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Abstract

Comprehensive analysis that aims to understand the topology of real-world networks and

the development of algorithms that replicate their characteristics has been significant

research issues. Although the accuracy of newly developed network protocols or algorithms

does not depend on the underlying topology, the performance generally depends on the

topology. As a result, network practitioners have concentrated on generating representative

synthetic topologies and utilize them to investigate the performance of their design in simula-

tion or emulation environments. Network generators typically represent the Internet topology

as a graph composed of point-to-point links. In this study, we discuss the implications of

multi-access links on the synthetic network generation and modeling of the networks as bi-

partite graphs to represent both subnetworks and routers. We then analyze the characteris-

tics of sampled Internet topology data sets from backbone Autonomous Systems (AS) and

observe that in addition to the commonly recognized power-law node degree distribution,

the subnetwork size and the router interface distributions often exhibit power-law character-

istics. We introduce a SubNetwork Generator (SubNetG) topology generation approach that

incorporates the observed measurements to produce bipartite network topologies. In partic-

ular, generated topologies capture the 2-mode relation between the layer-2 (i.e., the subnet-

work and interface distributions) and the layer-3 (i.e., the degree distribution) that is missing

from the current network generators that produce 1-mode graphs. The SubNetG source

code and experimental data is available at https://github.com/netml/sonet.

1 Introduction

As the largest human-made complex network, the Internet grows with no central authority.

Internet connectivity is provided by tens of thousands of Autonomous Systems (AS), organiza-

tions that maintain a physical network, or a group of networks. Each AS is assigned a unique

identification number to be employed with the Border Gateway Protocol (BGP), and possesses

Internet Protocol (IP) address ranges to be utilized for unique identification of devices across

the Internet and routing of the network traffic. A large number of decentralized AS, which

vary in size and geographic footprint, connect individuals, businesses, and organizations. Each
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AS produces its network based on it’s own economic and technical objectives [1]. Overall, the

Internet evolves with an interplay between cooperation so that the network works efficiently,

and competition so that network providers earn a profit. Knowledge of the underlying network

graph helps in understanding the large scale characteristics and dynamics of the Internet [2].

Network practitioners test new protocols and systems using simulations or emulations, but

more realistic results can be obtained when employed topologies reflect the characteristics of

genuine networks [3–6]. If the synthetic topology used during the simulation does not reflect

the crucial characteristics of real networks, evaluation results will be misleading and the

expected performance will not be observed when the system is deployed in the wild [7, 8].

Hence, network generators are needed to produce synthetic networks that reflect the underly-

ing properties of genuine networks.

Modeling of interactions and generation of representative networks has been a significant

challenge in various research fields such as modelling an efficient network for power-grids [9]

and water distribution networks [10], and several generation models have been developed

[11–14]. Internet topology modeling focuses on understanding local and global characteristics

of the Internet backbone, and construction of graph models that mimic the observed topologi-

cal features. When one samples a network to generate synthetic networks, many of the under-

lying relations may get omitted or altered. This may result in a graph that does not resemble

the original network for crucial characteristics [15]. For example, when designing algorithms

to find communities of multilingual users in social networks, language metric needs to be

taken into account along with the traditional network connectivity [16]. Likewise, when

modeling protein interactions to detect proteins dedicated to a specific cellular process, one

needs to consider the neighborhood expression variance of proteins [17].

Network topology generation involves producing synthetic graphs that replicate certain

characteristics of the original network. The randomness of the generated topology depends on

the set of metrics that are targeted. As the number of constraints increases, the network is

described in greater detail, and hence the generated topology better resembles the reference

graph. In the utmost case, one can define a complete set of metrics that uniquely describe

every aspect of a network, and the generated topology will be isomorphic to the reference.

However, increasing the number of constraints raises the algorithmic complexity to find a

graph meeting all constraints. Hence, topology generators need to balance between the com-

plexity and the representativeness.

The Internet traffic between two systems is transferred through a set of routers (i.e., layer 3

of the Internet protocol suite) interconnected via various link technologies (i.e., layer 2 of the

Internet). A router might be connected via a direct link (i.e., a point-to-point link) or through

a multi-access medium (e.g., bus, switch, Fiber Distributed Data Interface (FDDI) ring, etc.)

using a single network interface. Routers have multiple network interfaces and each interface

has a dedicated IP address. A group of IP addresses is typically represented as a subnet where

the most significant bits are the same. When routers are connected over a link, the connected

interfaces are assigned IPs from the same subnet range, and hence are referred to as a subnet-

work. Note that, we refer to the logical IP address range as subnet, and the physical connectiv-

ity among a group of network interfaces as a subnetwork.

Multiple nodes are connected through a multi-access link, and they are commonly

deployed in the Internet backbone [18, 19]. Previous synthetic Internet topology generators

have often ignored multi-access links, the building block of the networks. In a topological per-

spective, multi-access links have two major implications, namely, pairwise one-hop connectiv-

ity between subnetwork devices and sharing of the link bandwidth. In generating link-level

synthetic Internet topologies, we should consider interface and subnetwork distributions to

reflect the multi-access links [20] in addition to the observed degree distribution [21]. The
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degree of a node is typically defined as the number of nodes it is connected and is typically

higher than the number of network interfaces of the device. A 2-mode graph representation

reflects the actual interfaces of a node as well as it’s one-hop connectivity via subnetworks.

Modeling of Internet topology as a 2-mode graph helps us capture the building blocks of the

networks along with the large-scale characteristics of the Internet backbone.

As we are interested in the link-level Internet topology, we focus on the interface distribu-
tion and subnetwork distribution as two metrics to model the underlying connectivity in addi-

tion to the commonly utilized degree distribution. Interface distribution reflects the number of

network interfaces of devices (such as routers, servers, etc) and plots the number of devices

with a given number of interface count. Likewise, subnetwork distribution exhibits the num-

ber of network interfaces connected to subnetworks (i.e., point-to-point links or multi-access

links) and plots the number of subnetworks with a given number of attached devices. The

degree distribution ignores the access medium over which a single interface connects multiple

nodes over a subnetwork. A link-layer device (e.g., a bus, switch, or FDDI ring) or a link-layer

network (e.g., a switch forms the single collision domain of the subnetwork. Note that “degree”

indicates the number of one-hop neighbors, and is proportional to the number of interfaces

and the size of the subnetworks those interfaces are attached.

In order to produce realistic synthetic topologies, we analyzed the backbone Internet topol-

ogies sampled by the Autonomous System Mapper (ASM) [22]. Our analysis of several AS

reveals that many have power-law distribution patterns in the degree, subnetwork, and inter-

face distributions [20]. In this study, we derive the power-law exponent of the degree, subnet-

work and interface distributions. We also derive the condition for the power-law exponent

ranges that ensure the existence of a connected network when interface and subnetwork distri-

butions are power-laws. We then utilize these results in the SubNetwork Generator (SubNetG)

topology generator.

Focusing on the relation between layer 2 (i.e., subnetwork and interface) and layer 3 (i.e.,

degree) in the Internet, this study aims to provide a link-level network topology generation

mechanism focusing on the building blocks of communication networks. Consideration of the

multi-access links in the synthetic topology generation addresses a missing level of granularity

in the Internet topology models. Additionally, modeling multi-access links based on genuine

Internet measurements produces synthetic topologies that better capture the underlying char-

acteristics of the backbone networks.

In the rest of the paper, Section 2 summarizes synthetic network generation approaches.

Section 3 summarizes the missing component of the current Internet topology generators. Sec-

tion 4 introduces the SubNetwork Generator (SubNetG) that produces 2-mode graphs where

the distributions are power-law. Section 5 presents evaluations of SubNetG, and Section 6 con-

cludes the paper.

2 Related work

In this section, we present an overview of synthetic network generation approaches that could

be employed to represent Internet topologies.

Random network models: Initial network generation relied on traditional random net-

work frameworks such as the Erdos–Renyi model [13] where nodes are randomly interconnec-

ted. Random network model is not a good representation of the Internet topology due to its

failure to capture many crucial properties such as the heavy-tailed degree distribution and

high clustering.

Hierarchical network models: Hierarchical topology generators mimic network deploy-

ment practices. Tiers [23] captures the hierarchical aspect of the Internet by implementing the
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network hierarchy where nodes are linked with a minimum spanning tree at LAN and MAN

levels. Similarly, GT-ITM [24] generates hierarchical networks by building transit and stub

domains. GT-ITM generates a connected random graph in which each node is considered as a

transit domain and then grows each domain to contain a random graph. After expanding the

operation for n-levels, a number of random graphs are generated and connected to each node

as stubs. Finally, IGEN [25] implements Internet engineering heuristics to populate networks

based on design choices. While focusing on the network growth processes, hierarchical net-

work generators miss large-scale characteristics of the Internet.

Small-World network models: Many real-world networks, including the Internet, have

shown to exhibit the small world characteristic, i.e. high clustering and low characteristic path

length. Watts–Strogatz model interpolates ordered lattices with large clustering coefficients

and purely random networks with small average path lengths to produce small world networks

[14]. Although small world networks obtain high clustering and low average path length, they

lack degree characteristics observed in the Internet topologies.

Scale-Free network models: Internet topologies are shown to exhibit power-law degree dis-

tribution at AS level and router level [21, 26]. These studies shifted the attention to degree-
based generators [27]. In order to bridge the gap between the local and global properties of the

Internet, statistical physics-based approaches were proposed [28]. Preferential attachment
mimics network growth where edges are not placed randomly but have a tendency to connect

to high degree nodes [29]. The Boston university Representative Internet Topology gEnerator

(BRITE) [6] generates networks with a power-law degree distribution and allows locality-

based preferential attachment to generate hierarchical networks. BRITE also utilizes the

Erdos-Renyi model where the probability of the existence of a link between two nodes is

inversely proportional to the distance between the nodes. Inet [30] produces synthetic Internet

graphs that have power-law degree distributions. Jellyfish [31] uses a core formed around cen-

tral nodes to obtain topologies that have core-periphery structures.

dK-Series network models:dK-series provides a basis to characterize a graph [32]. For an n
node network 0K-graph only matches the average degree, 1K-graph matches the degree distri-

bution, 2K-graph matches the Joint Degree Distribution, and so on. The nK-graph is isomor-

phic of the original graph. Researchers have introduced a methodology for the rescaling

process to produce different sized graphs with the same 2K-series characteristics [33], but

there is no known efficient generation mechanism for higher dK matches.

Dual Internet topology generator: Center for Applied Internet Data Analysis (CAIDA)

introduced a scalable tool that generates dual Internet topologies that aim to capture both

router-level and AS-level network characteristics [34]. They use the methods from [35] to gen-

erate a network of ASes and methods from [36] to generate a router network for each AS.

Nonetheless, the generated networks do not reflect the 2-mode link-level characteristics.

3 Link-level internet characteristics

Researchers have studied various graph metrics to summarize reference graphs. Although

many of these metrics (such as degree distribution, clustering, and characteristic path length)

are essential to specify a network, there may be metrics that are better suited for a specific

domain. Current topology generators do not consider multi-access links and model all subnet-

works as point-to-point links. This may become an important hurdle for achieving accurate

network simulations/emulations. In this study, in addition to the commonly utilized degree

distribution, we focus on the interface and subnetwork distributions to capture the link-level

connectivity of the Internet backbone networks. Subnetworks provide link-level connectivity

among a set of device interfaces.
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Before examining the interface and subnetwork distributions, we first illustrate these distri-

butions on a toy network. Fig 1 shows two different topologies with the same node size. Net-

work 1 is composed of only point-to-point links, whereas Network 2 involves multi-access

links that enable one-hop connectivity to multiple nodes through a single link. Nodes belong-

ing to the same subnetworks are marked with the same colors. In both topologies, nodes

have the same node degrees, and hence the degree distributions are the same. However, when

the number of interfaces is compared, the distinction of multi-access links becomes clear.

Although router R has the same degree of 5 in both of networks, its interface count is 5 in Net-

work 1 but 2 in Network 2. While both networks have the same degree distribution, their inter-

face distributions are considerably different as shown in Fig 2.

To show the difference of the network representations in practice, we perform a maximum

throughput simulation based on the Internet2 [37] topology, backbone of the academic net-

works in the U.S. Network throughput is an important metric to measure the maximum

amount of data that could be sent from a source to a destination. Gathering the ground truth

information from configuration files of Internet2 routers [38], we found that Internet2 back-

bone had 440 nodes (i.e., routers and servers) connected over 90 subnetworks. We observe

60% of the Internet2 subnetworks are multi-access links with more than two attached network

interfaces.

We use ns-3 network simulator [39] to simulate the throughput where the Internet2 back-

bone is modeled as a 1-mode graph (where routers are assumed to be directly interconnected

via point-to-point links) and a 2-mode graph (i.e., network interfaces are connected over

Fig 1. Sample topologies.

https://doi.org/10.1371/journal.pone.0240100.g001

Fig 2. Interface, subnetwork and degree distribution of sample topologies.

https://doi.org/10.1371/journal.pone.0240100.g002
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subnetworks). We then assume data traffic is sent between 10 random source and destination

pairs and repeat each scenario 100 times. We use the same source-destination pairs and

assume a link bandwidth of 1 Gb for transferring data in both representations.

Table 1 shows the 5-number summary of cumulative throughput between randomly

selected node pairs. We observe that 1-mode representation of the topology, which ignores the

underlying subnetworks, produces an inflated bandwidth. The traditional 1-mode model of

the internet topologies ignores the underlying multi-access links that share the communication

link among multiple subnetwork interfaces and hence has a single collision domain that limits

simultaneous data transfers. Hence, the 1-mode model produces results that are significantly

higher than the achievable bandwidth that is reflected in the 2-mode model. This experiment

shows the importance of the 2-mode graph modeling of the link-level Internet.

We showed the effect of neglecting multi-access links and the corresponding collision

domain between the systems connected over a shared link. Overall, current topology genera-

tors that only use point-to-point links considerably overestimate the maximum throughput of

networks, even if they could capture the cliquishness of the underlying topologies. As the infla-

tion is by an order of n2 for n interfaces, the difference in the bandwidth of the simulations will

be exponentially higher for larger subnetworks.

4 SubNetG: SubNetwork generator

In this section, we present the SubNetwork Generator (SubNetG) to produce synthetic

topologies that reflect the link-level characteristics of the Internet backbone. In particular, we

generate network topologies in the proximity of the desired network size, node interface distri-

bution, and subnetwork size distribution. The generation process also converges the degree

distribution to the measured power-law distribution.

4.1 Obtaining power-law distribution with a cutoff

Power-law distribution is a distribution where frequency of attributes vary as a power of the

attribute, and follows the exponential form Fi = Ai−α where i indicates the attribute such as

degree, A is the scaling coefficient and α is the power-law exponent. In a power-law distribu-

tion, there are considerably abundant small values (i.e., Fi is high for small values of i) while

extremely large values are rare but possible. As log(Fi) = log(Ai−α) = log(A) + (−α)log(i), we

observe a power-law distribution as a line in the log-scale where α exponent determines the

slope of the curve. While α exponent uniquely determines the distribution, the scaling coeffi-

cient A reflects the network size.

We could generate a power-law distribution with any desired α using the transformation
method [40], such that, one can produce a number of uniformly distributed random numbers

within the 0� r< 1 range and then convert the numbers using x = (1 − r)−1/(α−1) transforma-

tion equation. The resulting distribution would be a power-law within the range of 1� x<1
and the given power-law exponent α. This approach would yield a set of numbers having a dis-

tribution of the given power-law exponent. However, with this method, we can only generate

interface and subnetwork distributions with a given number of interfaces, but we don’t have

direct control over the number of nodes.

Table 1. Network throughput (Mbps) simulation on Internet2 topology.

Representation Min 1st quartile Median 3rd quartile Max

1-mode 2,682 2,727 2,727 2,728 2,729

2-mode 317 381 392 402 424

https://doi.org/10.1371/journal.pone.0240100.t001
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Algorithm 1: PowerLawCutoff(N, α, max, [min])
1 Sizei  0 8 i
2 Distributioni  Ai−α 8 i
3 UpperBound  ∑i Ai−α

4 for n  1 . . . N do
5 R  random[0, UpperBound]
6 i  min //default min = 1
7 while R > 0 & i � max do
8 R  R − Distributioni
9 i++
10 Sizei++

Algorithm 1 generates a set of numbers with the specified number of nodes N and power-

law exponent α. The min and max parameters are used to adjust the minimum and maximum

degrees in the distribution. Routers and switches have a physical footprint, and hence having a

router or switch with a very large number of interfaces is impractical. The max interface rout-

ers or subnetworks is determined based on extensive measurement of ASes [22]. Similarly, an

optional parameter min is used to adjust the minimum degree nodes for subnetworks since

subnetworks have at least two interfaces. If min is not specified, a value of 1 is used.

In Line 2 of the algorithm, a temporary distribution curve is generated with the given

power-law exponent α but with a much larger distribution coefficient A. In Line 3, the integral

of the temporary distribution curve is calculated. Then, the algorithm iterates number of

nodes N times to obtain a skewed probability distribution using the temporary curve. Line 5,

generates uniformly distributed random numbers so that the loop in Lines 7-9 determines the

number of interfaces for the node. Finally, Line 10 increments the distribution count of the

determined size i.
At the end of the algorithm, the sum of values in the final distribution ∑i Ai−α will approxi-

mate the desired network size N. Downscaling in integers introduces error due to rounding,

and the sum of values might be a bit different than the intended distribution. Hence, the final

network size might be different from the expected network size by a couple of nodes.

Using Algorithm 1, we generated multiple networks with various number of nodes (i.e., 1K,

10K, and 100K) and power-law exponents of 2, 2.5, and 3. Fig 3 shows the Probability Distri-

bution Function (PDF) and Complementary Cumulative Distribution Function (CCDF) of

interface distributions for networks without any min/max cutoff using power-law exponents

of 2, 2.5, and 3 respectively. Similarly, Fig 4 presents the subnetwork distribution which uses a

min subnetwork size of 2 without a max cutoff. As observed in the figures, the generated inter-

face and subnetwork sizes can be unrealistically high especially for low power-law exponents.

The max cutoff shifts the power-law distribution of the network and depends on the net-

work size and the expected power-law exponent. To determine the produced alpha value

change based on the cutoff and input alpha value, we generated 3 sets of networks with 1k, 10k

and 100k nodes and a cutoff value of 40% of the network size. In each set, we run the algorithm

Fig 3. Sample interface distributions with power-laws of 2, 2.5, 3.

https://doi.org/10.1371/journal.pone.0240100.g003
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15 times with varying power-law exponents and measured the resulting power-law exponent

due to the max cut-off. Fig 5 shows the median alpha values of the resulting distributions and

their exponential regression.

We analyzed the largest AS networks and their interface and subnetwork sizes [22]. The

maximum interface size for the largest AS networks was around 212. Similarly, the maximum

subnetwork size was around 215. Hence, we picked these values as the max cutoff for the net-

work generation.

4.2 2-mode graph generation approach

Subnetwork based Internet topologies cannot be modeled as a conventional 1-mode graph as

it requires a distinction between routers and subnetworks. A hypergraph H = (N,S) is a gener-

alized graph form where N is the set of nodes and S is the set edges. Each element of S repre-

sents a subset of N, which is connected through the same subnetwork. Hypergraphs are also

Fig 4. Sample subnetwork distributions with power-laws of 2, 2.5, 3.

https://doi.org/10.1371/journal.pone.0240100.g004

Fig 5. Change in the power law exponent with a 40% cut-off.

https://doi.org/10.1371/journal.pone.0240100.g005
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illustrated using 2-mode bipartite graphs. In order to maintain the subnetwork relations

among the nodes, we use an undirected bipartite graph where vertices are either nodes (e.g., a

router, a server, or a computing device with one or multiple IP addresses) or subnetworks, as

shown in a toy network in Fig 6. Each node is attached to at least one subnetwork (shown as

clouds), and each subnetwork is attached to at least two nodes (shown as routers). The number

of attachments for each subnetwork and node is shown on the figure.

In order to generate a network, the number of nodes N, the power-law exponent of inter-

face distribution αI, and the power-law exponent of subnetwork distribution αS are provided

by the user or obtained from the measurement data. Given the slope αI, the area beneath the

interface distribution curve should match N (i.e., ∑i IDi = N where IDi indicates the number of

nodes with i interfaces) [2]. In Fig 6, there are 2 nodes with 3 interfaces (ID3 = 2), 2 nodes with

2 interfaces (ID2 = 2), and 2 nodes with 1 interface (ID1 = 2). Subsequently, we can compute

the scaling coefficient AI of the interface distribution.

Once the interface distribution is determined based on Algorithm 1, the number of inter-

faces (i.e., I) can be calculated from I = ∑i i � IDi. The number of interfaces on all nodes I is

equal to the sum of subnetwork sizes (i.e., S) so that all nodes and subnetworks are intercon-

nected. That is
X

i

i � IDi ¼
X

j

j � SDj ð1Þ

Subsequently, for a given subnetwork distribution exponent αS, we can determine the scal-

ing coefficient AD of the subnetwork distribution.

4.3 Dependence of distributions

In this section, we analyze the dependency of degree distribution to the interface and subnet-

work distributions when all are power-laws. As the degree distribution is determined from the

1-mode projection of the nodes in the 2-mode graph, it is dependent on the underlying distri-

butions of the 2-mode graph.

Fig 6. Sample bipartite graph.

https://doi.org/10.1371/journal.pone.0240100.g006
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Once the power-law exponents of interface distribution (i.e., αI) and subnetwork distribu-

tion (i.e., αS) are determined, we can compute the average degree (i.e., < k>) in the network

as follows. A subnetwork of size j, by definition, connects j nodes in the one-hop distance.

Hence, once a node connects to this subnetwork, its degree k increases by j − 1. Subsequently,

the total degree contribution of the subnetwork to the network is j � (j − 1). When we consider

all of the subnetworks in the network, the total degree ∑k can be calculated as ∑j SDj � j � (j − 1)

where SDj indicates the number of subnetworks with j devices. Dividing this value by the num-

ber of nodes (i.e., N) gives the average degree < k> of the network as follows.

< k > ¼ f
X

j

SDj � j � ðj � 1Þ g=N ð2Þ

Similarly, the degree distribution can be utilized to calculate the number of nodes. That is,

∑k k �DDk =< k> � N where DDk indicates the number of nodes with degree k. Hence,

< k > ¼ f
X

k

k � DDk g=N ð3Þ

Additionally, for a given power law exponent α and a number of nodes N, we can calculate

the A coefficient. Therefore, the power law exponent of the degree distribution (i.e., αD) can be

calculated for a given set of N, αI and αS parameters using the Eqs 2 and 3 and the power-law

formula of Fi = Ai−α.

Fig 7 presents the power-law exponent of the degree distribution αD with respect to a given

pair of subnetwork αS and interface αI distributions assuming ideal power-law distributions.

Note that subnetwok distribution assumes that there is no subnetwork of size 1 (i.e., SD1 = 0)

and hence the plot is not symmetrical. We calculate the power-law exponent of the degree dis-

tribution αD for all interface αI and subnetwork αS combinations with an increment of 0.1.

Note that some of the combinations in the vicinity of 1.0 x 1.0 have a αD = 0 (shown as black

color) since they are infeasible. In a power-law distribution, when 1< α< 2, the first moment

(i.e., the average < k>) is infinite along with all the higher moments [40]. Similarly, when 2<

α< 3, the first moment is finite, but the second (i.e., the variance) and higher moments are

infinite. Since such distributions contain extremely large values [41], obtaining a feasible con-

figuration of interface and subnetworks (see Fig 6) becomes impossible.

4.4 Network connectivity

Utilizing pure probabilistic generation methods after assigning certain target degree to nodes

performs poorly in terms of connectivity [32]. During our experiments, we observed that ran-

dom matching of interfaces to subnetworks result in disconnected graphs and that the giant

component shrinks as the subnetwork and interface distributions become steeper. In this sec-

tion, we analyze issues in ensuring connectivity between all subnetworks and nodes during the

2-mode graph generation.

Generating a connected network with power-law degree distribution is not possible for all

αI and αS pairs. Intuitively, if the ratio of single interface routers increases, it becomes harder

or even impossible to generate a connected network. Similarly, having subnetworks with only

two interfaces limit the number of configurations. Overall, every node with more than one

interface can utilize its first interface to attach to the current giant component and each of the

other interfaces to attach a new subnetwork. Hence, the condition that guarantees the

PLOS ONE Generation of 2-mode scale-free graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0240100 November 9, 2020 10 / 23

https://doi.org/10.1371/journal.pone.0240100


existence of a connected configuration can be formulated as

S � 1þ
X

i¼2

ði � 1Þ � IDi ð4Þ

where S indicates the total number of interfaces in all of the generated subnetworks.

Fig 8 plots the connectivity with respect to the power-law exponents of the subnetwork and

interface distribution where the black line indicates above which connected networks cannot

be generated. Similarly, the red line shows the region below which networks are infeasible irre-

spective of connectivity as discussed in Section 4.3. The figure also presents the power-law

exponents of the interface and subnetwork distributions of the AS sampled by ASM [22] (also

employed in the evaluations of Section 5.2) and observe them to be within the feasible region.

When the interface and subnetwork distribution exponents are above the black line, there is

no connected graph satisfying both power-law distributions.

As the slopes become steeper, the ratio of single interface nodes and/or ratio of smaller sub-

networks increases, and eventually connectivity becomes infeasible. Analysis of the contour

and the axes reveal that connectivity is affected more by the subnetwork distribution compared

to the interface distribution. Note that, as the networks are generated through a random pro-

cess and the obtained power-laws are not perfect the boundaries are not hard boundaries and

Fig 7. Correlation among the distributions.

https://doi.org/10.1371/journal.pone.0240100.g007
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one may obtain a connected network with power-laws above the line. However, it becomes

harder to find a connected network configuration as power-law exponents are closer to either

boundary.

4.5 Generation methodology

Precise matching of the distributions can be challenging to achieve due to the discrete nature

of the graphs [40]. After calculating all distributions using Algorithm 1, we generate vertices of

the bipartite graph without any edges. We assign the interface count of each node and the size

of each subnetwork according to the previously calculated IDi and SDj, respectively. We mix

the order of the nodes and subnetworks to eliminate bias (i.e., obtain non-assortative graphs).

If both subnetworks and nodes are ordered with respect to their size, the assortative mixing

of the resulting graph would be high [42]. However, our analysis of measured AS networks

Fig 8. Feasible αI and αS exponents for a connected network.

https://doi.org/10.1371/journal.pone.0240100.g008
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indicate non-assortative connectivity in terms of attachment between low/high interfaces and

subnetworks.

Algorithm 2: GenerateNetwork(Nodes, Subnetworks)
1 Edges[]  {}
2 Connected[]  {random(Subnetworks)}
3 for i  1 . . . |Nodes| do
4 subnetwork  random(Connected)
5 while Full(subnetwork) do
6 Connected  Connected − {subnetwork}
7 Subnetworks  Subnetworks − {subnetwork}
8 subnetwork  random(Connected)
9 Edges Edges [ fedgeðNodes1i ; subnetworkÞg
10 for j 2 . . .NodesICi do
11 subnetwork  random(Subnetworks)
12 while Full(subnetwork) or 9 edge(Nodesi, subnetwork) 2 Edges do
13 if Full(subnetwork) then
14 Subnetworks  Subnetworks − {subnetwork}
15 Connected  Connected − {subnetwork}
16 subnetwork  random(Subnetworks)
17 Connected  Connected [ {subnetwork}
18 Edges Edges [ fedgeðNodesji; subnetworkÞg

Algorithm 2 provides the pseudo-code for the network generation from a given set of

Nodes and Subnetworks that are produced with the Algorithm 1 using the interface and

subnetwork distributions, respectively. In order to ensure connectivity (see Section 4.4), we

employ a Connected set of subnetworks that are connected to the main component so far. As

the network is modeled as a bipartite graph, SubNetG grows the network expanding the con-

nected component to have a path between any subnetwork pairs. The design relies on the idea

that at least one interface of each node is connected to a subnetwork that is already part of the

connected component, while the rest of the interfaces of the node are connected to random

subnetworks.

After initializing Edges to an empty set (Line 1), we assign a random Subnetwork to the

Connected component (Line 2). The outer loop in Line 3 iterates over all Nodes that were ran-

domly sorted and the inner loop (Line 10) iterates over each interface of the node (i.e., Nodesi)
after the first one (i.e., Nodes1i ) is connected to the Connected component (Lines 4-8). A ran-

dom subnetwork is selected to be connected (Lines 11-16) and the selected subnetwork is

appended to the Connected component (Line 17). Lines 5-8 and Lines 12-16 ensure that the

selected subnetwork has room for a new node connection, and there is not already an edge

between the node and subnetwork. If the subnetwork is full, it is removed from the respective

list so that it is not redundantly selected (lines 6-7 and 14-15). Finally, the selected subnetwork

is connected to the node’s interface (Line 18). The algorithm terminates when all interfaces of

all nodes have been considered for attaching to the subnetworks. Note that in practice we also

need to check for the parameters to ensure feasibility before execution and consider the lack of

subnetworks especially in the Connected component during network configuration.

Fig 9 presents the execution of the Algorithm 2 on the sample bipartite graph in Fig 6. Note

that subnetworks and routers are randomly sorted to remove assortative linking. Fig 9a shows

the state of the graph at the end of line 2 assuming S2 is randomly selected as the initially Con-
nected subnetwork. Line 3 selects the first router R1 in the list and line 4 selects S2 as it is the

only subnetwork in the Connected component. AS S2 has room for attachment, lines 5-8 are

skipped. Then, line 9 adds an edge between the first interface of R1
1

and S2 as shown in Fig 9b.

Subsequently, line 10 picks the second interface of R1, and line 11 picks a random subnetwork,

assume S4. As there are non-connected interfaces of S2, lines 12-16 are skipped. Note that, the
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algorithm could have selected a subnetwork already in the Connected. Line 17 adds the subnet-

works to the Connected and line 18 adds and edge between the second interface R2
1

and S4 as

shown in Fig 9c. Finally, algorithm loops back to second router R2 in line 3, and randomly

selects subnetwork S2 in line 4 to be connected as shown in Fig 9d. Note that as S2 is now full,

it will be removed from the Connected and Subnetworks when it is selected in line 4.

The time complexity of the algorithm is O(I + S) where I is the total number of interfaces in

the network, and S is the number of subnetworks. While there are two outer loops at line 3-4,

each node interface is processed only once. Likewise, the internal loops at lines 7 and 12 are

executed only once for each subnetwork to be removed from the list when it becomes full.

5 Evaluation

In this section, we present samples of 2-mode power-law network generation with SubNetG.

In Section 5.1, we analyze whether current topology generators reflect link-level subnetwork

characteristic. In Section 5.2, we evaluate the data we obtained from large backbone Autono-

mous Systems sampled across the Internet. In Section 5.3, we show the results for the synthetic

topologies that we generate using SubNetG.

5.1 Analysis of network generators

In this section, we assess whether network generators capture the link-level characteristic (i.e.,

subnetwork connectivity) of the Internet topology. As commonly employed network genera-

tors produce 1-mode graphs [43], we transform the 2-mode network of link-level Internet (i.e.,

subnetworks and nodes) into a 1-mode network between routers. Hence, we model subnet-

works as cliques between all attached nodes, as shown in Fig 10. Note that this estimation is

not perfect as neighboring subnetworks (such as three point-to-point links between the

Fig 9. Iteration of algorithm 2 on a sample network.

https://doi.org/10.1371/journal.pone.0240100.g009
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same triple of nodes) may incorrectly be assumed as a single subnetwork (i.e., a three node

subnetwork).

In order to analyze the clique distribution, we sampled the subnetwork based Internet2

backbone topology [37]. Note that, even though router-level topology of other networks are

publicly shared, they do not provide the subnetwork information that is needed for a ground

truth comparison. We convert the subnetwork topology to a point-to-point graph by replacing

multi-access links of each subnetwork with a clique of links among the subnetwork nodes.

Finally, we run a clique search on the graph and compare the distributions with the actual

Internet2 Subnetwork distribution to analyze how successful the clique search approach cap-

tures the multi-access links.

Internet2 Subnetwork curve in Fig 11 illustrates the subnetwork distribution of the Internet2

backbone. The result of clique search is shown as the Internet2 Clique curve. We observe a

slight difference between the subnetwork and clique distributions, i.e., at 2 and 3. In clique

search, all point-to-point triangles are assumed to be a multi-access link with three nodes.

Note that, similar incorrect assumptions in larger cliques have a negligible probability of

Fig 10. Multi-access vs. point-to-point links.

https://doi.org/10.1371/journal.pone.0240100.g010

Fig 11. Clique size distributions of Internet2.

https://doi.org/10.1371/journal.pone.0240100.g011
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occurrence as this will require all nodes in both subnetworks to be attached to each other. We

also utilize the Orbis topology generator [33], to produce the same size graph with Internet2 Cli-
que as the reference graph. Orbis can produce synthetic topologies of any size with the exact

1k or 2k distribution (marked as Generated in Fig 11), and rewire the original graph while pre-

serving the 2k or 3k distributions (marked as Rewired in the Figure). Although the reference

Internet2 graph includes up to 20-cliques, 1k or 2k synthetic topologies do not preserve the cli-

que distribution. We observe that 3k rewiring preserves the clique distribution, but a close

examination revealed that cliques larger than 3 were not rewired and remained intact.

Finally, we produced topologies replicating the characteristics of sample AS networks in

Table 2. We generated synthetic graphs using Inet [30] and BRITE [6] with both of the Wax-

man and Barabasi-Albert (BA) models. For BA preferential attachment model, BRITE uses an

m parameter to indicate the number of connections a new node makes. As the m value is

increased, network density increases. However, this did not result in a significant increase in

the size of cliques in the topology. Fig 12 shows the clique distributions of a sample AS 8928.

As shown in the figure, both the number of cliques and the clique sizes in the real topology is

significantly larger than the ones in the generated topologies. The generated topologies have

clique sizes up to 20, but as seen from the figure, measured topologies of the similar sizes can

Table 2. Power-law exponents for sample backbone AS.

AS 1221 2828 3549 4637 4755 4826 8928 9505 28917 31133 33891 262589 mean

αI measured 2.39 2.16 2.59 2.68 2.02 2.99 2.24 2.22 2.11 2.51 1.93 3.75 2.47

αS measured 2.32 2.48 2.35 2.42 3.91 2.46 2.37 3.52 1.93 1.64 1.57 1.84 2.40

αD measured 2.52 2.42 2.31 2.74 2.16 2.62 2.59 3.23 2.19 2.29 2.27 2.12 2.45

αD expected 2.45 2.41 2.54 2.58 2.44 2.71 2.39 2.50 2.20 2.26 1.95 2.56 2.42

αD generated 2.35 2.31 2.68 2.64 2.07 3.22 2.29 2.49 2.17 2.76 2.04 3.30 2.53

https://doi.org/10.1371/journal.pone.0240100.t002

Fig 12. Clique Size Distribution of the AS 8928.

https://doi.org/10.1371/journal.pone.0240100.g012
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have clique sizes up to 200. Inet produces largest cliques among other generators but it has a

completely different distribution compared to the measurements.

Both the Internet2 Subnetwork curve in Fig 11 and clique sizes and clique distribution of the

measured AS in Fig 12 illustrate the frequencies of multi-access links in the Internet2 and real

Internet topology, hence it shows the existence of subnetworks in the backbone. Overall, we

observe none of the analyzed generators capture the subnetwork characteristics of the sampled

backbone Internet topologies.

5.2 Sample network topologies

In this section, we analyze the topological characteristics of sample AS networks obtained

from measurements of the Internet backbone via Autonomous System Mapper (ASM) [22].

ASM collects partial traces to every observed IP address of an AS from all border routers it

could identify for the AS. After filtering trace anomalies such as loops and bounce-backs [44],

ASM identifies subnetworks [45], IP aliases [46], and unresponsive routers [47] to infer the

underlying link-level network of the AS. Even though ASM collects the most comprehensive

snapshot of backbone AS, there may still be unmapped regions of the network. While public

measurement platforms such as CAIDA Ark [48] and RIPE Atlas [49] provide samples of the

Internet backbone, they do not comprehensively map all interface IPs of an AS. In a previous

study [43], we had relied on such public measurement platforms [22, 48, 50] to estimate the

power-law parameters. In this study, we realized that their samples yield power-law parameters

that were not within the feasible range as discussed in Section 4.4. Hence, we deployed ASM to

better capture link-level connectivity of AS topologies.

Interface distribution presents the histogram of systems (e.g., router and server) with a

given number of interfaces. The number of interfaces on a system is typically equal to the num-

ber of IP aliases for that system. ASM utilizes MIDAR [51] and ASIAR [52] tools to resolve IP

aliases in the sample topologies. Fig 13 present the interface distributions of three sample AS.

The power-law exponent value of most of the measured AS vary between 2 and 3, as shown in

Table 2. We defaulted the interface distribution of SubNetG to the average of sampled AS, i.e.,

α = 2.5.

Subnetwork distribution presents a histogram of the subnetworks with a specific size, i.e.,

the number of interfaces attached to the subnetwork [38]. For a given i, SDi indicates the num-

ber of subnetworks with i attached systems. Note that the minimum i is 2, as there should be at

least two interfaces attached to a subnetwork. This metric complements the interface distribu-

tion, where the total number of interfaces is equal to the sum of the subnetwork sizes. We use

ASIAR [52] to infer the subnetworks of the AS based on the BGP announcements of the AS.

Fig 14 presents the subnetwork distributions of three sample AS. The power-law exponent

value of the sampled ASes is between 1.5 and 4, as shown in Table 2. We consider the average

of samples, i.e., α = 2.4, as the default while generating synthetic topologies with SubNetG.

Fig 13. Interface distribution of AS 1221, AS 8928 and AS 2828.

https://doi.org/10.1371/journal.pone.0240100.g013
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Degree distribution is the most utilized metric to characterize a network. Degree distribu-

tion represents a histogram of the nodes with a certain degree and gives insight into the struc-

ture of the network. For each node, its degree is computed from the number of nodes that are

within one-hop distance. For the sampled backbone AS, the power-law exponent α value is

mostly within 2 and 3 range and has an average of 2.45. Fig 15 shows the degree distributions

of three sample AS networks.

Table 2 presents the power-law exponent for the Interface, Subnet, and Degree distributions

of 12 AS mapped by ASM. As research has shown that visual verification of the linearity in

the logarithmic scale may be misleading, we utilize [41] for fitting and verifying the observed

power-laws. Note that, as the empirical data is not ideal power-law distributions, the αD mea-
sured and αD expected differ for individual AS measurements (such as in AS 9505, 33891 and

262589). Overall, the median and mean difference between the expected and measured αD is

0.07 and 0.09, respectively. Similarly, generated networks employ a random configuration of

subnetworks and node interfaces after establishing a minimum spanning tree to ensure con-

nectivity, and hence αD generated may differ from both as seen with AS 4826, 31133 and

262589. Overall, the median and mean difference between the expected and generated αD is

0.04 and 0.08, respectively, indicating that generated networks are closer to the expected distri-

butions with the exception of a few outliers. One may generate new networks until a configura-

tion within a threshold of αD is obtained. Generated networks are further analyzed in the next

Section.

5.3 Synthetic topologies

In this section, we analyze synthetic topologies generated with the interface and subnetwork

distributions of the measured backbone AS. While SubNetG matches the measured power-law

exponents of the interface αI and subnetwork αS distributions, it does not directly match the

degree distribution αD. We observe that the resulting power-law exponents of the degree

distributions to be similar to the genuine networks as presented in the Table 2. Furthermore

Fig 14. Subnetwork distribution of AS 1221, AS 8928 and AS 2828.

https://doi.org/10.1371/journal.pone.0240100.g014

Fig 15. Degree distribution of AS 1221, AS 8928 and AS 2828.

https://doi.org/10.1371/journal.pone.0240100.g015
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Figs 16, 17 and 18 show the comparison of measured and generated distributions for the Sub-

net, Interface and Degree of three sample AS 1221, 2828, and 8929, respectively. Red dots

show the values from the genuine AS measurements while black dots show the values of the

synthetic network generated by SubNetG. We observe that, the generated interface and sub-

network distributions are different from the measured distributions even though the power-

law exponents are the same. Particularly, the CCDF of measured distributions seem to contain

greater perturbations, which is expected in empirical data [41].

Additionally, we generate synthetic topologies with 1K, 10K, 100K, and 1M nodes. Based

on the averages of AS measurements presented in Section 3, we set αID = 2.5 and αSD = 2.4.

Fig 19 present the interface, subnetwork, and degree distributions, of the generated networks.

Even though the generation method did not consider the degree distribution directly, the

Fig 16. Distributions of a synthetic network based on AS 1221.

https://doi.org/10.1371/journal.pone.0240100.g016

Fig 17. Distributions of a synthetic network based on AS 2828.

https://doi.org/10.1371/journal.pone.0240100.g017

Fig 18. Distributions of a synthetic network based on AS 8929.

https://doi.org/10.1371/journal.pone.0240100.g018
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resulting degree distributions are power-law distributions with an average exponent of αDD =

2.77, 2.75, 2.58, and 2.53, respectively for 1K, 10K, 100K, and 1M nodes.

Although sample topologies presented in this study use data obtained from ASM [22], the

presented algorithm is independent of the specific data set and can produce synthetic topolo-

gies with any feasible set of distribution. Generation parameters αDD, αID and αSD can be

selected from any measurement dataset and ported as the reference topology. Moreover, the

user can supply any feasible (for feasible parameter space) set of parameters to be matched.

Overall, we observe that produced networks have a similar interface, subnetwork, and degree

distributions to the genuine topology they are modeled after.

6 Conclusion

Currently, synthetic network generators for the Internet topology ignore the multi-access links

and model the network as consisting of point-to-point links. However, multi-access links such

as FDDI ring, and Ethernet are widely deployed as link-layer technologies at the backbone net-

works. To assess the need for 2-mode modeling, we analyzed the impact of subnetworks on

the Internet topologies by comparative graph structure analysis of current network topology

generators and performed comparative network simulations. Our analyses on the previous

network topology generators revealed that neither the subgraph structures nor the bandwidth

related characteristics of the Internet topology are represented by the generated graphs. Addi-

tionally, we analyzed the interface and subnetwork size distributions of sample backbone AS

in addition to the degree distribution that the current power-law based topology generators

focus on. In our analysis of top ranked backbone AS, we observe that both subnetwork and

interface distributions occasionally exhibit power-law characteristics similar to the degree

distribution.

We introduced SubNetwork Generator (SubNetG) that captures both the link-level inter-

face and subnetwork distributions and the network-level degree distribution. We showed that

the degree distribution is uniquely defined for a given pair of subnetwork and interface distri-

butions that are ideal power-laws. We also showed the necessary condition for obtaining a

connected graph with all distributions being a power-law. Note that, the generation parame-

ters (i.e., interface and subnetwork distributions and network size) can be estimated based on

the measurement results or provided by the user. Finally, we present synthetic networks and

show that the SubNetG captures subnetwork characteristics of the link-layer Internet topolo-

gies as well the as degree distribution. The SubNetG can be used for generating synthetic net-

work topologies at link-level, which can be utilized for simulating network protocols for more

realistic link-layer behavior (i.e., multi-access links) as well as analysis of link-layer topologies

that reflect the interaction between layer 2 (i.e., subnetworks) and layer 3 (i.e., routers). As

future work, the SubNetG algorithm can be improved to eliminate potential outliers, consider

Fig 19. Interface, subnetwork and degree distribution of generated networks with 1K, 10K, 100K and 1M nodes.

https://doi.org/10.1371/journal.pone.0240100.g019
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router-level metrics such as rich-clubs that would represent network cores, and generate sub-

networks with other distributions such as exponential, log-normal, and Weibull.
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