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Abstract

The SIR (‘susceptible-infectious-recovered’) formulation is used to uncover the generic

spread mechanisms observed by COVID-19 dynamics globally, especially in the early

phases of infectious spread. During this early period, potential controls were not effectively

put in place or enforced in many countries. Hence, the early phases of COVID-19 spread in

countries where controls were weak offer a unique perspective on the ensemble-behavior of

COVID-19 basic reproduction number Ro inferred from SIR formulation. The work here

shows that there is global convergence (i.e., across many nations) to an uncontrolled Ro =

4.5 that describes the early time spread of COVID-19. This value is in agreement with inde-

pendent estimates from other sources reviewed here and adds to the growing consensus

that the early estimate of Ro = 2.2 adopted by the World Health Organization is low. A recon-

ciliation between power-law and exponential growth predictions is also featured within the

confines of the SIR formulation. The effects of testing ramp-up and the role of ‘super-spread-

ers’ on the inference of Ro are analyzed using idealized scenarios. Implications for evaluat-

ing potential control strategies from this uncontrolled Ro are briefly discussed in the context

of the maximum possible infected fraction of the population (needed to assess health care

capacity) and mortality (especially in the USA given diverging projections). Model results

indicate that if intervention measures still result in Ro > 2.7 within 44 days after first infection,

intervention is unlikely to be effective in general for COVID-19.

Introduction

A heated dispute about the effectiveness versus risk of smallpox inoculation was playing

out in eighteenth-century France, which was to launch the use of mathematical models in
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epidemiology. This dispute moved inoculation from the domain of philosophy, religion, and

disjointed trials plagued by high uncertainty into a debate about mathematical models—put

forth by Daniel Bernoulli (in 1766) and Jean-Baptiste le Rond D’Alembert (in 1761), both deal-

ing with competing risks of death and interpretation of trials [1]. Since then, the mathematical

description of infectious diseases continues to draw significant attention from researchers and

practitioners in governments and health agencies alike. Even news agencies are now seeking

out explanations to models so as to offer advice and clarity to their audiences during the (near-

continuous) coverage of the spread of COVID-19 [2]. The prospect of using mathematical

models in conjunction with data is succinctly summarized by the Nobel laureate Ronald Ross,

whose 1916 abstract [3] continues to enlighten the role of mathematics in epidemiology today.

A quotation from this abstract below, which foreshadows the requirements and challenges for

mathematical models to describe emerging epidemics such as COVID-19 [4, 5], needs no fur-

ther elaboration:

It is somewhat surprising that so little mathematical work should have been done on the sub-
ject of epidemics, and, indeed, on the distribution of diseases in general. Not only is the theme
of immediate importance to humanity, but it is one which is fundamentally connected with
numbers, while vast masses of statistics have long been awaiting proper examination. But,
more than this, many and indeed the principal problems of epidemiology on which preventive
measures largely depend, such as the rate of infection, the frequency of outbreaks, and the loss
of immunity, can scarcely ever be resolved by any other methods than those of mathematical
analysis.

The classic susceptible-infectious-recovered (SIR) paradigm, initiated in the late 1920s [6],

now provides a mathematical framework that describes the core transmission dynamics of a

wide range of human diseases [7–12], including COVID-19 [13]. A key parameter in the SIR

paradigm is the basic reproduction number (Ro). The Ro is defined by the average number of

secondary cases arising from a typical primary case in an entirely susceptible population of

size So [14– 16]. The usefulness of Ro and uncertainty in its estimation are not a subject of

debate, as reviewed elsewhere [17], and therefore are not further discussed here.

The Ro for COVID-19 and other diseases is commonly estimated directly from case data or

by fitting the SIR model or one of its many variants to the data [14, 18–22]. Unsurprisingly,

the Ro estimates often exhibit large uncertainty. For COVID-19, mean estimated Ro ranges

between 1.95 and 6.47, with corresponding error estimates giving upper and lower bounds of

1.4 and 8.9 (Fig 1). For a given virus, such variability in Ro is attributed to local spatio-temporal

variability in public health resources, interventions, and how individuals in a population inter-

act, among others, as well as the estimation method used [15, 17]. Due to this local variability,

it is commonly held that Ro is a site-specific parameter that cannot be directly transferred

between sites. The rapid availability of global data for COVID-19 has allowed an unprece-

dented comparison across a diverse array of populations, which is absent from the prior litera-

ture on Ro estimation.

In the analysis herein, the SIR model is used to uncover generic spread mechanisms

observed by COVID-19 dynamics globally, especially in the early phases of infectious spread.

During this early period, potential controls were not effectively put in place or enforced in

many countries around the world despite early warning signals from China, Iran, and later on,

Italy. Hence, the early phases of COVID-19 spread in many countries where controls were

weak offer a unique perspective on the ensemble-behavior of COVID-19 Ro. The analysis

shows that there is global convergence (i.e. across many nations) to an uncontrolled Ro = 4.5

for COVID-19 describing early times spread from the SIR model. This value is compared to a

PLOS ONE Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239800 September 24, 2020 2 / 22

\url{https://github.com/pcm-dpc/COVID-19}

(accessed on 09/04/2020), respectively. Population

counts for UTLAs and Italian provinces are

available at \url{https://www.ons.gov.uk/

peoplepopulationandcommunity/

populationandmigration/populationestimates/

datasets/populationestimatesforukenglandand

walesscotlandandnorthernireland} (accessed on

04/04/2020) and \url{http://dati.istat.it/Index.aspx?

DataSetCode=DCIS_POPRES1} (accessed on 03/

04/2020), respectively.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0239800
https://github.com/pcm-dpc/COVID-19
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1


number of published Ro estimates for COVID-19 with a timeline summary featured in Fig 1.

These published estimates along with the methods used to infer Ro, the published uncertainty,

and the original data source are provided in the Appendix.

Clearly, such wide ranging values of Ro in Fig 1 motivate further analysis of Ro variability

across populations, the objective of this analysis. Other aspects that are considered in the esti-

mation of Ro from SIR are the effects of ramp-up in testing at the early phases of disease spread

and the role of super-spreaders. These two effects are briefly discussed using idealized scenar-

ios and model calculations. The implications for evaluating potential control strategies from

this uncontrolled Ro are considered in the context of mortality and maximum infections.

Theory

Definitions and nomenclature

Mathematical models of disease spread assume that a population within a compartment

(e.g., city, region, country) can be subdivided into a set of distinct classes [11]. The SIR

model classifies individuals in the compartment as one of three classes: susceptible (S), infec-

tious (I), and recovered or removed (R). Infectious individuals spread the disease to suscepti-

ble individuals and remain in the infectious class for a given period of time known as the

infectious period before moving into the recovered (or removed) class. Individuals in the

recovered class are assumed to be immune for an extended period (or removed from the

population). For the total population N = S + I + R, the dynamical system describing the SIR

equations are given as

dS
dt
¼ � b

I
N

� �

S ð1Þ

Fig 1. Timeline of the COVID-19 Ro estimates. Symbols represent studies listed in Appendix (Table 1) while the red

dashed line marks Ro = 4.5 derived from this study. An initial Ro = 2.2 was initially adopted by the World Health

Organization (WHO).

https://doi.org/10.1371/journal.pone.0239800.g001
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dI
dt
¼ þ b

I
N

� �

S � gI ð2Þ

dR
dt
¼ þgI; ð3Þ

where β(I/N) is known as the force of infection and coefficients β and γ must be externally

supplied. Moreover, this system requires the specification of three initial conditions at time

t = 0, S(0), I(0), and R(0). For COVID-19, it is assumed that R(0) = 0 and I(0)�S(0) at the

initial outbreak. For the initial conditions selected here, N = S(0) + I(0) + R(0)� S(0), which

is labeled So for notational simplicity and consistency with the SIR literature. The basis of the

latter assumption is that the number of deceased individuals is�So. The dynamical system

in Eqs (1), (2), (3) has only one equilibrium point: I = 0 for any S> 0, which is a disease-free

stable equilibrium (i.e. as t!1, I(t)! 0).

SIR model assumptions

The SIR model makes a number of assumptions, including a closed system with no changes in

natural births or natural deaths occurring during the short-lived outbreak. The infection is

assumed to have negligible latent period so that an individual becomes infectious when

infected. For this reason, the SIR model might underestimate Ro but the uncertainty surround-

ing the incubation period possibly precludes any advantage of adding a ‘incubation’ compart-

ment to the SIR model [23] at this stage. Recovering from infection is also assumed to confer

long-term immunity, yet to be verified for COVID-19.

The most objectionable assumption in SIR dynamics is the use of the so-called ‘mass-action’

principle. As with all compartment models, mass action assumes that the rate of encounter

between I and S is proportional to their product. For this assumption to hold, it requires that

members of I and S be uniformly distributed in the space of the compartment [24]. Individuals

—unlike molecules in an ideal solution within a closed container—do not mix homo-

geneously. Nonetheless, the use of the mass action principle serves as one reference to estimate

Ro in a consistent manner across differing countries using the SIR framework. The presence of

super-spreaders on Ro estimates using spatially-extended analysis of SIR is to be discussed later

on.

The parameters γ and β encode the main properties of the epidemics and the population

response to it. The γ = 1/D is generally interpreted as the inverse of the mean recovery time D.

The D varies with the nature of the disease and the recovery from it, which depends on the

medical facilities and resources available. For COVID-19, the best information on the speed of

recovery comes from a World Health Organization study examining more than 55,000 cases

in China [25]. They found that for mild illness, the time from the onset of symptoms to natural

recovery is, on average, 14 days. This estimate was also supported in other published studies

(e.g., [26]), though as much as 6-8 weeks were recorded for severe infections. Because I is dom-

inated by mild cases thus far, D = 14 d is selected here.

With this assumption, the remaining model parameter βmust be determined empirically

or from separate studies. The β reflects the multiplicative effect of two factors: (1) the transmis-

sibility of the infectious disease (= Tr) or the probability of disease transmission after an

encounter between a susceptible and an infected and (2) the number of contacts per unit time

k each infected individual has with susceptibles. Hence, β = kTr. Factors such as hand-washing

and sanitizing or wearing masks reduce Tr whereas social distancing, self-isolation, and closure
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of public or crowded spaces reduce k. From Eq (2), it is evident that dI/dt will be positive (out-

break) or negative (epidemic contained) depending on the sign of (β(S/So) − γ), which is one

of the main reasons the basic reproduction number is sought.

The basic reproduction number Ro

As earlier stated, the average rate of recovery is set to γ = 1/D. Given the value of D (in days),

the probability that an individual remains infected in an infinitesimal time period δτ is 1 − γ
(δτ). Therefore, the probability that this individual remains infected for an amount of time τ is

limδτ! 0(1 − γδτ)τ/(δτ) = exp(−γτ). In other words, τ, the time that an infected individual

remains infected, is exponentially distributed with an average of D = 1/γ.

In a compartmental model such as the SIR, every individual is initially susceptible and the

average number of susceptibles that encounter an infected individual over a period τ is simply

βτ. It follows that the average number of new infections caused by an infected individual,

which is the basic reproduction number Ro, is given by [27]

Ro ¼ b

Z 1

0

t pðtÞdt ¼ b g
Z 1

0

te� gtdt ¼
b

g
; ð4Þ

where the γ after the second equality is to normalize p(τ)dτ.
Two assumptions underlying the compartmental SIR model are unrealistic, but a proven

correspondence between the compartmental SIR and a Poisson graph SIR model justifies its

applicability. In the compartmental (or fully-mixed) SIR model, the recovery times are expo-

nentially distributed and every individual has an equal chance per unit time of encountering

all other So − 1 individuals [27]. However, COVID-19 recovery times have been determined to

concentrate around D = 1/γ = 14 days. Moreover, infected individuals come in contact with

only a handful of other people. But, it was shown that the dynamics of a discrete-time SIR

compartmental model (Reed-Frost model) and those of the SIR on a Poisson random graph

are equivalent [28]. The Poisson random graph model assumes a constant recovery time and a

Poisson distributed degree distribution (i.e., number of contacts for every individual), both

more realistic assumptions. It is this correspondence between the SIR model and the random

graph that makes the SIR model an appropriate tool to explore the early-time dynamics of

COVID-19 spread.

Early-times dynamics of the SIR system

As common with dynamical systems, non-dimensional variables are preferred in the analysis

of the phase-space to be conducted next. Here, γ and So are obvious choices for normalizing

time and population pools. Hence, a dimensionless time t� = γt and a dimensionless fraction of

individuals s = S/So, i = I/So, and r = R/So are introduced so that the original SIR system is now

ds
dt�

¼ � ðRoiÞs ð5Þ

di
dt�

¼ þðRoiÞs � i ð6Þ

dr
dt�

¼ þi: ð7Þ
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An illustration of the normalized SIR dynamics during an epidemic is shown in Fig 2a,

where s, i, and r are numerically solved when setting Ro = 4.5, γ = (1/14) d−1 and So = 100, 000.

For small t�(< 1), s� 1 as seen from Fig 2a. In this early phase, s(� 1) can be ‘de-coupled’

from i resulting in an autonomous budget for i given as

di
dt�
� i Ro � 1ð Þ: ð8Þ

When Ro> 1, di/dt� > 0 leading to an epidemic or, conversely, a containment of the disease.

The solution of Eq (8) is an exponential function i(t)/i(0) = exp[(Ro − 1)t�] shown in Fig 2b.

The Ro may be determined by regressing log(i) against t, and the slope of this regression

determines Ro when γ can be separately estimated. More sophisticated fitting procedures can

also be conducted on sampled I(t) versus t. A major limitation to this exercise is that I(t) at

early times, often determined from reported confirmed cases, is uncertain and depends on

testing frequency that may vary in time as I increases. An alternative is to regress di/dt� upon i
at early times to detect the highest slope, which can then be used to infer Ro. This approach is

featured in Fig 2c, which illustrates that the SIR dynamics exhibit rapid deviations from a lin-

ear di/dt� with i set by early times thereby underestimating Ro (for a given γ). Evidently, infer-

ence of Ro requires estimates of early time slope, which cannot be easily detected in practice.

Fig 2. Phase space and temporal trends of the SIR model. (a) S(t), I(t), R(t) normalized by So as a function of

dimensionless time t� = γt with So = 100, 000, γ = (1/14) d−1, and Ro = 4.5. (b) i = I/So in dimensionless time t� = γt for

early times t� < 1 revealing strictly exponential growth (dashed) and deviations from exponential (SIR solution). (c) di/
dt� with i in linear and (d) double-log representations. The dashed line is (Ro − 1) where Ro = 4.5. Declines from the

dashed line reflect the incipient point where i(t) deviates appreciably from exponential growth. Note how the early-

time slope (Ro − 1) is emphasized in the double-log representation.

https://doi.org/10.1371/journal.pone.0239800.g002
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A non-conventional approach is to present confirmed infection data using a double-log

representation of di/dt� versus i, which is featured in Fig 2d. This presentation has a number of

advantages and limitations in the analysis of COVID-19 discussed elsewhere [29]. The main

advantage is that the early time slope (= Ro − 1) visually persists over much of the graph. A sig-

nificant decline in di/dt� is also required before ‘registering’ a drop in such a representation.

This insensitivity to moderate declines in di/dt� from its initial value may be advantageous in

Ro estimates. The other main limitation, which is inherent to all such analyses, is shifts in test-

ing frequency at high i, and thus the increase in confirmed cases due to expanded testing. It is

to be noted that a log-log representation will be more robust to these shifts, because the overall

graph will be biased by the initial slope prior to the initialization of expanded testing. Such bias

should lead to increases in di/dt� versus i, not declines from the initial slope (Ro − 1) that can

be detected. As later shown, such an increase has been noted in several data sets.

With this representation, it is now shown that initial inaction to COVID-19 across many

countries around the globe allowed an ensemble estimate of the uncontrolled Ro. Because Ro is

likely to be at maximum when no action to COVID-19 are implemented early on, a maximum

theoretical ‘boundary-line’ can then be derived to describe the spread of COVID-19 for large

So (on log-log representation). This boundary-line analysis can then be used as a logical refer-

ence to assess whether measures to reduce β are effective.

Results and discussion

Estimating an early-time Ro

The same log-log scheme featured in Fig 2d is now applied to the global data set supplied by

the European Center for Disease Prevention and Control (ECDPC). The data source provides

daily confirmed infections I(t) and deaths reported for each country. The population of each

country, used to estimate So (i.e. all members are susceptible), was obtained from the 2018

United Nations census and provided as part of the ECDPC data base. While daily data are sup-

plied, not all countries report consistently on a daily I(t). For this reason, daily data on infec-

tions were smoothed with a 7 day block-average and dI/dt was estimated from the smoothed

data. The 7-day block smooths out some of the spurious reporting during certain time periods

(e.g. over weekends or during days when the health-care system was overwhelmed and pro-

cessing along with reporting delayed by few days). It is to be noted here that the abscissa and

ordinate are normalized by the same country-level population, meaning that the actual magni-

tude of So is not essential. However, such normalization allows for country-to-country com-

parisons in the same phase-space. The results show a global convergence to Ro = 4.5 from early

time-analysis in Fig 3. Examples for specific countries are also featured in Fig 4 illustrating the

same early slope patterns. Mindful of all the pitfalls in determining Ro [17], the global estimate

here of Ro = 4.5 is roughly commensurate with other entirely independent estimates for

COVID-19 discussed in the appendix and featured in Fig 1. The most recent update from a

China study suggests an Ro = 4.1 [30] whereas for France, the most recent estimate for early

times is Ro = 4.9 [31]. The initially reported and the much cited Ro = 2.2 value [4] from

Wuhan, China appears to be low [32] as already noted in Fig 1. A more elaborate estimate of

Ro based on case reports, incubation periods, high-resolution real-time human travel data,

infection data combined with agent-based mathematical models result in Ro = 4.7 − 6.6 [32].

Other studies report values between 3.3 and 6.6 [33]. It must be emphasized that the Ro deter-

mined here reflects ‘country-scale’ early times assuming the entire country population to be So,
γ = (1/14)d−1 and does not accommodate any early measures enacted to reduce β or increase γ,

which were undertaken in China [13] and other countries (e.g. Germany).
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Sub-national dynamics and interventions

The same analysis performed for World countries is now applied at a sub-national level, con-

sidering Upper Tier Local Authorities (UTLAs) in the UK and provinces in Italy (Fig 5).

Results show a higher variability than country-level data (as expected) but the theoretical

‘boundary-line’ of Ro = 4.5 is shown to hold also at finer spatial scales. Cases reported at the

beginning of April demonstrate that UK regions are at an early phase of the epidemics (with

more ramp-up in testing as later discussed), while Italian provinces are approaching the peak

of infections due to strict interventions put in place by national authorities.

Non-pharmaceutical interventions (e.g., social distancing, hand washing, universal mask-

ing) are the only measures currently available to limit the spread of COVID-19 [34], while

contact tracing and isolation have been implemented to contain infected individuals [35]. Sim-

ulation results [35] showed that a COVID-19 outbreak can be controlled within 3 months if

such strategies are put in place rapidly and effectively. This has been confirmed in another

study [36] that showed that the containment measures employed in China and aimed at reduc-

ing human-to-human aerial transmission, succeeded in reducing the reproduction number to

below unity within 30 days from implementation.

To consider the impact of interventions that reduce the infection rate over time and have

direct effects on local scale dynamics [13], a time-varying Ro, labelled as Ro,d (i.e. dynamic) can

be implemented in the SIR model. A logistic function captures temporal patterns in Ro,d, the

effective reproduction number, consistent with those estimated for other outbreaks [36–39],

Ro;d ¼ Rc þ
Ro � Rc

1þ expðkcðt � t50ÞÞ
; ð9Þ

Fig 3. Comparison between di/dt and i for 57 countries. The dashed line is (Ro − 1)γ, where Ro = 4.5, and γ = (1/14)

d−1. Negative deviations from the dashed line reflect deviations from exponential in this phase-space representation.

https://doi.org/10.1371/journal.pone.0239800.g003
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where Rc is the controlled value of the dynamic Ro,d, kc is the steepness of the intervention

curve, and t50 is the time when Ro,d = (Rc + Ro)/2. It is assumed that, through interventions, the

initial Ro = 4.5 is reduced to a controlled value of Rc = 1.1 after 2/γ days.

Model results accounting for different intervention scenarios (Fig 6) resemble the trends

observed in the Italian provinces with the timing and magnitude of Ro reductions shifting

the linear relation down and decreasing the maximum fraction of infected individuals. Such

jumps are smoothed over at the national level where a clear deviation from exponential is

observed (Fig 4).

An alternative hypothesis: Power-law vs exponential

Whether these results are suggestive of a global convergence to an uncontrolled Ro = 4.5 or to

some other dimensionless property must not be overlooked. A linear relation on a log-log

representation may also be indicative of power-law solutions at early times, already docu-

mented in a number of studies for COVID-19 [40, 41]. In fact, published analysis of infection

data from the top 25 affected countries reveals approximate power-law behavior of the form

I(t)* ta (or log(i) = a log(t) + b) with two different growth patterns [40]: steady power law

growth with moderate scaling exponents (i.e., a = 3-5) or explosive power law growth with dra-

matic scaling exponents (i.e., a = 8-11).

Within the confines of the SIR dynamical system framework here, we ask: what are the nec-

essary modifications to obtain power-law solutions at early times? Such a solution, while not

unique, may be possible by revising the force of infection as βim. The original SIR model is

Fig 4. Same as Fig 3 but for sample countries. (a) the United States of America (US), the United Kingdom (UK), and

Canada (CA); (b) Italy (IT), Spain (ES), and France (FR); (c) Belgium (BE), Germany (DE), the Netherlands (NL); (d)

Australia (AU), New Zealand (NZ), and South Africa (ZA).

https://doi.org/10.1371/journal.pone.0239800.g004
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recovered when m = 1. For this non-linear force of infection, the SIR system becomes

dS
dt
¼ � b

I
So

� �m

S ð10Þ

dI
dt
¼ þb

I
So

� �m

S � gI ð11Þ

dR
dt
¼ þgI: ð12Þ

This revision ensures that the total population maintains its constant value (� So here). The

early times dynamics (i.e. S(t)� So) for the non-dimensional infection compartment i are now

Fig 5. Same as Fig 3 but for sample UTLAs in the UK (a) and provinces in Italy (c). Selected UTLAs and provinces are shown in panels b and d, respectively.

https://doi.org/10.1371/journal.pone.0239800.g005
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governed by

di
dt�
¼ þRoðiÞ

m
� i: ð13Þ

When m< 1, maintaining a definition of Ro> 1 (epidemic), and noting that i� 1, the first

term on the right-hand side of Eq (13) is much larger than the second term. In fact, to obtain a

maximum exponent enveloping the early-time relation between di/dt� and i, the linear term

can be dropped so that di/dt� � Ro im (only a growth phase). On a log-log representation, log

(di/dt�) = m log(i) + log(Ro). A constant slope such as those featured in Figs 3 and 4 may simply

be estimates of m (instead of Ro). The initial conjecture is that a power-law solution emerges

from the modified SIR dynamics when m< 1. However, the slope here (= 3.5) actually exceeds

unity contradicting this revised analysis. This finding supports the view that a global conver-

gence to an uncontrolled Ro = 4.5 is a more likely explanation than a power-law alternative

arising from a non-linear force of infection. To be clear, there are other causes for power-law

solutions (e.g. a stochastic β as discussed elsewhere [42]), but those fall outside the domain of

deterministic SIR approaches adopted here. Nonetheless, and as a bridge between the studies

reporting power-law growth in time for i and the modified SIR here, a relation between m and

a is sought. The solution to Eq (13) can be expressed as

iðtÞ ¼ ½ið0Þ1� m þ bð1 � mÞt�1=ð1� mÞ; ð14Þ

which is a power-law in t. For dimensionless time γt>> i(0)1−m/[Ro(1 −m)], i(t) * t1/(1−m)

Fig 6. Modeled di/dt� as a function of i when considering a dynamic Ro,d. Five scenarios are illustrated (inset): no

intervention (red) with Ro = 4.5 set to its uncontrolled value, Ro,c = 1.1 (epidemic near containment) and kc = 0.7

(blue), Ro,c = 1.1 and kc = 0.15 (magenta), Ro,c = 2.5 (typical of countries with strong initial intervention) and kc = 0.7

(green). The other parameters of the logistic functions are Ro,u = 4.5 and t50 = 1.5/γ.

https://doi.org/10.1371/journal.pone.0239800.g006

PLOS ONE Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239800 September 24, 2020 11 / 22

https://doi.org/10.1371/journal.pone.0239800.g006
https://doi.org/10.1371/journal.pone.0239800


(m< 1). It directly follows that m = (a − 1)/a< 1 (as expected), where a> 1 is determined by

regressing early-times log(i) versus log(t). Reported a for what has been termed as ‘explosive’

cases such as the US, UK Canada, Russia, among others [40] all yield an a> 8 (with the US

a> 16). Such high a simply confirms that m� 1 (and without much variations), and the early

time SIR dynamics does describe reasonably those cases. For low a values, termed as ‘steady’,

the mean a� 4.8, and thus yields an m� 0.8, still not too far from unity. The shortcoming of

analyzing I(t) upon t is that absolute figures of I(t) are sensitive to increased COVID-19 testing

in time, which is considered next.

Impact of testing ramp-up

A further explanation of early-time deviation from the SIR model (noted in several data sets

here) may be time-dependent ramp-up of testing, which reveals existing infections at a rate

faster than the infection spread. This hypothesis can be implemented in the SIR model consid-

ering the temporal dynamics of the testing capacity, f. Data show that testing capacity rates of

increase depend on the country and follow linear or saturating trends [43]. To model a testing

capacity that starts small and saturates over time, we assumed the maximum fraction of indi-

viduals that can be tested is f = 1, tests are 100% true and evenly distributed across compart-

ments, and testing capacity grows exponentially at a rate k, independent of I, giving, f(t) = 1

− exp(−kt). Therefore, the apparent number of infections, ia, initially grows according to the

superposition of the infectious spread rate and testing capacity increase rate, i.e., exp[(R0 − 1 −
k)t] and log(dia/dt)* (R0 − 1 − k)log(ia). From the data [43], we estimate a typical value of k is

0.02 d−1, which is negligible when compared to Ro − 1. The small value of k relative to Ro − 1

indicates that the imprint of testing ramp-up likely does not strongly impact the observed

early-time dynamics and the observed convergent slope remains a robust indicator of the early

phases of virus dynamics.

The role of super-spreaders on Ro estimates

For COVID-19, there is currently no general agreement on a precise definition of a super-

spreader. In its broadest interpretation, a super-spreader has the propensity to infect a larger

than average number of susceptible individuals. This definition does not have a unique link to

a precise mechanism and appears to encompass biological, behavioral and environmental vari-

ables relevant to disease transmission. We consider a narrow view of super-spreaders as those

infectious individuals with high mobility. Within this narrower scope, the concern is to assess

how long-distance mobility of few infected individuals (i.e. super-spreaders) impacts the esti-

mates of Ro when the phase-space analysis of early times dynamics is used. Because these infec-

tious individuals are highly mobile and depending on the mobility network in each country or

region, detailed country-by-country investigation is beyond the scope here. However, the

mobility of these super-spreaders can impact the much discussed mass-action assumption in

SIR and thus estimates of Ro from early times dynamics.

We address this effect using an idealized yet generic analysis similar to the ramp-up testing

effect earlier discussed. To do so, a country is first divided into identical and equal sized

regions each of area given by dx and dy. These regions are ‘isolated’ and experience their own

identical SIR dynamics assuming the same Ro and γ. Few infectious individuals arrive into this

country (treated as a lattice in an x − y plane) at random locations thereby initially infecting

few regions. Area wise, under 0.01% of the country area experiences an infectious individual at

t = 0. To amplify the role of super-spreaders, mobility is only allowed between regions by

super-spreaders, whereas mass action is still assumed between I and S within each region. To

allow for large mobility of these super-spreaders in the SIR analysis, the budget equation for I

PLOS ONE Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239800 September 24, 2020 12 / 22

https://doi.org/10.1371/journal.pone.0239800


in each region is revised to become an integro-differential equation (IDE) given as [44]

@I
@t
¼ b

S
No
� g

� �

ð1 � �ÞI þ �
Z þ1

� 1

Z þ1

� 1

Iðx0; y0; tÞpðx � x0; y � y0Þdx0dy0
� �

; ð15Þ

where all state variables now evolve in space (x, y) and time (t) so that I, S, and R represent I(x,

y, t), S(x, y, t), and R(x, y, t) (unless otherwise stated), No is the initial population in dx by dy
region (So is the entire country population), ϕ(<< 1) is the fraction of infectious individuals

that are mobile in a region within a given time step dt (super-spreaders of the I budget) and p
(x0, y0) describes their spread kernel defined by the probability that infectious individuals at

position x, y move to position x0, y0 in a time increment dt. The spread kernel must satisfy the

normalizing condition

Z þ1

� 1

Z þ1

� 1

pðx0; y0Þdx0dy0 ¼ 1: ð16Þ

When ϕ = 0 (no super-spreaders), the IDE approach reduces to spatially independent or

autonomous SIR models operating in compartments dx × dy with no connectivity or spatial

interaction between compartments (i.e. the entire country comprised of regions will experi-

ence the same Ro).
A number of choices can be made about p(x0, y0), which all depend on the mobility network

in each country (airports, roads, trains, public-transport, etc.) and analyzing all of them is

beyond the scope here. For simplicity, we selected a distance-dependent spatial spread kernel

[45]

pðrÞ ¼ aNexp �
1

2

r
s

� �2
� �

: ð17Þ

where r2 = (x − xo)2 + (y − yo)2, σ is a measure of the spread of the spatial kernel, and αN is a

normalizing constant. Since the interest here is in spatial spread kernels with finite support Ra
(i.e. super-spreaders cannot travel to all the corners of the domain in a single dt), αN is deter-

mined so that

Z r¼Ra

r¼0

pðrÞ ¼ aN

Z r¼Ra

r¼0

exp �
1

2

r
s

� �2
� �

dr ¼ 1: ð18Þ

This condition yields [45]

aNðRa;sÞ ¼
ffiffiffi
2

p

r
1

s
erf

Ra
ffiffiffiffiffiffi
2s
p

� �� �� 1

: ð19Þ

Other spatial kernels can be specified and subjected to the same normalizing conditions

thereby making the IDE approach flexible in terms of choices about spatial spread of infectious

individuals. Also, it is possible to include time dependency in the spreading properties, mean-

ing p(x0, y0, t) changes in time through temporal variations in Ra or σ or both (e.g. to allow for

diurnal variations in mobility habits). Model calculations using the Gaussian kernel in Fig 7

show that super-spreaders (ϕ = 0.001) will infect almost the entire domain by t� = 5. The main

difference between Fig 2 and the spatially aggregated SIR model in Fig 8 is an initial delay and

the occurrence of a rapid rise resembling the data from the UK and Italy regions at early times.

However, beyond this initial delay in spreading, the early times dynamics with super-spreaders

and without them are commensurate. That is, the effects of super-spreaders resembles the

impact of testing ramp-up earlier discussed on the phase-space of di/dt� versus i but with

delays.
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Size of the epidemic

The maximum infections Imax (where dI/dt = 0) can be derived as a function of So and Ro by

first dividing the budgets of dS/dt and dI/dt, solving the resulting equation, and noting that

Fig 7. SIR model with super-spreaders. Modeled I(x, y, t) at selected t� = γt showing the progression of disease outbreak in space due to mobility of super-

spreaders only.

https://doi.org/10.1371/journal.pone.0239800.g007

Fig 8. SIR model with super-spreaders: spatially integrated results. (a) Modeled< s(t)> and< i(t)>, where< .> is spatially

integrated quantities (the inset shows the Gaussian spatial spread kernel). (b) The early times dynamics showing the effects of super-

spreaders in the phase of d< i>/dt versus< i>. The line (Ro − 1)γ with Ro = 4.5 is shown for reference. This effect is similar to

those reported in the UK and Italy regions.

https://doi.org/10.1371/journal.pone.0239800.g008
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dI/dt = 0 when S(t)/So = γ/β = 1/Ro at Imax to yield

imax ¼
Imax
So
¼ 1 �

1

Ro
1þ log Roð Þ½ �: ð20Þ

Variations of imax versus Ro are featured in Fig 9.

For Ro = 4.5, imax = 0.44, which is much higher than values obtained for the common cold

or the flu (Ro = 2 − 3) or influenza (Ro = 1.4 − 2.8).

The most significant use of Ro is an estimate of the size of the epidemic. The total fraction of

infected individuals may be inferred from 1 − S(1)/S(0), where S(1)/S(0) = 1 − R(1)/S(0) >

0 because I(1) = 0. The relation between S(t) and R(t) can be derived

dS
dR
¼ �

b

g

S
So
; ð21Þ

which when integrated between t = 0 and t =1 yields,

log
Sð1Þ
So

� �

¼ Ro
Sð1Þ
So
� 1

� �

: ð22Þ

The solution for S(1)/So can be analytically derived and linked to the total infected individuals

IT using

IT
So
¼ 1 �

Sð1Þ
So
¼ 1þ

W½� Ro exp ð� RoÞ�

Ro
; ð23Þ

Fig 9. Relation between maximum infection fraction imax = Imax/So and Ro.

https://doi.org/10.1371/journal.pone.0239800.g009
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where W[z] is the Lambert W-function of argument z. For pre-specified Ro, the behavior of

the IT/So individuals is shown in Fig 10. With such a high Ro = 4.5, some 98% of the population

will be infected as t� !1. When mortality is assumed to be some fraction of IT, then the mor-

tality fraction is Mo/So = αm[1−S(1)/S(0)].

Different definitions of the global mortality rate αm have been considered but, for the pur-

poses of the present study, the ratio of deaths to both symptomatic and asymptomatic cases is

most appropriate. This ratio is dubbed the Infection Fatality Rate (IFR) and is different from

the Case Fatality Rate (CFR), which is the ratio of deaths to the number of confirmed cases.

The IFR is more appropriate because the ‘Infected’ compartment of the SIR model comprises

of both symptomatic and asymptomatic individuals. According to the latest IFR estimates, αm
ranges between 0.53 and 0.82% with a mean value of 0.68% [46].

For the USA, the epicenter of COVID-19 at the time of submission of this article on April

10, 2020, we asked how much Ro should be reduced by deliberate intervention to maintain

mortality below a certain threshold size Mo. With S(0) = 327M, we determine how much Ro
should be reduced as a function of Mo assuming different values of αm. These results are fea-

tured in Fig 11 and suggest that to maintain mortality below 1 million, Ro< 1.5 when αm =

0.53%, a reduction factor of 3 over its uncontrolled value. Under the same scenario, to limit

the death toll below 300 thousand people, Ro should be reduced to 1.1, a reduction factor of 4.

These reduction factors are not entirely unreasonable using non-pharmaceutical measures

(social distancing, masks, hand sanitizing, etc. . .).

A natural extension of this exercise is to consider temporal changes in Ro following the

logistic form in Eq (9). The maximum number of infected Imax at time t and cumulative num-

ber of infections R(1)� R(t� � 14) can be made to vary as the slope kc and t50 are changed

(Eq (9)). A larger kc signifies more rapid enforcement of intervention policies and a larger t50

Fig 10. Relation between total infection fraction 1 − S(1)/So and Ro.

https://doi.org/10.1371/journal.pone.0239800.g010
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represents later enforcement. To provide a physical meaning for kc, we define tfo as the time

after first infection at which Ro is fo% of the way through its total decline from Ro,u to Ro,c.

With these definitions, tfo ¼ t50 þ log ½fo=ð1 � foÞ�=kc. An obvious choice for Ro,u = 4.5, the

global average when no intervention is enforced. A logical choice for fo = 80% and is consistent

with the point at which the logistic function enters the ‘flattening phase’. We choose Ro,c = 1.0

to represent the most optimistic scenario of a near-containment by non-pharmaceutical

intervention. For reference, the South Korea data suggests that early intervention, even when

rapidly enforced shortly after the outbreak, resulted in Ro = 1.5 [47]. The effectiveness of inter-

ventions and any delays can now be linked to mortality and severity by varying t50 and t80. Fig

12 presents how R(t� � 14) and Imax are contained for only a restricted envelope of speed and

timeliness of policy enforcement. The R(t� � 14) represents the cumulative number of fatalities

and Imax is proportional to the degree to which resources, like hospital intensive care units, will

be overwhelmed at peak infection rate. The results in Fig 12 indicate that if Ro> 2.7 within

t = 3.5/γ (about 49 d here), a more than 10% reduction relative to So in Imax or R(1) is

unlikely.

An implication of Fig 12 is that if Ro does not decrease to at least 2.7 by 44 days after first

infection, more than a million people are expected to die with an assumed constant mortality

rate of 0.53%. For mortality to be confined to a range in the 100,000, then a reduction of Ro
from 4.5 to 2.7 must be achieved within 14 days of first infection, which did not occur in the

USA. As of July 30, 2020, confirmed fatalities in the USA have exceeded 150,000.

Last, it is to be noted that the fraction of individuals that must be immune (either through

vaccination or recovery from prior COVID-19 infections) must exceed the herd immune

threshold (HIT), which is given by

pc ¼ 1 �
1

Ro
¼ 0:78: ð24Þ

This estimate of HIT sets the limit on the immune population needed to overcome another

Fig 11. Relation between total mortality (Mo) and Ro for different values of αm and assuming So = 327M.

https://doi.org/10.1371/journal.pone.0239800.g011
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COVID-19 pandemic (assuming a global constant Ro = 4.5 and no intervention). Should

immunity from prior COVID-19 infections be transient, this estimate then sets the upper

bound on the fraction of population that must be vaccinated and the vaccine needed in the

future.

Conclusion

The work here has shown a global convergence of Ro = 4.5 when no deliberate intervention

was taken for COVID-19. This Ro was shown to describe reasonably the maximum initial

exponential growth rate of COVID-19 (=(Ro − 1)γ, where γ = (1/14)d−1) in many countries

that did not initiate preventive measures within γt = 2. The findings here further support the

growing consensus that the initial Ro = 2.2 estimate from Wuhan, China is low. The value of

Ro = 4.5 is much more in line with other estimates (Ro = 4 − 6) derived from far more complex

models. Model calculations and theoretical considerations offered here delineate the condi-

tions when this Ro estimate is robust to the inclusion of other mechanisms such as super-

Fig 12. Variation in cumulative number of infected relative to So (top) and in maximum number of infected

relative to So (bottom). The logistic form of Ro was used (Eq (9)). The Ro was set to vary from Ro,c = 4.5 to Ro,u = 1.0.

The t� ,50 and t� ,80 are the dimensionless times at which Ro is half and 80% through the the total decline.

https://doi.org/10.1371/journal.pone.0239800.g012
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spreaders and ramp-up in initial testing. The critical herd immunity level that must be reached

is 78% to ensure COVID-19 does not become an epidemic again. This estimate sets a maxi-

mum limit on the vaccination required.

Appendix: Compilation of Ro estimates from previous studies

A recent review [21] showed that existing estimates of Ro range from 1.4 to 6.49, with a mean

of 3.28 and an interquartile range of 1.16. Early studies reported lower Ro values [21] and

results often vary with the estimation method. Stochastic, statistical, and mathematical

methods provided mean estimates of 2.44, 2.67, and 4.2, respectively [21], and SIR-based

approaches are likely to provide higher values compared to other methods [36]. Similar results

were presented in another meta-analysis [48] reporting a mean R0 of 3.38 (values ranging

between 1.90 to 6.49) but did not find a significant effect of different estimation methods. A

summary of these results is provided in Table 1.
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Table 1. Compilation of published Ro estimates.

Reference R0 R0 range Study date

(e.g. 95% CI) (from-to)

Sanche et al. [22] 5.7 3.8—8.9 15 Jan. 2020—30 Jan. 2020

Li et al. [4] 2.2 1.4—3.9 N/A—22 Jan. 2020

Wu et al. [49] 2.68 2.47- 2.86 31 Dec. 2019—28 Jan. 2020

Riou and Althaus [50] 2.2 1.4—3.8 N/A—18 Jan. 2020

Liu et al. [39] 4.5 4.4—4.6 N/A—07 Feb. 2020

Zhang et al. [51] 5.6 5.3—5.8 21 Jan. 2020—20 Feb. 2020

Shen et al. [52] 4.7 4.50—4.92 12 Dec. 2019—22 Jan. 2020

Liu et al. [53] 2.90 2.32—3.63 N/A—23 Jan. 2020

Liu et al. [53] 2.92 2.28—3.67 N/A—23 Jan. 2020

Read et al. [54] 3.11 2.39—4.13 01 Jan. 2020—22 Jan. 2020

Majumder and Mandl [55] 2.55 2.0—3.1 08 Dec. 2019—26 Jan. 2020

WHO (from [21]) 1.95 1.4—2.5 N/A—18 Jan. 2020

Cao et al. [30] 4.08 3.37—4.77 N/A—23 Jan. 2020

Zhao et al. [56] 2.24 1.96—2.55 10 Jan. 2020—24 Jan. 2020

Zhao et al. [56] 3.58 2.89—4.39 10 Jan. 2020—24 Jan. 2020

Imai et al. [57] 2.6 1.5—3.5 N/A—18 Jan. 2020

Tang et al. [58] 6.47 5.71—7.23 N/A—22 Jan. 2020

https://doi.org/10.1371/journal.pone.0239800.t001
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