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Abstract

Rapid changes in climate and land use threaten the persistence of wildlife species. Under-

standing where species are likely to occur now and in the future can help identify areas that

are resistant to change over time and guide conservation planning. We estimated changes

in species distribution patterns and spatial resistance in five future scenarios for the New

England region of the northeastern United States. We present scenario-specific distribution

change maps for nine harvested wildlife species, identifying regions of increasing, decreas-

ing, or stable habitat suitability within each scenario. Next, we isolated areas where species

occurrence probability is high (p > 0.7) and resistant to change across all future scenarios.

Resistance was also evaluated relative to current land protection to identify patterns in and

out of Protected Areas (PAs). Generally, species distributions declined in area over the 50-

year assessment period (2010–2060), with the greatest average declines occurring for

moose (-40.9%) and wild turkey (-22.1%). Species resistance varied considerably across

the region, with coyote demonstrating the highest average regional resistance (91.81% of

the region) and moose demonstrating the lowest (0.76% of the region). At the state level,

average focal species resistance was highest in Maine (the largest state) and lowest in Mas-

sachusetts. Many of the focal species showed high overlap in resistance and land protec-

tion. Coyote, white-tailed deer, and black bear had the highest probability of resistance,

given protection, while moose and wild turkey had the highest probability of protection,

given resistance. Overall, relatively small portions of New England—ranging between

0.25% and 21.12%–were both protected and resistant for the focal species. Our results pro-

vide estimates of resistance that can inform conservation planning for commonly harvested

species that are important ecologically, economically, and culturally to the region. Expand-

ing protected area coverage to include resistant areas may provide longer term benefits to

these species.
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Introduction

Resilience describes a system’s broad ability to cope with disturbances without changing state

[1]. Spatial resilience further describes a system or landscape capacity to support ecosystems

and biodiversity over space and time in response to disturbance [2–4]. Resilience studies often

focus on broad concepts, such as conserving biodiversity and ecosystem function, or on spe-

cific taxa of interest (e.g., avian species), or groups of vulnerable species (e.g., endangered or

climate-sensitive species) [2,5–8]. For example, Anderson et al. [9] evaluated resilience based

on the ability of a geophysical setting to sustain a diversity of species, natural communities,

and ecological relationships. This approach targeted the broader preservation of biodiversity

and identified sites throughout eastern North America that are likely to consistently support

plants and animals over the long term despite changes to climate and landscape conditions.

Because ecosystem resilience is complex and challenging to quantify, evaluating different

aspects of resilience can provide important insights and perspectives for conservation. Resis-

tance is an inherent aspect of resilience that identifies which systems, species, or locations are

least vulnerable to change in the face of disturbance [1,4,10,11]. Some studies suggest that resil-

ience depends on the capacity of a species or ecosystem to resist change as well as the spatial

and environmental context in which that system or species exists [12–16]. Thus, using spatial

approaches to evaluate resistance can provide context for understanding resilience for conser-

vation purposes.

The New England region in the northeastern United States (186,458 km2; Fig 1) covers six

states and has a long history of social, economic, and ecological change [17–19]. With the esca-

lating pressures of population expansion, changing land use and development, climate change,

and altered disturbance regimes, New England will be subject to rapid modification over the

next half-century [17,20–23]. These environmental changes can significantly alter the quality,

availability, and connectivity of natural systems, and subsequently influence the distribution of

wildlife species [24–26]. The impacts of change on harvested wildlife species are of particular

interest in New England because of their ecological, economic, and cultural importance [27].

Effective long-term conservation and management of wildlife species requires a compre-

hensive understanding of species’ potential responses not only to environmental stressors and

disturbances, but also to future policy and management actions [4]. Scenario-planning pro-

vides a powerful way to explore and understand hypothetical futures while explicitly acknowl-

edging their inherent uncertainty [31,32]. By exploring possible futures, scenario-planning can

help address uncertainties around socio-economic drivers and spatial dynamics of environ-

mental change, and generate new insights about the complex, dynamic systems that impact

wildlife futures [32,33].

The New England Landscape Futures Project (NELFP), led by the Harvard Forest Long-

Term Ecological Research program and the Scenarios, Services, and Society Research Coordi-

nation Network developed five plausible scenarios for how New England’s landscape may

change over fifty-years (2010 to 2060). The NELFP simulations include a recent trends sce-

nario (i.e., “Business-As-Usual”) and four alternative scenarios that were built around two

drivers of social and ecological change (Fig 2): 1) Natural Resource Planning & Innovation

(NRPI)–the extent to which the government and private sector invest in proactive land-use

planning, ecosystem services, and technological advances for resource use—and 2) Socio-Eco-

nomic Connectedness (SEC)–the local or global connectivity of population migration, eco-

nomic markets, and climate policy [31]. These scenarios provide spatial projections of climate,

forest structure and composition, development, and agriculture, making them well suited for

spatially explicit assessments of wildlife futures. A previous study by Pearman-Gillman et al.

[34] evaluated future distributions of harvested species under the NELFP scenarios and found
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Fig 1. Map of the New England region where wildlife species resistance to change was studied. The New England study region encompasses six states—

Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont—and over 57,000 protected area parcels [28]. Data sources: U.S. Census

Bureau [29], U.S. Geological Survey [28], and Plisinski et al. [30].

https://doi.org/10.1371/journal.pone.0239525.g001
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that predicted distribution patterns varied considerably among the scenarios. However, all sce-

narios projected a decline in the spatial distribution for most species. The results highlighted

uncertainty around species’ futures in the New England region and raised questions about spe-

cies vulnerability and resistance to future change [34].

The NELFP scenarios capture a wide range of possible future conditions and provide an

opportunity to spatially quantify resistance across New England for harvested wildlife species.

With current distribution patterns serving as a baseline, predicted changes in species occur-

rence patterns can be evaluated across scenarios to identify areas where occurrence remains

high and is resistant to future change on a species-by-species basis. Such analyses permit an

evaluation of how well resistance aligns with the current conservation network. In New

England, over 57,000 parcels—covering ~22% of the region’s land area—are currently under a

conserved land status (Fig 1) [28]. These protected areas (PAs) are geographically defined

Fig 2. The NELFP scenarios used to estimate wildlife species future probability of occurrence throughout the New England region. Scenarios were

built around two drivers of landscape change: 1) Natural Resource Planning & Innovation and 2) Socio-Economic Connectedness. The drivers form

four alternatives scenarios to recent trends: “Connected Communities”, “Yankee Cosmopolitan”, “Go It Alone”, and “Growing Global”. Scenario-

specific changes in development, agriculture, forest harvest, and conservation were simulated for the New England region over a fifty-year time period

(2010 to 2060). Recent Trends scenario (left) displays the annual quantity of land cover and land use change broken down by subregion. The alternative

NELFP scenarios (right) display the percent change from recent trends. Figure modified from a previously published figure in Thompson et al. [35].

Data sources: U.S. Census Bureau [29,36] and Plisinski et al. [30].

https://doi.org/10.1371/journal.pone.0239525.g002
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parcels created in most cases to conserve habitat, species diversity, natural resources, and rec-

reational values [37,38]. However, PAs are often located in high elevation and other undeve-

lopable areas, and consequently may not align with areas that are resistant to future change

[39]. Because protected areas are often treated as static entities that remain in the same place

over time [37], it is essential to understand how existing land protection aligns with species

future distributions and whether current reserve networks will support conservation targets in

the future [40].

In the current era of rapid change, strategic land protection and proactive conservation

planning will be critical for conserving natural landscapes [41]. Decision-makers frequently

prioritize conservation on rare, threatened and endangered species [42], especially in the New

England region. While it is crucial to protect rare and vulnerable species, it is also important to

consider common species in conservation assessments and decisions. In New England, har-

vested wildlife species represent a group of ecologically, economically, and culturally impor-

tant species that commonly occur throughout the region. Although many harvested species

are of low conservation concern, these species directly influence other taxa, ecological func-

tions, and management decisions [43–45]. Understanding how future change will impact har-

vested wildlife species can provide important context and support broader conservation of

biological diversity and ecological functions, despite inevitable shifts in climate and land use

[9,46].

We present a novel approach for assessing species spatial resistance to change using a sce-

nario-based framework. We focus on nine ecologically and socio-economically relevant wild-

life species and build a comprehensive understanding of how multiple landscape futures (the

NEFLP scenarios) are likely to impact species occurrence across a large regional extent. We

apply a systematic approach to 1) Map distribution change for each species under five alterna-

tive scenarios, 2) Identify areas on the landscape where species persist under individual scenar-

ios and remain resistant to change across all scenarios, and 3) Evaluate resistance within

protected areas and throughout the New England region.

Methods

Study area

The study area spanned 186,458 km2 in the northeastern United States and encompassed the

six New England states: Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire,

and Maine (Fig 1). The region is characterized by diverse topography [47,48], forest types

[49,50], and land uses [23,51]. Climatic conditions vary greatly across the region, from humid

subtropical climate in the southern coastal regions to subarctic conditions in the northern

mountains [52–54]. With two-thirds of the region’s growing human population (14,853,290)

concentrated in major metropolitan areas [55], New England is one of the most densely popu-

lated and forested regions in the United States. In 2010 –the start of the NELFP scenario time-

line—approximately 80% of the region was covered by forest [23,51], with development (7.3%

low density and 1.3% high density), agriculture (6.4%) and water (4.6%) comprising the major-

ity of the non-forested landscape [23,56].

Focal species

We focused our analysis on nine harvested wildlife species that occur widely throughout the

New England region. This group included six carnivorans—American black bear (Ursus amer-
icanus), bobcat (Lynx rufus), coyote (Canis latrans), raccoon (Procyon lotor), red fox (Vulpes
vulpes), and striped skunk (Mephitis mephitis); two ungulates—moose (Alces alces) and white-

tailed deer (Odocoileus virginianus); and one Galliform—wild turkey (Meleagris gallopavo).
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Although largely associated with forests, these species have diverse habitat and home range

requirements, varied sensitivity to human influences, and unique natural histories in the New

England region [57].

Objective 1—Map species distribution change

Scenario simulations. We used NELFP scenarios to estimate distribution change, persis-

tence, and resistance for the focal species [31,58]. The NELFP scenarios included: “Connected

Communities” (based on high NRPI and local SEC), “Yankee Cosmopolitan” (high NRPI and

global SEC), “Go It Alone” (low NRPI and local SEC), and “Growing Global” (low NRPI and

global SEC; Fig 2). A “Recent Trends” scenario was also included to provide a baseline projec-

tion based on recent trends in climate and land use change. This scenario represents a linear

continuation of the land use and land cover changes observed between 1990 and 2010 (as

defined by Thompson et al. [20]).

Each NELFP scenario followed a different trajectory of land cover and land-use change

derived from the scenarios unique narrative (see [31,58] for detailed scenario narratives). Cli-

mate changes for each scenario stayed consistent based on the assumptions of the Representa-

tive Concentration Pathway (RCP) 8.5 emission scenario [22,59]. The scenario narratives were

translated into spatial patterns of change using methods described by [20] and [22]. Briefly,

these simulations were developed in two stages: first using a spatially explicit cellular land

change model, Dinamica Environment for Geoprocessing Objects [60] and second using a for-

est landscape succession model, LANDIS-II [61].

We used maps of species probability of occurrence under recent conditions (2010) [62] and

scenario simulated occurrence maps for the year 2060 [34] to evaluate changes in species

occurrence probability under alternative future conditions. These maps were based on species

distribution models (SDMs) developed by Pearman-Gillman et al. [62]. Models were devel-

oped from expert opinion data and evaluated the effects of combinations of 74 variables on

occurrence probability. For each of the 5 scenarios, we compared the scenario-derived distri-

bution maps against recent conditions distribution maps to assess potential changes (i.e., dif-

ferences in species occurrence probabilities throughout New England). Current map cells were

subtracted from superimposed projected map cells to calculate absolute change. Map cells with

negative values represented locations of declining occurrence probability and cells with posi-

tive values represented locations of increasing occurrence probability. All maps were devel-

oped using the raster package [63] in the R statistical computing language [64].

Objective 2—Identify areas of persistence and resistance

Persistence. For each species in each scenario, we identified areas of persistence in occur-

rence probabilities between 2010 and 2060. Species occurrence probabilities were evaluated on

a cell-by-cell basis to develop binary persistence maps for each scenario. Assuming a conserva-

tion goal of maximizing occupancy of the harvested species across the landscape, we identified

scenario-specific persistence using two criteria: 1) high occurrence probability (p> 0.70)

under recent conditions (2010), and 2) high occurrence probability (p> 0.70) under scenario

projected conditions (2060). Map cells (30 x 30 m) with high occurrence probabilities under

both recent and scenario projected conditions were classified as persistent and coded 1; cells

that failed to meet the persistence criteria were coded 0.

Resistance. We developed resistance maps for each species by identifying common areas

of persistence across all five alternative scenarios. Resistance was determined by multiplying

across the five scenario-specific binary persistence layers; map cells that met the resistance cri-

teria under all five future scenarios were considered resistant and retained the value 1, while
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cells that failed to meet the criteria under one or more of the scenarios were converted to 0.

Resistance statistics were calculated for each species and were compared across the focal group

to indicate trends in species resistance to change.

Within resistant areas, changes in occurrence probability were additionally categorized into

one of four resistance classes. Resistant map cells with relatively constant occurrence probabili-

ties (i.e., change in occurrence probability < ±0.1) between 2010 and each of the five scenarios

(2060) were classified as “resistant-constant”. Cells that consistently experienced an increase in

occurrence probability (i.e., a positive change in occurrence probability of> 0.1) between

2010 and 2060 under all five scenarios were classified as “resistant-increasing”. Similarly, cells

that consistently experienced a decrease in occurrence probability (i.e., a negative change in

occurrence probability of> 0.1) were classified as “resistant-decreasing”. Cells that experi-

enced inconsistent trends of change among the five scenarios (e.g., increased occurrence prob-

ability under one scenario and decreased occurrence probability under another scenario) were

classified as “resistant-variable”. Summary statistics were calculated for each resistance class to

provide regional information about patterns of change within resistant areas.

Objective 3—Evaluate resistance within protected areas

We used species resistance maps and information from the National Inventory of Protected

Areas [28] to evaluate the overlap between the current protected area network and each species

resistance map. This inventory included protected lands from most federal land management

agencies (e.g., the National Park Service, U.S. Forest Service, U.S. Fish and Wildlife Service),

and integrates non-profit databases (e.g. The Nature Conservancy Fee Lands and Secured

Lands aggregation, The Trust for Public Land Conservation Almanac, Ducks Unlimited Con-

servation and Recreation Lands) and the latest easement data from the National Conservation

Easement Database.

We superimposed polygons from the Protected Areas Database of the U.S. (PAD-US ver-

sion 2.0) [28] with species resistance layers and calculated zonal statistics for each Protected

Area polygon in the New England region. We evaluated patterns of resistance in and out of the

protected network and identified the PAs with the greatest resistance for individual species.

Resistance scores were also calculated for each protected parcel based on mean resistance

across all focal species. All statistics were calculated using R [64] and ArcGIS 10 Geographic

Information System [65].

Results

Objective 1—Distribution change

American black bear, moose, red fox, and wild turkey were projected to have the largest

change in occurrence probabilities throughout New England (Table 1). For example, black

bear had an average occurrence probability (across all cells on the landscape) of 0.80 in the

baseline projection at year 2010; under the Recent Trends scenario, the average occurrence

probability decreased to 0.68 by year 2060 (a -15.3% change; Table 1). On average, all but one

species (red fox) was projected to decline in distribution. For black bear, moose, and wild tur-

key, large localized shifts in occurrence probabilities led to moderate-to-large declines in aver-

age regional occurrence (-15.3%, -40.9, and -22.1, respectively; see S1 Fig for species

distribution change maps). For red fox, moderate shifts in occurrence probabilities throughout

New England led to relatively large increases (29.9%) in average regional occurrence (Table 1;

S1 Fig). Scenario-specific changes in occurrence were relatively low for bobcat, coyote, rac-

coon, striped skunk, and white-tailed deer. For example, coyote occurrence was projected to

decrease slightly (< -3.5%) in all 5 future scenarios, while white-tailed deer occurrence was
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projected to decrease slightly in some scenarios (e.g., Growing Global = -4.1%) and increase

slightly in others (e.g., Recent Trends = +0.5%). For these species, localized increases and

decreases in occurrence probability largely balanced out across the region, resulting in mini-

mal change in average regional occurrence (Table 1; S1 Fig).

Objective 2—Persistence and resistance

Persistence. Scenario-specific areas of persistence (i.e., map cells with > 0.7 occurrence

probabilities in 2010 and 2060) ranged between 0.99% of the landscape (moose; Yankee Cos-

mopolitan) and 94.48% of the landscape (white-tailed deer; Recent Trends; Table 2). That is,

Table 1. Distribution change statistics for nine wildlife species in the New England region of the northeastern United States.

Species Mean occurrence probability

(2010)

Distribution change (%) in NELFP scenarios by year 2060

Recent

Trends

Growing

Global

Go It

Alone

Yankee

Cosmopolitan

Community

Connectedness

Average

American black

bear

0.80 -15.3 -19.0 -11.4 -17.0 -13.9 -15.3

Bobcat 0.67 -5.6 -5.6 -5.3 -7.1 -2.9 -5.3

Coyote 0.92 -3.1 -2.2 -3.1 -3.5 -2.6 -2.9

Moose 0.52 -51.8 -28.1 -19.5 -62.4 -42.8 -40.9

Raccoon 0.87 -5.6 -2.7 -6.0 -5.7 -5.6 -5.1

Red fox 0.64 29.8 30.4 29.6 29.7 30.0 29.9

Striped skunk 0.75 -6.0 -1.2 -6.3 -6.4 -5.3 -5.0

White-tailed deer 0.89 0.5 -4.1 -2.2 0.2 -0.7 -1.3

Wild turkey 0.68 -24.0 -16.7 -22.3 -24.2 -23.2 -22.1

Average -10.5 -4.3 -7.2 -12.3 -8.6

Mean occurrence probabilities were based on recent (2010) conditions and provide baseline distribution information for the region. Distribution change indicates the

percent increase or decrease in regional occurrence probability between species 2010 distribution and each of the NELFP scenario simulated 2060 distributions. For

example, black bear average occurrence probability under the recent trends projection (p = 0.68) represented a 15.3% decline in distribution from the recent conditions

baseline (p = 0.80). See S1 Table for additional distribution change statistics.

https://doi.org/10.1371/journal.pone.0239525.t001

Table 2. Persistence statistics for nine wildlife species in New England, USA.

Species NELFP scenario simulated persistence (% of region) by year 2060 Average

Recent Trends Growing Global Go It Alone Yankee Cosmopolitan Connected Communities

American black bear 61.64 60.92 66.23 63.20 65.46 63.49

Bobcat 24.30 45.01 23.44 23.97 29.35 29.22

Coyote 93.33 92.03 93.45 92.78 93.63 93.04

Moose 12.07 24.59 28.12 0.99 17.87 16.73

Raccoon 87.03 89.47 87.33 86.41 87.56 87.56

Red fox 21.96 21.91 21.97 21.96 21.99 21.96

Striped skunk 61.49 66.62 61.03 61.22 62.16 62.50

White-tailed deer 94.48 89.89 94.35 93.77 93.75 93.25

Wild turkey 2.67 13.76 14.82 2.17 3.22 7.33

Average 51.00 56.02 54.53 49.61 52.78

Statistics were derived from scenario simulated distribution change maps and indicate the percent of the New England region where species occurrence is likely to

“persist” at an occurrence probability> 0.7 between 2010 and 2060. Persistence statistics were based on species occurrence probabilities under the individual NELFP

scenarios.

https://doi.org/10.1371/journal.pone.0239525.t002
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for moose < 1% of map cells were persistent under the Yankee Cosmopolitan scenario,

whereas for the ubiquitous white-tailed deer almost 95% of map cells were persistent under the

Recent Trends scenario. Across scenarios, species with the highest average regional persistence

were white-tailed deer (93.25%) and coyote (93.04%), followed by raccoon, striped skunk, and

black bear. Wild turkey had the lowest average persistence across the region (7.33%), followed

by moose (16.73%), red fox (21.96%), and bobcat (29.22%; Table 2). In terms of the individual

scenarios, the percentage of persistent cells across species averaged between 49.61% (Yankee

Cosmopolitan) and 56.02% (Growing Global), although the variance in persistence among the

species was quite large for each scenario (Table 2).

Resistance. Regional resistance—defined as the percentage of cells in the study region

that were projected to remain persistent across all 5 future scenarios—was greatest for coyote

(91.81%), white-tailed deer (89.72%), raccoon (84.43%), striped skunk (60.81%), and black

bear (56.86%; Table 3). Regional resistance was lowest for moose (0.76%), followed by wild tur-

key (1.30%), bobcat (16.73%), and red fox (21.90%; Table 3; Fig 3).

Within resistant areas, change in occurrence probabilities were generally minimal (< ±0.1).

That is, for most species (n = 7) the majority of resistant cells (i.e.,> 50%) were classified as

resistant-constant (Table 3; Fig 3). Variation in species occurrence probabilities among scenar-

ios was also common; with a moderate level of resistant cells (between 4% and 20%) classified

as resistant-variable for all but two species (Table 3; Fig 3). Several species with the low levels

of regional resistance—including moose and red fox—experienced high levels of variability in

occurrence probability among scenarios (i.e., 97.3% and 80.3% of resistant cells were classified

as resistant-variable, respectively; Table 3). For all species, only small portions of resistant cells

were consistently increasing (i.e., resistant-increasing) or consistently decreasing (i.e., resis-

tant-decreasing) in occurrence probability across all scenarios (Table 3; Fig 3).

The distribution of resistant areas varied among states, which varied in geographic area

(Table 4). For example, coyote was resistant throughout the majority of the region, with

50.84% of the resistant cells occurring in Maine, followed by 15.03% in Vermont and 14.72%

in New Hampshire, both of which are geographically smaller (Table 4, Fig 3). However, aver-

age species resistance within a given state was equally high for Vermont (0.95) and Maine

(0.95; Table 4), meaning that 95% of cells in Vermont and 95% of cells in Maine were charac-

terized as resistant for this species. White-tailed deer was resistant throughout large portions

Table 3. Regional resistance statistics for nine wildlife species in New England, USA.

Species Resistant (%) Resistant-constant (%) Resistant-increasing (%) Resistant-decreasing (%) Resistant-variable (%)

American black bear 56.86 44.16 0.94 2.06 9.70

Bobcat 16.73 16.73 0.00 0.00 0.00

Coyote 91.81 79.78 0.01 0.01 12.00

Moose 0.76 0.01 0.00 0.01 0.74

Raccoon 84.43 70.62 0.10 2.02 11.70

Red fox 21.90 3.91 0.37 0.02 17.59

Striped skunk 60.81 55.58 0.14 0.14 4.95

White-tailed deer 89.72 77.52 0.36 0.88 10.95

Wild turkey 1.30 0.75 0.01 0.29 0.25

Statistics were derived from scenario simulated distribution change maps and indicate the percent of the New England region where species occurrence is likely to

remain “resistant” to change between 2010 and 2060 across all NELFP scenarios. Overall resistance was based on species simulated persistence for each NELFP scenario,

where persistent pixels had > 0.7 occurrence probability in both 2010 and 2060. Resistant pixels were further categorized into resistance classes (constant, increasing,

decreasing, and variable) based on change in occurrence probability across the 5 NELFP scenarios.

https://doi.org/10.1371/journal.pone.0239525.t003

PLOS ONE Wildlife resistance in a changing landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0239525 September 24, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0239525.t003
https://doi.org/10.1371/journal.pone.0239525


Fig 3. Estimated resistance for nine wildlife species in New England, USA. Resistance was based on scenario projected

distribution change between 2010 and 2060. Resistant cells represent areas with high occurrence probabilities (> 0.7) under

current conditions and across all NELFP scenarios. Resistance is displayed by resistance class: 1) Resistant-constant: occurrence

probability remained high (> 0.7) and relatively constant across all scenarios, 2) Resistant-increasing: occurrence probabilities

remained high (> 0.7) and increased under all scenarios, 3) Resistant-variable: occurrence probability remained high (> 0.7) but

fluctuated among the scenarios, and 4) Resistant-decreasing: occurrence probability remained high (> 0.7) but decreased under all

scenarios. Maps correspond with the following species: A) American black bear, B) Bobcat, C) Coyote, D) Moose, E) Raccoon, F)

Red fox, G) Striped skunk, H) White-tailed deer, and I) Wild turkey. Map boundary data source: U.S. Census Bureau [29].

https://doi.org/10.1371/journal.pone.0239525.g003
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of New England, with 54.13% of regional resistance occurring in Maine, and average within-

state resistance ranging from 0.60 in Massachusetts to 0.98 in Maine. Raccoon was resistant

throughout most of the lower elevation areas in the region (Fig 3). Within states, average resis-

tance ranged from 0.70 in Vermont to 1.00 in Rhode Island, with the relative majority

(50.53%) of regional raccoon resistance occurring in Maine. Striped skunk was resistant in low

elevation areas throughout much of the region (Fig 3), with highest average resistance in

Rhode Island (1.00) and Connecticut (0.89), and the relative majority (48.74%) of regional

resistance occurring in Maine. American black bear was predominantly resistant in northern

New England, with 68.63% of regional resistance occurring in Maine, and within-state average

resistance ranging from 0.00 in Rhode Island to 0.79 in Maine.

For the species with lower average regional resistance—including red fox, bobcat, wild tur-

key, and moose (Table 2)–resistant areas were generally smaller and less connected. The resis-

tant red fox cells occurred in moderately sized patches throughout New England (Fig 3).

Average within-state resistance was highest in Connecticut (0.45) and Rhode Island (0.35)

while average regional resistance was highest in Maine (38.32%) and Vermont (21.58%). The

resistant cells for bobcat were dispersed in moderate-small patches throughout the region,

with the majority (52.85%) of regional resistance occurring in Maine and the highest within-

state average resistance (0.31) occurring in Vermont (Table 4, Fig 3). Wild turkey was resistant

in small patches throughout New England, with both the relative majority (37.79%) of regional

resistance and the highest within-state average resistance (0.07) occurring in Connecticut.

Moose resistance was extremely low throughout New England, with the vast majority of resis-

tant cells occurring in Maine and New Hampshire. Within states, resistant cells occurred in

1.50% of Maine, 0.24% of New Hampshire and 0.02% of Vermont (average within-state resis-

tance of 0.0150, 0.0024, and 0.0002, respectively; Table 4, Fig 3).

Objective 3—Protected areas

New England’s protected area network currently contains 57,449 protected parcels—including

federal, state, and municipal parcels and others managed by non-profits (e.g., The Nature Con-

servancy) [28]. In 2010, most of the region’s protected areas (54.12%) were under public

Table 4. Percentage of regional resistance by state and average resistance within each state for nine wildlife species in New England, USA.

Species Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont

Mean % Mean % Mean % Mean % Mean % Mean %

American black bear 0.03 0.39 0.79 68.63 0.18 4.07 0.52 13.14 0.00 0.00 0.54 13.77

Bobcat 0.07 3.26 0.18 52.85 0.08 5.92 0.13 11.14 0.01 0.08 0.31 26.75

Coyote 0.85 6.95 0.95 50.84 0.81 11.15 0.93 14.72 0.72 1.30 0.95 15.03

Moose 0.00 0.00 0.01 95.08 0.00 0.00 0.00 4.52 0.00 0.00 0.00 0.40

Raccoon 0.99 8.83 0.86 50.53 0.94 13.96 0.74 12.73 1.00 1.96 0.70 11.98

Red fox 0.45 15.36 0.17 38.32 0.24 13.49 0.13 8.64 0.35 2.62 0.32 21.58

Striped skunk 0.89 11.18 0.60 48.74 0.77 15.96 0.46 11.12 1.00 2.75 0.43 10.25

White-tailed deer 0.78 6.55 0.98 54.13 0.60 8.44 0.88 14.20 0.66 1.22 0.95 15.46

Wild turkey 0.07 37.79 0.01 33.46 0.02 15.79 0.00 4.87 0.04 5.22 0.00 2.87

Average 0.46 10.03 0.51 54.73 0.40 9.86 0.42 10.56 0.42 1.68 0.47 13.12

Statistics were calculated from species binary resistance maps developed for the region and provide measures for 1) Mean resistance: the proportion of the state where

species occurrence is resistant to change between 2010 and 2060, and 2) Percent of regional resistance: the percentage of a species regional resistance that occurs within

each state.

https://doi.org/10.1371/journal.pone.0239525.t004
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ownership (e.g., White Mountain National Forest), held as private lands under protective ease-

ments (32.45%), or were protected under non-profit ownership (11.70%) [38]. The size of indi-

vidual PAs varied significantly, with parcels sizes ranging from < 1 km2 to 3047.65 km2.

Protected parcels in the more rural northern portion of New England were generally larger

than parcels in the southern states; with land conservation in Connecticut, Rhode Island, and

Massachusetts characterized by numerous small parcels no larger than 40.47 km2 (10,000

acres) [38]. Parcel protection also varied in land-use restrictions. For example, many PAs

allowed timber harvesting but did not allow land conversion (e.g., forest to development) [38].

Overall, approximately 22% of the New England region was under some form of land

protection.

Given the size of the region and the existing protected network, only small portions of the

region were both protected and resistant for individual species (Table 5; column 3). For exam-

ple, 91.81% of the map cells in New England were classified as resistant for coyote (i.e., mar-

ginal probability of resistance = 0. 9181), but only 21.12% of the resistant cells were also

protected (i.e., joint probability of resistance & protection = 0.2112). Resistance of other spe-

cies is even less protected under the current protected network. For example, of the 16.73% of

the region that was classified as resistant for bobcat, only 3.26% is currently protected (Table 2;

Table 5, columns 2 & 3). Large portions of the region were both unprotected and not resistant

for many species. For example, nearly all of New England’s unprotected land (approximately

78% of the region) was also not resistant for moose (0.7763) and wild turkey (0.7724; Table 5,

column 4). Bobcat and red fox also simulated large portions of the region that were neither

protected nor resistant (i.e., joint probability—unprotected & not resistant = 0.6478 and

0.5916, respectively; Table 5, column 4).

The relationship between resistance and protection can be expressed from different points

of view. The conditional probability of protection, given a species resistance, is the proportion

of a species resistant cells that are also protected (Table 5, column 5). For most species the pro-

tected network encompassed moderate levels of the species regional resistance. That is, for all

Table 5. Protected area resistance statistics for nine wildlife species in New England, USA.

Species Marginal probability

of resistance

Joint probability:

resistant & protected

Joint probability: not

resistant & unprotected

Conditional probability of

protection given resistance

Conditional probability of

resistance given protection

American

black bear

0.5686 0.1554 0.3686 0.2734 0.7123

Bobcat 0.1673 0.0326 0.6478 0.1945 0.1497

Coyote 0.9181 0.2112 0.0753 0.2300 0.9694

Moose 0.0076 0.0025 0.7763 0.3328 0.0115

Raccoon 0.8443 0.1454 0.0835 0.1723 0.6683

Red fox 0.2190 0.0274 0.5916 0.1252 0.1265

Striped skunk 0.6081 0.1415 0.3131 0.2328 0.6422

White-tailed

deer

0.8972 0.2087 0.0945 0.2326 0.9618

Wild turkey 0.0130 0.0038 0.7724 0.2890 0.0173

All statistics were calculated using species binary resistance maps developed for the region and polygons from the Protected Areas Database of the U.S. (PAD-US

version 2.0) [28]. Statistics include 1) Marginal probability of resistance: the proportion of the region that is resistant for each species, 2) Joint probability—resistant and

protected: the proportion of the region that is both protected and resistant, 3) Joint probability—not resistant and unprotected: the proportion of the region that is

unprotected and does not meet the resistance criteria, 4) Conditional probability of protection given resistance: the proportion of each species regional resistance that is

protected, and 5) Conditional probability of resistance given protection: the proportion of the protected network that is resistant for each species. Note that the

protected network covers 21.63% of the New England region (i.e., marginal probability of protection = 0.2163).

https://doi.org/10.1371/journal.pone.0239525.t005
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but three species (red fox, raccoon, and bobcat), between 20% and 35% of the resistant cells

were also protected (Table 5; column 5). Conditional probability of protection (given the spe-

cies resistance), was highest for moose (0.3328), followed by wild turkey (0.2890), and black

bear (0.2734; Table 5, column 5). White-tailed deer, coyote, and striped skunk experienced

moderate-to-low levels of regional resistance protection with conditional probabilities ranging

between 0.2326 and 0.2300 (Table 5).

The relationship between resistance and protection can also be viewed from the perspective

of the protected network. Given the region’s protected cells, we can determine the proportion

of the protected network that is also resistant for each species (Table 5, column 6). Resistance

was well represented within the current protected network for some focal species and poorly

represented for others. Coyote, white-tailed deer, black bear, raccoon, and striped skunk had

the highest representation of resistance in protected areas (Table 5, column 6). For coyote, the

conditional probability of resistance occurring within protection was 0.9694 –indicating that

96.94% of the protected maps cells in New England were designated as resistant. White-tailed

deer (0.9618) and black bear (0.7123) also had relatively high conditional probability of resis-

tance (given protection), while moose (0.0115) and wild turkey (0.0173) had very low repre-

sentation of resistant cells within the protected network, thus low conditional probabilities

(Table 5).

The relationship between species resistance and protection was also evaluated for individual

PAs within the protected network. Average species resistance within individual PAs ranged

between 0 and 1 (Fig 4). However, for most PAs average species resistance was either 0 or 1 –

meaning that most PAs were either fully resistant (i.e., all cells in the PA were resistant for the

target species) or contained zero resistant cells for a given species (Fig 4; note the log scale).

For example, the majority (~80%) of the region’s PAs (i.e., 45968 PAs) had an average resis-

tance of 0 for black bear. However, the PAs that did contain > 0 average resistance for black

bear were often fully resistant (i.e., average resistance was 1 for 6596 PAs; Fig 4). For some of

Fig 4. Focal species resistance within New England’s protected areas. Mean resistance indicates the proportion of cells in a protected parcel that are

resistant for a given species. Graphs display trends in species mean resistance within individual parcels. Note the logarithmic scale of the y-axes.

https://doi.org/10.1371/journal.pone.0239525.g004
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the species—including red fox, moose, wild turkey, and bobcat—the majority of PAs had an

average resistance of 0. However, for other species—including raccoon, striped skunk, coyote,

and white-tailed deer—the majority of the region’s PAs were fully resistant.

Aggregate focal species resistance was evaluated across the region and within individual

PAs. Aggregate focal species resistance was calculated for each cell in the region as the average

binary resistance across the 9 species. Thus, an aggregate resistance of 0 indicated that none of

the 9 focal species were resistant, while an aggregate resistance of 1 indicated all 9 species were

resistant. Mean aggregate resistance was computed for each PA by averaging the aggregate

resistance values. This generated a comparable resistance score for all PAs in the protected net-

work. Spatial variability in species resistance lead to generally moderate mean aggregate resis-

tance throughout the region (regional mean aggregate resistance = 0.4716; S2 Fig) and the

protected network (Fig 5). The majority of the region’s PAs (~64%) had mean aggregate resis-

tance scores below 0.5 (Fig 5; note the log scale). For example, 120 PA’s had a mean aggregate

resistance between 0.1 and 0.2. In contrast, 28 PAs had a mean aggregate resistance> 0.8; indi-

cating that these PAs provided high levels of resistance protection for the majority of the focal

group (Fig 5).

Discussion

Identifying areas of resistance for wildlife represents a conservation priority, especially in the

New England region, which is experiencing rapid climate and land-use changes [17,21,23]. We

evaluated how the distributions of nine focal species are expected to change in response to

Fig 5. Aggregate focal species resistance within New England’s protected areas. Mean aggregate resistance provides a

standardized indicator of resistance for each protected parcel based on the average focal species resistance within the parcel.

Graph displays trends in mean aggregate resistance within individual parcels.

https://doi.org/10.1371/journal.pone.0239525.g005
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50-years of climate change and alternative land-use trajectories. We assessed cross-scenario

trends in species resistance to identify areas where species exhibited the greatest resistance to

future disturbances and analyzed how species spatial resistance aligned with the current pro-

tected area network. Our analyses provide a new approach for evaluating species spatial resis-

tance, generate questions about the long-term success of harvested species in the New England

region, and highlight the value and utility of scenario-based species resistance assessments for

conservation planning.

Scenario-based resistance

Our scenario results reinforce the belief that future changes in climate and land use will likely

have variable and often negative consequences for wildlife species in the New England region.

Spatial patterns in species occurrence and regional resistance varied considerably among the

focal group, which reflects the diverse habitat requirements of the species selected [57]. Over-

all, species with more general habitat requirements and lower sensitivity to climate or develop-

ment—including coyote, white-tailed deer, raccoon, and striped skunk—exhibited the highest

levels of occurrence stability and regional resistance. Alternatively, species with narrower habi-

tat requirements and higher sensitivity to landscape change, such as moose and wild turkey,

exhibited low regional resistance, meaning that few cells that were high-quality under the base-

line projection remained high-quality under all 5 scenarios considered. For these low resis-

tance species, the small number of cells that are resistant may be of high conservation value—

providing high-quality habitat that is robust to future change.

Two species projections merit special discussion. First, for species such as red fox, low

regional resistance does not necessarily mean this species is at risk. For example, red fox will

likely occupy considerable portions of a future New England landscape. However, due to gen-

erally moderate occurrence probability under current conditions and climate-related increases

in occurrence probability under future conditions, only small portions of the region were con-

sidered resistant to change. In the context of this study, resistant map cells designate locations

where species have high occurrence probability under current conditions that remain high

despite uncertain future conditions. It is important to recognize that we expect wildlife species

to occur outside of these resistant areas in the future; however, species are not necessarily resis-

tant to changes that may occur in these areas. Second, moose exhibited extremely low cross-

scenario resistance, and significant variation in scenario-specific persistence. For example,

under the Go It Alone scenario, 28.12% of the region represented persistent areas for moose.

However, under the Yankee Cosmopolitan scenario only 0.99% of the region was persistent

for moose. This suggests that moose will experience considerably higher levels of resistance if

New England undergoes changes similar to that of the Go It Alone scenario (in which heavily

managed forests will benefit moose), rather than the Yankee Cosmopolitan scenario. For spe-

cies like moose, land use planning is particularly important because different futures could

result in very different distribution and resistance patterns.

Implications for conservation

With spatial heterogeneity in environmental change and species responses to change, spatially

explicit approaches to management and conservation are increasingly necessary [2–4]. Our

approach provides spatially explicit quantitative information about species occurrence that

can help guide management and land use decisions at multiple spatial and temporal scales.

Because state governments typically regulate wildlife management and harvest decisions in the

US, state-level resistance statistics can help guide species management and the allocation of

limited funds. Understanding which species are most resistant to change or vulnerable to
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decline within a given state can also inform state-based planning and help ensure that both

state and regional conservation objectives are being met. Species-specific resistance maps can

help decision-makers identify locations for conservation activities as well as sites potentially

suited for non-wildlife related resource management, or development. Obtaining this informa-

tion for multiple species and at a regional scale can provide a basis for directing limited

resources to areas where they are most beneficial to broad-scale conservation [3,4,66].

Understanding which species are likely to remain well represented in the protected network

and which species may become more reliant on PAs may be particularly useful information

for evaluating representation and persistence targets within existing PAs, and for identifying

gaps in the current network [67]. We found that species with higher levels of regional resis-

tance—including coyote, white-tailed deer, raccoon, striped skunk, and black bear—were gen-

erally well represented in the protected network. This means that the current protected

network is likely to conserve the focal species that have the highest resistance overall. However,

for species with low levels of regional resistance—including moose and wild turkey—the con-

ditional probability of resistance within protected areas was not negligible (e.g., 33% for

moose). That is, of the few resistant pixels for moose, 33% are under some form of protection.

This indicates that protected areas may be particularly important to the future success of these

species. For these low resistance species, the few areas that are resistant-constant or resistant-

increasing may be particularly valuable sites for conservation. By adding a species’ resistant

sites to the protected network, these areas may be able to host source populations that can sus-

tain less productive areas within the region and contribute to species persistence [68].

Conservation strategies for large, fragmented, and rapidly changing regions need to priori-

tize areas where conservation targets are most likely to persist long-term [67,69]. Spatial priori-

tization tools, such as Marxan [70] and Zonation [71], have been developed to help identify

potential reserve sites that satisfy regional conservation goals. These computational decision-

support tools can guide the design of protected areas and reserve systems when complex trade-

offs exist [72,73]. However, the successful application of these tools requires reliable informa-

tion about species distributions and long-term persistence [69]. Our results satisfy these

requirements by providing fine-scale species occurrence and resistance information in a

regional context. Our models estimate occurrence on a cell-by-cell basis by evaluating covari-

ates at spatial scales relevant to the focal species. This process generates fine-resolution tools

that account for broader species-scale influences and are compatible with existing spatial pri-

oritization methods. While individual (30 x 30 m) map cells are often not sufficient targets for

conservation, fine-resolution maps provide detailed metrics that can guide the selection of

larger parcels and help prioritize species or locations that may require conservation attention.

With increasing environmental change, maintaining or improving connectivity within

regional landscapes is often a conservation priority to allow for gene flow and support popula-

tion growth [9,74,75]. Spatial resistance maps can help identify potential pathways for connec-

tivity among resistant areas and throughout landscapes [9]. In human-dominated landscapes,

habitat connectivity can facilitate movement of individuals (and their genes), which supports

larger population sizes and reduces potential isolation and related demographic and genetic

consequences [76–78]. Through the combined utility of SDMs and alternative scenarios, our

maps provide a means of identifying optimal ways to connect critical natural areas and protect

species despite an uncertain future.

We suggest that spatially explicit species resistance tools facilitate planning by providing the

ability to locate areas where conservation actions are likely to have the most significant long-

term benefits for wildlife species. This study provides insight into the spatial consequences of

future change for wildlife species, advances our understanding of resistance at multiple spatial
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and ecological scales, and can help guide reserve design and conservation actions that ensure

the longevity of natural systems.

Caveats to interpretation

Although our study provides novel information about species resistance in an uncertain

future, there are limitations to the results that should be considered. First, resistance is a com-

plex concept often focused on numerous ecological functions (e.g., [2,4,10,79,80]). Many stud-

ies evaluate resistance through broader conceptual methods, but here we aimed to quantify the

spatial resistance of individual wildlife species. Because this approach only targets resistance at

the species level, we do not directly address the complexities of ecological resistance, nor do we

focus on ecosystem or species interactions. We also acknowledge that there is uncertainty in

the models and parameters that simulate species occurrence, and that this approach assumes

that relationships between landscape factors and occurrence will remain constant (i.e., species

distributions will be driven by the same effects over time).

Second, because our focus is on maintenance of high quality pixels for individual species,

cells were only designated as resistant if species occurrence was high in the baseline projection

at year 2010 and remained high in the scenario projections at year 2060. In this approach, only

map cells that started and remained above the high occurrence threshold (0.7) across all

NELFP scenarios were considered resistant; which in some cases excluded maps cells that had

high occurrence probabilities at year 2060 but missed the threshold under current conditions.

For alternative assessments, it may be important to acknowledge these high occurrence areas

as they provide additional information about species local and regional representation. How-

ever, for this assessment we targeted areas of persistence to identify the locations where species

occurrence is most resistant despite future change. Our persistence (and subsequently resis-

tance) calculations and conclusions are dependent upon the mathematically assumptions

used. Given our raster layers for each species and NELFP scenario, it would be straightforward

for future research to apply different persistence or constancy criteria to evaluate resistance for

alternate objectives.

Third, we acknowledge that there is uncertainty in the models and parameters that simu-

lated species occurrence, land-use change, and forest growth for each scenario. We used spe-

cies distribution models that performed well when tested against empirical data [62]; however,

there is inherent uncertainty in all probability estimates and future simulations. We also

acknowledge that New England may change in ways outside the scope of the NELFP scenarios.

While we are unable to consider all possible futures, the NELFP scenarios capture relevant

uncertainties about the region’s future landscape conditions. The central idea of scenario-plan-

ning is to consider a variety of possible futures that include many important elements of uncer-

tainty rather than focusing on the accurate prediction of a single outcome [32]. Our approach

builds from this concept and aims to overcome uncertainty about wildlife futures by identify-

ing areas of greatest resistance across multiple scenarios. This approach is not intended as an

alternative to other studies. Rather, our results are meant to complement the work of others by

providing new scenario-based perspectives and spatially explicit information for individual

species. Despite their limitations, these tools have considerable value and can be used alongside

other tools and reserve design methods to evaluate the ecological impacts of management deci-

sions and help inform effective long-term conservation.
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S1 Table. Distribution change statistics for nine wildlife species in the New England region

of the northeastern United States. Statistics were calculated from scenario-simulated
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distribution change maps (2010–2060) derived from species-specific distribution models

developed by [62] and landscape change scenarios developed by the New England Landscape

Futures Project [31,58].

(PDF)

S1 Fig. Species scenario-specific distribution change throughout New England, USA. Dis-

tribution change was projected for nine wildlife species between current (2010) conditions and

each of the NELFP scenarios: A) Business-As-Usual, B) Connected Communities, C) Yankee

Cosmopolitan, D) Go It Alone, and E) Growing Global. Maps display changes in species prob-

ability of occurrence, derived from simulated distribution maps for 2010 and 2060 (see [34,62]

for more details).

(PDF)

S2 Fig. Aggregate focal species resistance throughout New England, USA. Map displays

mean species resistance between 2010 and 2060 based on binary resistance maps for nine focal

wildlife: American black bear, bobcat, coyote, moose, raccoon, red fox, striped skunk, white-

tailed deer, and wild turkey.

(PDF)
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