012. https://doi.org/10.14778/2367502.2367520

2. Akidu T, Balikov A, Bekiroglu K, Chernyak S, Haberman J, Lax R, et al. MillWheel: Fault-Tolerant

Stream Processing at Internet Scale. Proc VLDB Endow. 2013; 6: 734–746. https://doi.org/10.14778/

2536222.2536229

3. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, et al. Storm @ Twitter. 2014;

147–156.

4. Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized Streams: Fault-Tolerant Streaming

Computation at Scale. Sosp. 2013; 423–438. https://doi.org/10.1145/2517349.2522737

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0240424.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0240424.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0240424.s003
https://doi.org/10.14778/2367502.2367520
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1371/journal.pone.0240424

5. Borthakur D, Rash S, Schmidt R, Aiyer A, Gray J, Sarma J Sen, et al. Apache hadoop goes realtime at

Facebook. Proceedings of the 2011 international conference on Management of data—SIGMOD’11.

2011. p. 1071. https://doi.org/10.1145/1989323.1989438

6. Murray D, McSherry F, Isaacs R, Isard M, Barham P, Abadi M. Naiad: A Timely Dataflow System.

Sosp’13. 2013; 439–455. https://doi.org/10.1145/2517349.2522738

7. Carbone P, Ewen S. Apache Flink™: Stream and Batch Processing in a Single Engine.: 28–38.

8. Computing ID. Hadoop: A Framework for Data- Intensive Distributed Computing What is Hadoop?

2012.

9. Hummer W, Satzger B, Dustdar S. Elastic stream processing in the cloud. Wiley Interdiscip Rev Data

Min Knowl Discov. 2013; 3: 333–345. https://doi.org/10.1002/widm.1100

10. Hanif M, Lee C. An Efficient Topology Refining Scheme for Apache Flink. 9th International Conference

on Information and Communication Technology Convergence: ICT Convergence Powered by Smart

Intelligence, ICTC 2018. 2018. https://doi.org/10.1109/ICTC.2018.8539696

11. Weik MH, Weik MH. moving average. Computer Science and Communications Dictionary. Springer

US; 2006. pp. 1048–1048. https://doi.org/10.1007/F1-4020-0613-6 11842

12. Akaike H. Fitting autoregressive models for prediction. Ann Inst Stat Math. 1969; 21: 243–247. https://

doi.org/10.1007/BF02532251

13. Geurts M, Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control. J Mark Res. 2006;

14: 269. https://doi.org/10.1177/002224377701400219

14. Akidau T, Bradshaw R, Chambers C, Chernyak S, Fern RJ, Lax R, et al. The Dataflow Model: A Practi-

cal Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-

Order Data Processing.: 1792–1803.

15. Noghabi SA, Paramasivam K, Pan Y, Ramesh N, Bringhurst J, Gupta I, et al. Samza: stateful scalable

stream processing at LinkedIn. Proc VLDB Endow. 2017; 10: 1634–1645. https://doi.org/10.14778/

3137765.3137770

16. Flink. Job Scehudling Internals: Flink. Available: https://ci.apache.org/projects/flink/flink-docs-release-

1.3/internals/job_scheduling.html

17. TLC. TLC Trip Record Data. In: NYC Taxi & Limousine Commission. 2016.

18. Hofmann H. Statlog (German Credit Data) Data Set. Available: https://archive.ics.uci.edu/ml/datasets/

statlog+(german+credit+data)

19. Urdaneta G, Pierre G, van Steen M. Wikipedia workload analysis for decentralized hosting. Comput

Networks. 2009. https://doi.org/10.1016/j.comnet.2009.02.019

20. Dodge R, Menascé D, Computer DB-P of 2001, 2001 U. Testing e-commerce site scalability with tpc-w.

Proc 2001 Computer Measurement Group Conference. 2001. Available: ftp://ftp.cs.usask.ca/pub/

discus/seminars2001-2002/menascecmg01.pdf

21. Nae V, Iosup A, Prodan R. Dynamic resource provisioning in Massively Multiplayer Online Games.

IEEE Trans Parallel Distrib Syst. 2012. https://doi.org/10.1109/TPDS.2010.82

22. Cherniack M, Balakrishnan H, Balazinska M, Carney D, Çetintemel U, Xing Y, et al. Scalable Distributed

Stream Processing. Innovative Data Systems Research Conference. 2003. https://doi.org/10.1145/

2723372.2746485

23. Huebsch R, Hellerstein JM, Lanham N, Loo BT, Shenker S, Stoica I. Querying the Internet with PIER.

Proceedings 2003 VLDB Conference. 2007. https://doi.org/10.1016/b978-012722442-8/50036-7

24. Hansen BE. TIME SERIES ANALYSIS James D. Hamilton Princeton University Press, 1994. Econom

Theory. 2009; 11: 625. https://doi.org/10.1017/S0266466600009440

25. Vapnik VN. The nature of statistical learning theory. Statistics for Engineering and Information Science.

Springer-Verlag, New York. 2000.

26. Caron E, Desprez F, Muresan A. Forecasting for grid and cloud computing on-demand resources

based on pattern matching. Proceedings—2nd IEEE International Conference on Cloud Computing

Technology and Science, CloudCom 2010. 2010. https://doi.org/10.1109/CloudCom.2010.65

27. Sladescu M, Fekete A, Lee K, Liu A. Event aware workload prediction: A study using auction events.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics). 2012. https://doi.org/10.1007/978-3-642-35063-4_27

28. Gong Z, Gu X, Wilkes J. PRESS: PRedictive Elastic reSource Scaling for cloud systems. Proceedings

of the 2010 International Conference on Network and Service Management, CNSM 2010. 2010. https://

doi.org/10.1109/CNSM.2010.5691343

29. Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource provisioning in the

cloud. Future Generation Computer Systems. 2012. https://doi.org/10.1016/j.future.2011.05.027

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 25 / 27

https://doi.org/10.1145/1989323.1989438
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1002/widm.1100
https://doi.org/10.1109/ICTC.2018.8539696
https://doi.org/10.1007/F1-4020-0613-6 11842
https://doi.org/10.1007/BF02532251
https://doi.org/10.1007/BF02532251
https://doi.org/10.1177/002224377701400219
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://ci.apache.org/projects/flink/flink-docs-release-1.3/internals/job_scheduling.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/internals/job_scheduling.html
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://doi.org/10.1016/j.comnet.2009.02.019
ftp://ftp.cs.usask.ca/pub/discus/seminars2001-2002/menascecmg01.pdf
ftp://ftp.cs.usask.ca/pub/discus/seminars2001-2002/menascecmg01.pdf
https://doi.org/10.1109/TPDS.2010.82
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1016/b978-012722442-8/50036-7
https://doi.org/10.1017/S0266466600009440
https://doi.org/10.1109/CloudCom.2010.65
https://doi.org/10.1007/978-3-642-35063-4_27
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1371/journal.pone.0240424

30. Tran VG, Debusschere V, Bacha S. Hourly server workload forecasting up to 168 hours ahead using

Seasonal ARIMA model. 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Pro-

ceedings. 2012. https://doi.org/10.1109/ICIT.2012.6210091

31. Roy N, Dubey A, Gokhale A. Efficient autoscaling in the cloud using predictive models for workload fore-

casting. Proceedings—2011 IEEE 4th International Conference on Cloud Computing, CLOUD 2011.

2011. https://doi.org/10.1109/CLOUD.2011.42

32. Kousari MR, Hosseini ME, Ahani H, Hakimelahi H. Introducing an operational method to forecast long-

term regional drought based on the application of artificial intelligence capabilities. Theor Appl Climatol.

2017. https://doi.org/10.1007/s00704-015-1624-6

33. Abhishek K, Singh MP, Ghosh S, Anand A. Weather Forecasting Model using Artificial Neural Network.

Procedia Technol. 2012. https://doi.org/10.1016/j.protcy.2012.05.047

34. Deb C, Eang LS, Yang J, Santamouris M. Forecasting diurnal cooling energy load for institutional build-

ings using Artificial Neural Networks. Energy Build. 2016. https://doi.org/10.1016/j.enbuild.2015.12.050

35. Choubin B, Malekian A. Combined gamma and M-test-based ANN and ARIMA models for groundwater

fluctuation forecasting in semiarid regions. Environ Earth Sci. 2017. https://doi.org/10.1007/s12665-

017-6870-8

36. Zhang PG. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing.

2003. https://doi.org/10.1016/S0925-2312(01)00702-0

37. Adamowski J, Fung Chan H, Prasher SO, Ozga-Zielinski B, Sliusarieva A. Comparison of multiple linear

and nonlinear regression, autoregressive integrated moving average, artificial neural network, and

wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada.

Water Resour Res. 2012. https://doi.org/10.1029/2010WR009945

38. Tuyen L, Xuan Ky D, Tri Tuyen L, Thuan Province Nguyen Trai N, Rang Thap Cham-P, xuanky V. A

Higher order Markov model for time series forecasting. Int J Appl Math Stat. 2018.

39. Neumeyer L, Robbins B, Nair A, Kesari A. S4: Distributed stream computing platform. Proceedings—

IEEE International Conference on Data Mining, ICDM. 2010. https://doi.org/10.1109/ICDMW.2010.172

40. Amini L, Andrade H, Bhagwan R, Eskesen F, King R, Selo P, et al. SPC: A Distributed, Scalable Plat-

form for Data Mining. Proceedings of the 4th international workshop on Data mining standards, services

and platforms. 2006. https://doi.org/10.1145/1289612.1289615

41. Hirzel M. Partition and Compose: Parallel Complex Event Processing. Debs 2012. 2012. https://doi.

org/10.1145/2335484.2335506

42. Loesing S, Hentschel M, Kraska T, Kossmann D. Stormy: an elastic and highly available streaming ser-

vice in the cloud. Proc 2012 Jt EDBT/ICDT Work—EDBT-ICDT’12. 2012. https://doi.org/10.1145/

2320765.2320789

43. Mayer R, Koldehofe B, Rothermel K. Meeting predictable buffer limits in the parallel execution of event

processing operators. Proceedings—2014 IEEE International Conference on Big Data, IEEE Big Data

2014. 2015. https://doi.org/10.1109/BigData.2014.7004257

44. Kumbhare AG, Simmhan Y, Frincu M, Prasanna VK. Reactive resource provisioning heuristics for

dynamic dataflows on cloud infrastructure. IEEE Trans Cloud Comput. 2015. https://doi.org/10.1109/

TCC.2015.2394316

45. Singh J, Goraya MS. Multi-Objective Hybrid Optimization based Dynamic Resource Management

Scheme for Cloud Computing Environments. Proceedings of the 2nd International Conference on

Smart Systems and Inventive Technology, ICSSIT 2019. 2019. https://doi.org/10.1109/ICSSIT46314.

2019.8987760

46. Ye K, Wu Z, Wang C, Zhou BB, Si W, Jiang X, et al. Profiling-based workload consolidation and migra-

tion in virtualized data centers. IEEE Trans Parallel Distrib Syst. 2015. https://doi.org/10.1109/TPDS.

2014.2313335

47. Zeitler E, Risch T. Massive scale-out of expensive continuous queries. VLDB Endow. 2011. https://doi.

org/10.14778/3402707.3402752

48. Backman N, Fonseca R, Çetintemel U. Managing parallelism for stream processing in the cloud. . . .

Top Cloud Data Process. 2012. https://doi.org/10.1145/2169090.2169091

49. Gulisano V, Jimenez-Peris R, Patino-Martnez M, Soriente C, Valduriez P. StreamCloud: An elastic and

scalable data streaming system. IEEE Trans Parallel Distrib Syst. 2012. https://doi.org/10.1109/TPDS.

2012.24

50. Abadi DJ, Ahmad Y, Balazinska M, Gur U, Etintemel Ç, Cherniack M, et al. The Design of the Borealis

Stream Processing Engine. CIDR. 2005.

51. Gedik B, Schneider S, Hirzel M, Wu KL. Elastic scaling for data stream processing. IEEE Trans Parallel

Distrib Syst. 2014. https://doi.org/10.1109/TPDS.2013.295

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 26 / 27

https://doi.org/10.1109/ICIT.2012.6210091
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.1007/s00704-015-1624-6
https://doi.org/10.1016/j.protcy.2012.05.047
https://doi.org/10.1016/j.enbuild.2015.12.050
https://doi.org/10.1007/s12665-017-6870-8
https://doi.org/10.1007/s12665-017-6870-8
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1029/2010WR009945
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.1145/1289612.1289615
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1145/2320765.2320789
https://doi.org/10.1145/2320765.2320789
https://doi.org/10.1109/BigData.2014.7004257
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/ICSSIT46314.2019.8987760
https://doi.org/10.1109/ICSSIT46314.2019.8987760
https://doi.org/10.1109/TPDS.2014.2313335
https://doi.org/10.1109/TPDS.2014.2313335
https://doi.org/10.14778/3402707.3402752
https://doi.org/10.14778/3402707.3402752
https://doi.org/10.1145/2169090.2169091
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1371/journal.pone.0240424

52. Heinze T, Roediger L, Meister A, Ji Y, Jerzak Z, Fetzer C. Online Parameter Optimization for Elastic

Data Stream Processing. Proc SoCC. 2015. https://doi.org/10.1145/2806777.2806847

53. Lohrmann B, Janacik P, Kao O. Elastic Stream Processing with Latency Guarantees. Proceedings—

International Conference on Distributed Computing Systems. 2015. https://doi.org/10.1109/ICDCS.

2015.48

54. Mai L, Zeng K, Potharaju R, Xu L, Suh S, Venkataraman S, et al. Chi: A scalable and programmable

control plane for distributed stream processing systems. Proceedings of the VLDB Endowment. 2018.

https://doi.org/10.14778/3231751.3231765

55. Floratou A, Agrawal A, Graham B, Rao S, Ramasamy K. Dhalion: self-regulating stream processing in

heron. Proc VLDB Endow. 2017. https://doi.org/10.14778/3137765.3137786

56. Fang J, Zhang R, Fu TZJ, Zhang Z, Zhou A, Zhu J. Parallel stream processing against workload skew-

ness and variance. HPDC 2017—Proceedings of the 26th International Symposium on High-Perfor-

mance Parallel and Distributed Computing. 2017. https://doi.org/10.1145/3078597.3078613

PLOS ONE Predictive topology refinements in DSPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0240424 November 5, 2020 27 / 27

https://doi.org/10.1145/2806777.2806847
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.14778/3231751.3231765
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1145/3078597.3078613
https://doi.org/10.1371/journal.pone.0240424

