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Abstract

Oxidative stress is a biological imbalance in reactive oxygen species and antioxidants.

Increased oxidative stress during pregnancy has been associated with adverse birth out-

comes. Omega-3 fatty acid (n-3 FA) supplementation may decrease oxidative stress; how-

ever, this relationship is seldom examined during pregnancy. This study assessed the

association between n-3 FA supplement use during pregnancy and urinary oxidative stress

biomarker concentrations. Data came from The Infant Development and the Environment

Study (TIDES), a prospective cohort study that recruited pregnant women in 4 US cities

between 2010–2012. Third trimester n-3 FA intake was self-reported. Third trimester urinary

8-iso-prostaglandin F2α (8-iso-PGF2α) was measured as an oxidative stress biomarker.

Additionally, we measured the major metabolite of 8-iso-PGF2α and Prostaglandin F2α

(PGF2α) and utilized the 8-iso-PGF2α to PGF2α ratio to calculate the change in 8-iso-PGF2α

reflecting oxidative stress versus inflammation. Adjusted linear models were used to deter-

mine associations with control for confounding. Of 725 women, 165 reported n-3 FA supple-

ment use in the third trimester. In adjusted linear models, n-3 FA use was associated with

10.2% lower levels of 8-iso-PGF2α (95% Confidence Interval [CI]: -19.6, 0.25) and 10.3%

lower levels of the metabolite (95% CI: -17.1, -2.91). No associations were observed with

PGF2α. The lower levels of 8-iso-PGF2α appeared to reflect a decrease in oxidative stress

(percent change with supplement use: -18.7, 95% CI: -30.1, -5.32) rather than inflammation.

Overall, third trimester n-3 FA intake was associated with lower concentrations of 8-iso-

PGF2α and its metabolite, suggesting a decrease in maternal oxidative stress during

pregnancy.
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Introduction

Oxidative stress, a biological imbalance in reactive oxygen species and antioxidant levels,

results in an excess of free chemical radicals that can cause lipid peroxidation and other out-

comes leading to cell damage [1]. In pregnancy, elevated oxidative stress levels have been asso-

ciated with prevalent adverse birth outcomes in the United States, including placental aging

[2], intrauterine growth restriction [3, 4], preterm labor [5–8], and preeclampsia [9, 10]. These

outcomes have been associated with increased risks of morbidity and mortality for mothers

and infants [11]. An accessible method to lower oxidative stress levels during pregnancy could

help prevent these adverse birth outcomes.

Omega-3 fatty acid (n-3 FA) supplementation has the potential to reduce damage caused by

oxidative stress. One possible biological mechanism by which this may occur is through the

actual replacement of arachidonic acid with n-3 FA in cell membranes. Then, when an excess

of reactive oxygen species causes oxidation of lipids in those membranes, the cleaved products

of n-3 FA are hypothesized to be less damaging to other cells than those of arachidonic acid

[12, 13].

A number of studies have examined the relationship between n-3 FA supplementation and

oxidative stress in humans [14–16]. However, only two of these studies have evaluated associa-

tions with maternal oxidative stress levels during pregnancy [17, 18]. In one randomized trial

of pregnant women with gestational diabetes, women who were given n-3 FA supplements in

pregnancy had decreased concentrations of plasma malondialdehyde (MDA), a biomarker of

oxidative stress, compared to those who did not [17]. Another trial evaluated this association

in healthy pregnancies by measuring maternal plasma thiobarbituric acid-reactive substance

(TBARS) levels as an indicator of oxidative stress, and observed a surprising positive associa-

tion [18]. Of note, these trials were restricted by smaller samples sizes (N = 54–270) and limita-

tions in oxidative stress biomarker measurement [19–23]. Specifically, MDA has been

considered unreliable [20] while TBARS assays are often non-specific and results may repre-

sent other processes aside from lipid peroxidation [24]. Both biomarkers are known to be sus-

ceptible to cross-reactions with other existing biochemicals [20].

We sought to examine the association between prenatal n-3 FA supplementation and

maternal oxidative stress using data from The Infant Development and Environment Study

(TIDES), a multi-center US pregnancy cohort. We examined the relationship between mater-

nal self-reported n-3 FA supplement use and urinary concentrations of 8-iso-PGF2α, its major

metabolite (metabolite 2,3-dinor-5,6-dihydro-15-F2T-isoprostane), and Prostaglandin F2α

(PGF2α). These well-established biomarkers of oxidative stress are direct products of lipid per-

oxidation that represent lipid damage through specific pathways, are stable during pregnancy,

and easily detectible in urine [6, 8, 25, 26]. Furthermore, we used the novel 8-iso-PGF2α/

PGF2α ratio to investigate whether changes in 8-iso-PGF2α were attributable to either upregu-

lation of inflammatory pathways or to true oxidative stress [27]. Thus, utilizing these biomark-

ers represents a significant improvement on previous research on this relationship in pregnant

women.

Materials and methods

Study population

TIDES is a multi-center prospective cohort of women enrolled during pregnancy [28, 29].

Women were recruited between August 2010 and August 2012 at clinics in the University of

California, San Francisco, CA; University of Rochester Medical Center, NY; University of

Minnesota, MN; and University of Washington-Seattle Children’s Hospital, WA. Cohort
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eligibility included a minimum age of 18 years, the ability to read and write in English, and a

maximum gestational age of 13 weeks at the time of recruitment, to reflect first trimester expo-

sures in relation to neonatal outcomes. At three prenatal appointments, targeted at one per tri-

mester, participants completed questionnaires and provided urine samples (protocols

described in detail elsewhere) [29]. TIDES was approved by the institutional review board at

each study site and each participant provided signed informed consent prior to data collection.

All questionnaire data was collected at each of the four study sites and is held centrally at

the Icahn School of Medicine at Mount Sinai. Use of this data was deemed exempt by the

NIEHS IRB, and was transferred to NIEHS under a data use agreement between the two insti-

tutions. The oxidative stress biomarker data was generated at Vanderbilt University Medical

Center and transferred directly to NIEHS.

The present analysis was a cross-sectional assessment of the associations between n-3 FA

supplementation, as reported by questionnaire, and urinary oxidative stress biomarker con-

centrations. From the overall study population we included women who provided a urine sam-

ple and responded to the n-3 FA survey question at the third study visit. From the overall

study population (N = 971), these restrictions excluded 210 women who were missing a urine

sample at the third visit and 36 women who did not respond to the n-3 FA survey question, for

a final sample size of N = 725.

n-3 FA supplement use

Participants completed self-administered questionnaires at each visit to provide information

on lifestyle, demographic characteristics, and health. Supplement use was assessed with a list;

participants were asked to check a box next to any supplement that they had consumed daily

for at least one consecutive week in their current trimester. The list included n-3 FA supple-

ments, listed as “fish oil supplements”, prenatal vitamins, multivitamins, and other individual

supplements.

Biomarkers of oxidative stress

Biomarkers of oxidative stress were measured in third visit urine samples at the Vanderbilt

Eicosanoid Core Laboratory. Samples were collected at a mean of 32.6 weeks gestation

(range = 25.7–41.1 weeks gestation). Samples were analyzed via gas chromatography-negative

ion chemical ionization mass spectrometry for several compounds derived from arachidonic

acid: 8-iso-PGF2α; its primary metabolite 2,3-dinor-5,6-dihydro-15-F2T-isoprostane; and

PGF2α. The metabolite of 8-iso-PGF2α may be more sensitive than the parent compound; it is

generated in the lungs rather than the kidneys and thus may be a better indicator of oxidative

stress occurring throughout the entire body [30]. PGF2α is a reliable marker of inflammation

[31].

8-iso-PGF2α can be generated through upregulation of inflammatory pathways or through

chemical oxidative stress [27]. To distinguish the source in our study, we used the novel 8-iso-

PGF2α/ PGF2α ratio which evaluates the proportion of 8-iso-PGF2α produced from enzymatic

synthesis by prostaglandin-endoperoxide synthases (PGHS) (i.e., inflammation) as compared

to chemical lipid peroxidation (i.e., oxidative stress). Higher levels of the ratio indicate a

greater contribution to 8-iso-PGF2α from chemical lipid peroxidation, i.e., oxidative stress, as

compared to enzymatic synthesis, i.e., inflammation, and it can be used to calculate the pro-

portion of 8-iso-PGF2α originating from each source [27]. This ratio has been examined and

validated in other studies as well [32–34]. Thus, we examined a total of five markers: three that

were measured (8-iso-PGF2α, 8-iso-PGF2α metabolite, PGF2α) and two that were derived

(8-iso-PGF2α chemical and 8-iso-PGF2α enzymatic).
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For examining distributions of oxidative stress biomarkers, we corrected each concentra-

tion for urinary specific gravity because this correction has been found suitable in accounting

for the hydration status of pregnant women when analyzing urinary biomarkers. Compared to

creatine, specific gravity correction is more reproducible within-person with less systematic

variance [35]. We used the following formula for correction: Oc = O[(1.014–1]/Sg– 1]] where

Oc represents the specific gravity-corrected oxidative stress biomarker concentration, O repre-

sents the measured biomarker concentration, 1.014 is the median specific gravity of all TIDES

samples, and Sg is the specific gravity level measured in that sample. For statistical models, raw

concentrations were modeled and specific gravity was included as a covariate.

Statistical analysis

All statistical analyses were performed using SAS 9.4 (Cary, NC]. First, we examined demo-

graphic characteristics associated with n-3 FA use using chi-squared tests. We then assessed

associations between n-3 FA consumption and urinary oxidative stress biomarker concentra-

tions. Finally, we created crude and adjusted linear models to evaluate the associations between

n-3 FA intake and each oxidative stress marker. For all statistical models, urinary oxidative

stress biomarker concentrations were natural log-transformed. Crude models included gesta-

tional age at urine sample collection and specific gravity as covariates. For adjusted models,

confounders were identified using a Directed Acyclic Graph developed following a literature

review. Potential confounders were then empirically evaluated within our dataset for their

impact on effect estimates. Final models included gestational age at sample collection (weeks,

continuous], maternal age (years, continuous), specific gravity (continuous), race (White/

Black/other), education (college degree vs. none), and study center. Additional variables such

as income, smoking status, prenatal vitamin use, pre-pregnancy BMI and fish intake were con-

sidered but not included due to low sample size or little influence on effect estimates (less than

10% change). All effect estimates and 95% confidence intervals (CIs) were scaled to present the

percent change in oxidative stress biomarker in association with n-3 FA supplementation in

pregnancy, for interpretability.

Sensitivity analyses

We ran several additional analyses to test the robustness of our findings. Because the decision

to take n-3 FA is strongly associated with socioeconomic status, we examined models stratified

by education level [36]. Second, because individuals in our sample who supplement with n-3

FA were more likely to take prenatal vitamins which may also influence oxidative stress levels

as well, we restricted our analytic population to women who reported prenatal vitamin use in

the third trimester. Use of other vitamin supplementation was uncommon in our population.

Of the 725 women in our study, the most common supplements, aside from n-3 FA, were vita-

min D (n = 148), iron (n = 141), and calcium (n = 96). Other individual supplements, includ-

ing amino acids, herbal supplements, and vitamins A, C, E or K were used much less

frequently (n = 1–6). These compounds were not associated with oxidative stress biomarkers

in preliminary analyses and thus were not examined in subsequent models.

Results

Our study included 725 women with urinary oxidative stress biomarker measurements and n-

3 FA supplement questionnaire responses at the third study visit. Participants were primarily

White, married or living with their partner, and did not smoke or drink alcohol during preg-

nancy (Table 1). On average, the women were 31.7 years old and had a pre-pregnancy BMI of

25.6 kg/m2. In our sample, 165 (23%) women reported taking an n-3 FA supplement for at
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Table 1. Demographic characteristics of The Infant Development and Environment Study (TIDES) cohort stratified by n-3 FA supplement use in the third trimes-

ter (n = 725).

Characteristic n-3 FA Supplementation (n = 165) n (%) No n-3 FA Supplementation (n = 560) n (%)

Age (years)

<25 1 (0.6) 93 (17.4)

25–29 31 (19.4) 120 (22.5)

30–34 58 (36.3) 187 (35.0)

�35 70 (43.8) 134 (25.1)

Pre-pregnancy BMI (kg/m2)

<18.5 3 (1.8) 12 (2.2)

18.5–24.99 110 (66.7) 301 (54.3)

25–29.99 32 (19.4) 121 (21.8)

�30 20 (12.1) 120 (21.7)

Race

White 136 (82.4) 360 (64.4)

Black/African American 4 (2.4) 91 (16.3)

Other 25 (15.2) 108 (19.3)

Smoking

None 158 (100) 509 (93.6)

Any 0 (0) 35 (6.4)

Alcohol

None 140 (88.6) 503 (92.3)

Any 18 (11.4) 42 (7.7)

Marital status

Living together/married 159 (96.4) 443 (79.4)

Single 6 (3.6) 115 (20.6)

Education

No college degree 8 (4.9) 180 (32.4)

College degree 157 (95.2) 376 (67.6)

Income

<25k 10 (6.2) 162 (29.8)

45k-65k 35 (21.7) 107 (19.7)

>65k 116 (72.1) 274 (50.5)

Previous Pregnancies

0 69 (42.3) 205 (37.0)

1–3 87 (53.4) 283 (51.1)

4–6 7 (4.3) 66 (11.9)

Infant Sex

Male 91 (56.5) 253 (45.6)

Female 70 (43.5) 302 (54.4)

Study Center

UCSF 62 (37.6) 128 (22.9)

UMN 65 (39.4) 137 (24.5)

URMC 8 (4.9) 201 (35.9)

UW 30 (18.2) 94 (16.8)

Prenatal Vitamin in 3rd Trimester

No 1 (0.6) 72 (12.9)

Yes 164 (99.4) 488 (87.1)

BMI, Body Mass Index; UCSF, University of California, San Francisco, CA; UMN, University of Minnesota, MN; URMC, University of Rochester Medical Center, NY;

UW, University of Washington-Seattle Children’s Hospital, WA.

https://doi.org/10.1371/journal.pone.0240244.t001
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least a week in the third trimester. These women were more likely to be White, non-smokers,

and married or living with their partner, compared to those who did not take n-3 FA supple-

ments. Women who took n-3 FA supplements were also older and had higher incomes and

education levels then women who did not take n-3 FA supplements. Specific gravity was

higher in women who did not use N-3 supplements, reflecting more concentrated urine. The

median (IQR) in users was 1.011 (1.007, 1.016) and 1.015 (1.009, 1.021) in non-users.

Concentrations of both 8-iso-PGF2α and the 8-iso-PGF2α metabolite were lower among

women who took n-3 FA in the third trimester compared to those who did not (Table 2). In

adjusted models, n-3 FA consumption was associated with 10.2% lower levels of 8-iso-PGF2α

(95% confidence interval [CI]: -19.6, 0.25) and 10.3% lower levels of the 8-iso-PGF2α metabo-

lite (95% CI: -17.1, -2.91) (Table 3). We did not observe an association between n-3 FA use

and PGF2α levels. When we examined associations with the chemical versus the enzymatic

fractions of 8-iso-PGF2α, n-3 FA use was associated with 18.7% lower levels in the chemical

fraction of 8-iso-PGF2α (95% CI: -30.1, -5.32), reflecting oxidative stress, but was not associ-

ated with the enzymatic fraction of 8-iso-PGF2α, reflecting inflammation. Results were greater

in magnitude in crude models (Table 3); all covariates included in the model meaningfully

changed effect estimates compared to the crude model.

Table 2. Median (25th, 75th percentile) specific gravity-corrected urinary oxidative stress biomarker concentra-

tions (ng/mL) by omega-3 fatty acid (n-3 FA) supplement use in the third trimester.

n-3 FA supplement use (n = 165) No n-3 FA supplement use (n = 560)

Measured

8-iso-prostaglandin F2α 0.83 (0.60, 1.09) 1.00 (0.68, 1.47)

8-iso-prostaglandin F2α metabolite 0.55 (0.44, 0.73) 0.64 (0.49, 0.89)

Prostaglandin F2α 2.03 (1.17, 3.54) 2.03 (1.33, 3.21)

Deriveda

8-iso-prostaglandin F2α, enzymatic 0.31 (0.15. 0.50) 0.28 (0.12, 0.49)

8-iso-prostaglandin F2α, chemical 0.45 (0.27, 0.67) 0.64 (0.39, 1.01)

a. The enzymatic and chemical fractions of 8-iso-prostaglandin F2α were derived from the 8-iso-PGF2α to PGF2α

ratio.

https://doi.org/10.1371/journal.pone.0240244.t002

Table 3. Adjusted percent change (95% confidence intervals) in urinary oxidative stress levels in association with

omega-3 fatty acid supplement use in the 3rd trimester of pregnancy (n = 693).

Crude Percent Changea (95% CI) Adjusted Percent Changeb (95% CI)

Measured

8-iso-prostaglandin F2α -20.8 (-29.1, -11.6) -10.2 (-19.6, 0.25)

8-iso-prostaglandin F2α metabolite -18.3 (-24.5, -11.6) -10.3 (-17.1, -2.91)

Prostaglandin F2α -1.75 (-13.9, 12.1) 1.91 (-11.2, 17.0)

Derived

8-iso-prostaglandin F2α, enzymatic 34.8 (-3.20, 87.7) 16.7 (-17.4, 64.8)

8-iso-prostaglandin F2α, chemical -32.0 (-41.6, -20.8) -18.7 (-30.1, -5.32)

a. Model includes gestational age at sample collection and specific gravity.
b. Model includes gestational age at sample collection, specific gravity, maternal age (continuous), race (white, black,

other), education (college degree vs. none), and study center.

https://doi.org/10.1371/journal.pone.0240244.t003
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Overall, our sensitivity analyses produced results fairly similar to our primary results. First,

in a stratified analysis, there was no evidence of statistical interaction by education level (S1

Table). However, associations were greater in magnitude among women with no college

degree. Second, we restricted our sample to women who reported third trimester prenatal vita-

min use (n = 622). Effect estimates were similar to those observed in the original analytic sam-

ple (S2 Table).

Discussion

In a healthy cohort of US pregnant women, we found that n-3 FA supplementation was associ-

ated with lower levels of 8-iso-PGF2α and its metabolite after controlling for relevant con-

founders, indicating lower levels of oxidative stress. Our examination of the fractions of 8-iso-

PGF2α originating from chemical oxidative stress as compared to inflammation suggested that

changes observed were attributable to lower chemical oxidative stress levels. Although these

estimates are adjusted for relevant confounders based on substantive and statistical evidence,

these results should be interpreted with caution as additional, unmeasured health behaviors

may influence this association.

Overall, randomized trials primarily suggest that n-3 FAs are effective in reducing oxidative

stress in both animals and humans [14–16, 37–40]. Although, one study has suggested that

prolonged use in animals may actually increase oxidative stress levels [41]. Previous animal

and human studies that have explored the association between prenatal n-3 FA supplementa-

tion and maternal oxidative stress in pregnancy have been inconclusive. Most, but not all, find-

ings from animal studies align with our results that n-3 FA supplementation during gestation

is associated with lower maternal oxidative stress biomarker concentrations [42–44]. The two

previous human studies that have assessed this relationship in pregnant women have produced

mixed results [17, 18]. Our results align with those from Jamilian et al. who found that n-3 FA

supplementation was associated with decreased oxidative stress levels in women with gesta-

tional diabetes [17]. Finally, although not directly related, this evidence is also consistent with

studies that have examined associations between prenatal n-3 FA supplementation and cord

blood or neonatal oxidative stress levels [45–48]. Animal studies have also observed that

maternal n-3 FA supplementation is associated with lower levels of oxidative stress biomarkers

in placenta and offspring [42–44, 49–54].

Previous studies of n-3 FA supplementation in pregnancy were limited by the sample sizes

and characteristics of their study population as well as the biomarkers used assess oxidative

stress, which could explain some of the differences observed. The only other study to evaluate

the impact of n-3 FA supplementation on oxidative stress during healthy pregnancy observed

an elevation in oxidative stress, as indicated by TBARS levels, in association with fish oil sup-

plementation [18]. However, TBARS has a number of limitations as a biomarker of oxidative

stress. TBARS assays can be unreliable in providing direct measures of lipid peroxidation.

These assays are sensitive to cross-reactions with other compounds, which can lead to inaccu-

rate results [20, 24]. Another study which assessed associations between n-3 FA supplementa-

tion and oxidative stress in pregnant women, but which used seafood portions instead of pill

supplements, also had differing findings from ours in that they observed no differences in

plasma or urinary measurements of 8-iso-PGF2α levels in the treatment and control groups

[55]. However, the differences in results between that study and ours could be attributed to the

fact that use of oral supplements likely delivers higher n-3 FA amounts than the seafood por-

tions that were administered. Our findings are more consistent with the aforementioned study

of prenatal supplementation and oxidative stress in pregnancy by Jamilian et al., which
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observed decreased levels in association with supplement use, despite the fact that they also

used a less reliable oxidative stress biomarker, malondialdehyde [20, 24].

Our findings additionally add to this body of literature by improving the ability to distin-

guish the pathway by which n-3 FA supplementation decreases urinary 8-iso-PGF2α concen-

trations. Previous studies have noted that supplementation is also associated with lower levels

of inflammation biomarkers, such as C-reactive protein [16, 17]. Because inflammation can

lead to a generation of oxidative stress biomarkers, it can be difficult to distinguish which

mechanism is impacted by supplementation in these studies. We did not observe associations

with PGF2α in our study population. This compound is produced through enzymatic peroxi-

dation of arachidonic acid by the cyclooxygenase enzymes which are induced under an inflam-

matory state [31]. Because we observed associations with 8-iso-PGF2α, which is largely

produced through chemical lipid peroxidation, but not with PGF2α, we interpret our findings

to indicate that the associations observed between n-3 FA supplementation and 8-iso-PGF2α
are attributable to a decrease in oxidative stress rather than inflammation. Furthermore, we

examined associations between n-3 FA supplementation and 8-iso-PGF2α generated from

each source, by utilizing a novel ratio of 8-iso-PGF2α and PGF2α. These results also showed

that n-3 FA supplementation was associated with a change in the chemical fraction of 8-iso-

PGF2α, which indicates a specific association with oxidative stress.

Elevated levels of oxidative stress biomarkers in pregnancy, including 8-iso-PGF2α, have

been associated with adverse birth outcomes such as preeclampsia and preterm labor [4, 6].

Thus, theoretically, increased n-3 FA through supplementation could have the potential to

mitigate common adverse birth outcomes by reducing oxidative stress levels. However, ran-

domized control trials evaluating the impact of n-3 FA supplements or dietary interventions to

increase n-3 FA intake on these outcomes generally report a null effect [56–63]. Examining the

association between n-3 FA supplementation and oxidative stress markers may be a more

direct way of capturing the biological impact on the body during pregnancy, and could have

implications for future studies examining the impact of supplementation on adverse birth out-

comes. For example, focusing on this biological mechanism could improve the understanding

which of subpopulations (e.g., demographic groups or individuals with co-morbidities] are

more or less responsive to the effects of supplementation. It could also provide insight on co-

exposures or supplements that either exacerbate or detract from the physiologic effects of

supplementation.

Our study used a cross-sectional design to assess associations between n-3 FA supplementa-

tion and oxidative stress biomarker levels. However, this approach may be ideal for this

research question. n-3 FA levels rise quickly within the body upon consumption of n-3 FA

supplements [64] and 8-iso-PGF2α is a direct reflection of lipid peroxidation at the time it is

measured [25, 26]. Therefore, it was important that both exposure and outcome measurements

were captured at the same timepoint. It should be carefully noted, however, that associations

observed in the third trimester may not be generalizable to the rest of pregnancy. Maternal

plasma n-3 FA levels generally decrease throughout gestation as a result of increased maternal

transfer of n-3 FAs to the fetus [65]. Therefore, the impact of supplementation on maternal

oxidative stress levels may be lesser in this time period than in non-pregnant women or in

other trimesters.

Our study had several limitations related to assessing n-3 FA. First, we did not have bio-

markers for FA status. Thus, we assessed n-3 FA supplementation by questionnaire, and self-

report could have led to recall bias and consequently exposure misclassification. However, we

would such bias to be non-differential with regard to outcome. Recall bias would most likely

be nondifferential because questionnaires were administered in close proximity to time of sup-

plementation intake, and participants did not know their oxidative stress levels [66]. Second,
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we only had information on whether the participant had taken a n-3 FA supplement for one

week during the third trimester and not information on which week; supplementation within

the last 1–2 weeks would have been the most relevant [67]. Third, we were unable to assess

supplement dosage, which could have led to a lack of precision in our effect estimates and lim-

its our ability to comment on whether or not intake was consistent with current n-3 FA dietary

recommendations for pregnant women [68]. Fourth, we were unable to assess dietary patterns

or consumption of specific foods, such as fish intake, which are also important sources of n-3

FA. While dietary sources of n-3 FA and other micronutrients could influence oxidative stress

levels, we would not expect this to confound our results since it is not apparent that n-3 FA

supplementation is associated with this type of dietary intake [69]. Lastly, n-3 supplementation

is strongly influenced by demographic factors and health behaviors, some of which were

unmeasured in TIDES. Thus, residual confounding is possible and our results should be inter-

preted with caution.

Our study also had many strengths. We utilized 8-iso-PGF2α and its major metabolite,

which are well-established biomarkers of oxidative stress that are direct products of lipid per-

oxidation and are stable during pregnancy [6, 25]. These markers are also easily detectible in

urine, minimally influenced by fasting or diurnal fluctuations and stable over pregnancy [6,

25]. Additionally, we were better able to assess the mechanism underpinning the association

between n-3 FA supplementation and 8-iso-PGF2α levels by application of the 8-iso-PGF2α/

PGF2α ratio. Finally, our sizable study population, larger than most other studies assessing this

association, drew from 4 diverse city study sites across the US allows for considerable gener-

alizability of our findings.

Conclusions

We observed lower levels of 8-iso-PGF2α and its primary metabolite in association with n-3

FA intake in pregnancy, which were attributable to decreases in chemical oxidative stress. n-3

FA supplementation may be an easily implemented strategy to decrease maternal oxidative

stress during pregnancy; however, our results need to be interpreted with caution as residual

confounding is possible. Additional research is warranted as these maternal oxidative stress

biomarkers have been linked to adverse birth outcomes and n-3 FA supplements are often

affordable and easy to obtain. However, the appropriate dose, clinically relevant benefit, and

any adverse effects of supplementation need to be more carefully.
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