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Abstract

Clustering and community detection provide a concise way of extracting meaningful infor-

mation from large datasets. An ever growing plethora of data clustering and community

detection algorithms have been proposed. In this paper, we address the question of ranking

the performance of clustering algorithms for a given dataset. We show that, for hard cluster-

ing and community detection, Linsker’s Infomax principle can be used to rank clustering

algorithms. In brief, the algorithm that yields the highest value of the entropy of the partition,

for a given number of clusters, is the best one. We show indeed, on a wide range of datasets

of various sizes and topological structures, that the ranking provided by the entropy of the

partition over a variety of partitioning algorithms is strongly correlated with the overlap with

a ground truth partition The codes related to the project are available in https://github.com/

Sandipan99/Ranking_cluster_algorithms.

1 Introduction

Cluster analysis is being increasingly used across wide range of applications ranging from biol-

ogy and bioinformatics [1] to social networks [2] which has led to the development of a pleth-

ora of clustering algorithms. Given this, an obvious query that arises is how do we evaluate the

performance of these algorithms in terms of the clusters obtained from them. In this paper, we

show evidence in support of the idea that the Infomax principle [3] provides an answer to this

question.

Clustering problem: We focus on the problem of hard partitioning: given a list of objects

(or data points) the problem is that of dividing them into groups of similar ones. In the com-

puter science and pattern recognition literature, this problem is popularly known as clustering.

A plethora of different algorithms have been proposed for clustering (see [4, 5] for reviews)

based on different measures of similarity between the data points. A large part of this literature

has focused on the time complexity of the methods, which is particularly relevant for big data.

Quality of clusters: In this paper, we focus on the quality, i.e., on the accuracy of the

method in terms of the results produced. Several algorithms (see e.g. [6, 7]) have been pro-

posed claiming superior performance, yet it has been proven that no single clustering algo-

rithm simultaneously satisfies a set of basic desiderata of data clustering [8]. In addition, the
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criteria for assessing the quality or validity of a clustering structure is not unique [4, 5]. When

no ground truth is available, which is typically the case, (internal) criteria have been proposed

based on stability [9] or on generalisability with respect to sub-sampling [10]. When a ground

truth is available, an external criteria is possible, based on the distance of the predicted cluster-

ing to the ground truth. Yet the choice of the distance measure used is not unique [5]. Even in

cases where comparison with a ground truth is possible, different algorithms are found to per-

form better in different cases and the predicted structures may differ substantially from the

ground truth [11].

Infomax principle for measuring quality: We primarily intend to show that the Infomax

principle [3] provides a natural measure for ranking clustering algorithms, for a given dataset,

with respect to an unknown ground truth. In brief, a clustering algorithm is a mapping

between data points xi in a high dimensional feature space to a set of labels si. The amount of

information that the cluster structure retains about the data is given by the mutual information

I(x, s) = H[s] − H[s|x]. The Infomax principle states that the optimal representation is the one

that maximizes I(s, x). In hard clustering H[s|x] = 0, so I(x, s) = H[s] coincides with the entropy

of the labels. We can visualize clustering as a translation of a dataset into a set of symbols—the

cluster labels—of an alphabet of S letters, where S is the number of clusters. So, each partition-

ing algorithm is a translator that converts high dimensional data to a message. Following Shan-

non [12], the entropy Ĥ ½s� of the cluster labels s provides a natural measure of the amount of

information that the algorithm extracts from the data. Infomax then prescribes that the algo-

rithm that “uses the most informative language”—i.e., with the highest Ĥ ½s�—should be pre-

ferred. This allows one to rank partitioning algorithms in a completely unsupervised fashion, for
a given dataset—the fundamental contribution of this paper. So, this criterion is internal, in

the sense that it is based only on the data (i.e., it is unsupervised), but we will validate it show-

ing that the obtained ranking has a positive correlation with distance to a ground truth in all of

the cases analyzed, and this correlation is strong in most cases. Our results are based on an

extensive comparison across different algorithms, different similarity metrics and different

databases for data clustering.

Contributions: Our contributions in this paper are threefold -

1. We propose a metric (Ĥ ½s�) which is able to rank, very efficiently, the clustering algorithms

in a completely unsupervised way (i.e., without considering the ground truth cluster

structure).

2. Through rigorous experiments across a wide range of datasets we show the effectiveness of

our metric in ranking the performance of data clustering algorithms. In fact, the metric

remarkably correlates with the distance from the ground truth for a widely varying taxono-
mies of ground truth structures including (i) ground truth with different granularities, (ii)

ground truth built from different attributes, (iii) very small number of ground truth clus-

ters, (iv) ground truth clusters with very few data points, (v) ground truth clusters of equal

sizes and (vi) ground truth clusters with skewed sizes.

3. The proposed metric also outperforms the existing unsupervised metrics across all the

datasets.

2 Background

In this section we present a brief overview of the related literature encompassing clustering

algorithms and cluster quality measurement metrics used in our work.
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2.1 Clustering algorithms

We consider two broad classes of clustering algorithms (i) hierarchical and (ii) partitional.

Hierarchical methods: These methods construct clusters through recursive partitioning of

the data points in a bottom-up approach whereby each data point is assigned a cluster of its own

initially and is merged until the desired number of clusters are obtained. The merging of the

clusters is obtained according to some chosen similarity measure. We consider both city-block

(l1) and Euclidean (l2) distance based similarity measures. The hierarchical clustering methods

can be further classified according to the manner in which the similarity measure is calculated.

We consider the following three classical ways—(1) Single linkage (SI) [13], (2) Complete link-

age (CO) [14] and (3) Average linkage (AV) [15] Note that ‘l1SI’ would mean single linkage

with city-block as distance metric and so on. We use this combination of acronyms for the algo-

rithms and distance metrics in all our results presented in the subsequent sections.

We also consider BIRCH (BI) (balanced iterative reducing and clustering using hierar-

chies) [16] which improves upon the traditional hierarchical clustering methods. The algo-

rithm commences by creating a height balanced tree out of the data points followed by

execution of an agglomerative clustering method to obtain sub clusters.

Partitional methods: Among partitional methods we consider K-means, affinity propaga-

tion and spectral clustering. k-means (KM) clustering method which employs a squared

error minimization criteria and is the most commonly used clustering technique in this cate-

gory. The algorithm starts with an initial set of clusters chosen at random. In each round, each

instance is assigned to its nearest cluster center according to distance between the two (we con-

sider both l1 and l2 distances).

Affinity propagation (AP) algorithm introduced in [7] is based on the concept of passing

messages between the data points. Unlike k-means clustering which identifies an exemplar

(centroid) for each cluster, AP considers every data point to be a possible exemplar, represent-

ing a cluster. The goal is to obtain an appropriate set of exemplars which represents all the

clusters.

Spectral clustering (SI) [17] employs a low dimensional embedding of the similarity matrix

between the data points which is followed by clustering of eigenvector components in the low

dimensional space.

2.2 Quality of cluster structure

The metrics available for determining the quality of clusters and thereby evaluating the perfor-

mance of the clustering algorithms can be categorized as (i) external or supervised, which uti-

lizes a benchmark or a ground truth cluster structure to determine quality and (ii) internal or

unsupervised, which takes into account only the similarity between the data points used for

clustering.

External metrics. Most commonly used external metrics are (i) purity [18], (ii) normal-

ized mutual information (NMI) [19] and (iii) adjusted rand index (ARI) [20]. We explain

them below.

Let O = (ω1, ω2, . . ., ωK) represent the set of clusters, C ¼ ðc1; c2; . . . ; cJÞ denote the set of

ground truth classes and N, the number of data points.

i. Purity: Purity value between O and C is calculated as -

PurityðO;CÞ ¼
1

N

X

k

max
j
ðok \ cjÞ ð1Þ
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ii. Normalized mutual information (NMI): NMI value between O and C is calculated as -

NMIðO;CÞ ¼
2 � IðO;CÞ
HðOÞ þHðCÞ

ð2Þ

where I is the mutual information and is defined as -

IðO;CÞ ¼
X

k

X

j

jok \ cjj

N
log

Njok \ cjj

jokjjcjj
ð3Þ

andH is the entropy.

iii. Adjusted rand index (ARI): ARI is a corrected version of rand index and its value between

O and C is calculated as -

ARIðO;CÞ ¼
P

kj

nkj

2

� �
�
P

k

ak

2

� �P
j

bj

2

� �� �

=
N
2

� �

1
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k

ak

2

� �
þ
X

j

bj

2

� �� �

�
X

k

ak

2

� �X

j

bj

2

� �� �

=
N
2

� � ð4Þ

where nkj = |ωj \ ck|, ak is the size of ωk and bj is the size of cj. Other measures include Jac-

card index [21], Dice index [22] and Fowlkwes-Mallows index [23].

Internal metrics. Internal metrics for evaluation include Davies-Bouldin index [24], Sil-

houette [25] and Dunn index [26]. Among these we compare our proposed metric with

Davies-Bouldin index DB and Silhouette SH. DB can be calculated as

DB ¼
1

n

Xn

i� 1

maxj6¼i

si þ sj

dðci; cjÞ
ð5Þ

where n is the number of clusters, cx is the centroid of cluster x, σx represents the average dis-

tance of all elements in cluster x to centroid cx and d(ci, cj) is the distance between centroids ci
and cj.

For each data point, SH is computed utilizing the mean intra-cluster distance a, and its dis-

tance from the nearest cluster that it is not a part of b, with the score obtained as
ðb� aÞ

maxða;bÞ. The

overall score is computed as the mean over all the individual data points.

3 Proposed metric

In this section we first discuss the clustering problem and then introduce our proposed metric

which ranks the clustering and community detection algorithms in a completely unsupervised

way.

3.1 Clustering problem

Consider a dataset composed of M points x 2 Rd
in a high dimensional feature space (d� 1).

The primary objective of clustering is to assign each point xi a label si that indicates the parti-

tion to which point xi belongs to. If there are S partitions, si can be taken as an integer between

1 and S. A data clustering algorithm [4, 5] partitions objects xi into groups or clusters of “simi-

lar” objects, where similarity is defined in terms of a metric distance.

With numerous clustering algorithms available for this specific task and ground truth not

always available, we in this paper intend to propose a metric which ranks these algorithms

based on their performance in a completely unsupervised way (i.e., without considering

ground truth partition).
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3.2 Infomax based metric Ĥ ½s�
For a given data set and number of clusters S, each algorithm assigns to each point xi in the

sample a label si in an alphabet of S possible labels. Loosely speaking, each algorithm translates
the data into a message of a language written in this alphabet. The information content of this

message can be quantified by the Shannon entropy. Assuming the order in which the data

occur to be uninformative, as is often the case, the information is stored uniquely in the sym-

bol frequencies, i.e. in the number Ks of times that a symbol s occurs (which is the size of clus-

ter s). As an estimate of the amounts of bit of information per character in the message we take

Ĥ ½s� ¼ �
X

s

Ks

M
log

Ks

M
: ð6Þ

The Infomax principle [27] suggests a natural and universal criterium for scoring

different algorithms: If algorithm A1 extracts more information than A2 from a dataset, i.e. if

ĤA1
½s� > ĤA2

½s�, then A1 should be preferred. For a given dataset and a fixed S, Ĥ ½s� can be

measured on the cluster predicted by different algorithms, thereby providing an un-supervised

ranking of the algorithms. To summarize, given a cluster output of an algorithm consisting of

S clusters, our metric essentially quantifies the quality of the cluster output by computing the

entropy of the cluster labels. We illustrate using a toy example in Fig 1.

3.3 Advantages

The proposed metric has several advantages which we summarize below -

• Model-free. The proposed metric is model-free which allows for its application across any

clustering algorithm and dataset.

• Information theory-based. Unlike the existing internal metrics, our metric builds upon

information theory which is already deep-rooted in the existing literature making our metric

much more reliable.

Fig 1. In this example there are 20 points that need to be clustered. The number of clusters is set at 5 and we deploy two

algorithms A1 and A2 which generate clusters of sizes {5, 5, 4, 4, 2} and {7, 8, 3, 1, 1} respectively. Our metric assigns a higher score to

the cluster output of A1 (2.26) and thus inferring it to be better than A2.

https://doi.org/10.1371/journal.pone.0239331.g001
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• Outperforms existing metrics. Our metric consistently outperforms the existing internal

metrics across numerous datasets (refer to section 6 for details).

• Unsupervised. In contrast to the existing external metrics, our metric does not require

ground truth cluster structure making it completely unsupervised and hence suited to a wide

range of datasets. Even though it requires less information, the proposed metric provides

comparable performance to the external metrics (refer to section 6 for details).

4 Datasets

In this section we briefly discuss the datasets that we have used in this paper.

Abalone: The Abalone dataset https://archive.ics.uci.edu/ml/datasets/Abalone consists of a

set of abalone and are classified based on their age which is basically the number of rings they

have [28]. The dataset consists of 4177 instances each consisting of 8 attributes. The task is

treated as a classification problem and there are 28 clusters in the ground truth.

Football: The Football network [29] http://www-personal.umich.edu/mejn/netdata/ con-

sists of American football games between Division IA colleges during regular season Fall of

2000. The vertices in the network are the football teams which are identified by the respective

college names and an edge in the network represent regular season games between the two

teams. The teams are divided into conferences containing around 8–12 teams each. Games are

more frequent between members of the same conference than between members of different

conferences. Each conference therefore represents a ground truth community in the network.

Note the vertices in the network are devoid of any inherent features and we hence resort to

representing each vertex by vectors of (i) neighborhood (1 if the corresponding vertex is a

neighbor and 0 other) and (ii) shortest path (length of shortest path to the corresponding

vertex).

Railway: The Indian railway network was proposed in [30] http://www.cnergres.iitkgp.ac.

in/permanence/ and it consists of stations (nodes) and edges between all pairs of stations that

are connected by at least one train-route (both stations must be scheduled halts on the train-

route). The weight of the edge between two stations is the number of train-routes on which

both these stations are scheduled halts. We filter out the low-weight edges and then make the

resultant network unweighted. The states act as communities since the number of trains within

each state is much higher than the number of trains in between two states. Similar to the Foot-

ball dataset we again obtain two representations of each vertex (neighborhood and shortest

path).

Wine: We consider two wine datasets namely Red and White wine [31] http://archive.ics.

uci.edu/ml/datasets/Wine+Quality. The datasets respectively contain samples of red and white

wines. Each wine sample is associated with 11 attributes like fixed acidity, volatility, residual

sugar etc. Each wine sample is also graded by experts between 0 (very bad) and 10 (very

excellent) based on the quality. This quality score acts as the ground truth cluster for the two

datasets.

Leaf: The leaf dataset [32] https://archive.ics.uci.edu/ml/datasets/One-hundred+plant

+species+leaves+data+set consists of 100 varieties of leaves and for each variety there are 16

examples. Each leaf sample is associated with a shape, texture and margin feature. Each such

feature is a vector of 64 elements. Each variety of leaf act as the ground truth cluster.

TREC: The TREC dataset [33] http://glaros.dtc.umn.edu/gkhome/views/cluto consists

of articles from the Los Angeles times and the categories correspond to the desk of the paper

that each article appeared and include documents from the entertainment, financial, foreign,

metro, national, and sports desks. Frequency of words in the document are its associated
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features. A stop-list was used to remove the common words and any word occurring in less

than two documents was eliminated. Each desk here represents a ground truth cluster.

Synthetic: The dataset is obtained using the model of correlated time series discussed in

[34]. The dataset consists of 1000 data points and 68 clusters in the ground-truth. The dataset

https://www.kaggle.com/sandipan99/synthetic-data-for-clustering has been made public.

Protein: This dataset http://www.fludb.org/brc/home.spg?decorator=influenza consists of

sequences of HA1 (hemagglutinin) of the H3N2 strain taken from the uniprot database http://

www.uniprot.org/uniprot/P03440. These are strings of 566 characters (amino acids) and each

character is replaced by the corresponding values of side-chain polarity, side-chain charge,

hydropathy index and weight to obtain the feature matrix. The ground truth cluster structure

is obtained based on place. The dataset https://www.kaggle.com/sandipan99/protein-dataset/

has been made public.

Stocks: We consider stock market dataset (the same used in [35]), where each xi is a time

series of daily returns for the M = 4000 most actively traded assets in the New York Stock

Exchange, over a period from 1 January 1990 to 30 April 1999 (i.e. d = 2358). Returns are

defined as the logarithm of the ratio between close and opening price for each day (we refer to

[35] for more details). The ground truth is given by the Security and Exchange Commission

(SEC) classification of the stocks in industrial sectors, that assigns a code to each stock. Taking

the first two digits of the SEC code yields Sσ = 68 clusters (but we also compared our results

with the classification based on three digits Sσ = 302).

Crime: The crime dataset https://archive.ics.uci.edu/ml/datasets/Communities+and

+Crime+Unnormalized combines socio-economic data from the ‘90 Census, (law enforce-

ment data from the 1990 Law Enforcement Management and Admin Stats survey), and crime

data from the 1995 FBI UCR [36]. Typically this is a regression dataset and we bin the data

points based on the values of the attributes to obtain the ground-truth cluster structure. In spe-

cific we consider three attributes which are—(i) murders per 100k population, (ii) robberies

per 100k population and (iii) auto-thefts per 100k population.

MNIST: The MNIST dataset [37] http://yann.lecun.com/exdb/mnist/ consists of images

of 70,000 handwritten digits (0-9). Each image is represented as a 28 × 28 pixel bounding

box which we flatten to obtain a feature vector of size 784. The dataset consists of 10 classes

each corresponding to a digit between 0 and 9.

5 Evaluation methodology

In this section we discuss in detail the evaluation methodology used in the paper.

To reiterate, we consider:

High dimensional datasets These are composed of M points x 2 Rd
in a high dimensional

feature space (d� 1). For example, in stock markets data, the ith component xðtÞi of the ith

point is the daily return of stock i on day t = 1, . . ., d.

Table 1 lists the datasets used in this study (details provided later in this section). Each con-

sist of a set of points xi i = 1, . . ., M. We consider different partitioning algorithms xi! si that

associate to each point i = 1, . . ., M in the sample a label si that indicates the partition to which

point xi belongs to. If there are S partitions, si can be taken as an integer between 1 and S.

For each dataset studied, a ground truth classification σ = (σ1, . . ., σM) is also available. This

associates to each point i a “true” classification σi, which can take one of Sσ values, where Sσ is

the number of classes of the ground truth. For example, σ is the Security and Exchange Com-

mission classification of stocks into economic sectors for financial data, or the state where a

station is located for the data set of Indian railways [29]. Recall, that the classification s gener-

ated by a given partitioning method can be compared with the ground truth σ, using three

PLOS ONE Unsupervised ranking of clustering algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0239331 October 26, 2020 7 / 21

https://www.kaggle.com/sandipan99/synthetic-data-for-clustering
http://www.fludb.org/brc/home.spg?decorator=influenza
http://www.uniprot.org/uniprot/P03440
http://www.uniprot.org/uniprot/P03440
https://www.kaggle.com/sandipan99/protein-dataset/
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1371/journal.pone.0239331


well-established metrics: Purity, Normalized Mutual Information (NMI) and Adjusted Rand

Index (ARI). We also compare with two existing internal metrics Davies-Bouldin (DB) and Sil-

houette (SH). Moreover, for the hierarchical methods, the number of clusters are set to be

same as the partitional approaches. For a given data set and a given S, we rank algorithms

according to their similarity with the ground truth.

5.1 Majority ranking

It is well-known that all the three similarity measures i.e., Purity, NMI and ARI have their own

shortcomings [38]. This manifests in the fact that, for different similarity measures, the rank-

ing over algorithms does not necessarily coincide. For this reason, we consider also a “majority

ranking”: For algorithms A1 and A2, majority ranks A1 higher than A2 (i.e. A1 > A2) if the

majority of the three similarity measures rank A1 higher than A2. This procedure is not

guaranteed to produce a transitive ranking across algorithms, since it can happen that A1 >

A2, A2 > A3 and A3 > A1 for some A1, A2 and A3. This signals the fact that a proper ranking is

ill defined in these cases, hence we restrict attention to cases where this is not the case. As

Table 1 further shows, our study covers a diverse variety of datasets, ranging from cases where

the number of clusters in the ground truth is very small compared to the number of data points

(red and white wines, TREC), to cases where clusters on average contain few points (football,

railway). We also compare our results across different ground truths for the same dataset.

For stocks we consider different levels of granularity given by the SEC codes at 2 or 3 digits.

For the crime dataset we consider ground truths based on different indicators (geographic

location of the community, incidence of different crimes in that community). We report the

results for each case in the following subsections. The cluster size distribution also varies sub-

stantially across the data-sets used. As a measure of concentration, Table 1 reports the ratio

Ĥ ½s�=logðSsÞ between the entropy of the cluster size distribution and its maximal value. This is

one for equally sized clusters (e.g. Leaf, TREC) whereas smaller values indicate more skewed

distributions.

Table 1. Quantitative description of data sets: M is the number of points, H[σ] is the entropy of the ground truth classification. d1—d2 represents the conformity

among the different goodness metrics (purity, NMI and ARI) in terms of Kendall’s �t and Spearman’s �r rank correlation (see text). The last column reports the Kendall’s τ
and Spearman’s ρ rank correlations of Ĥ ½s� with the majority ranking of similarity to the ground truth (see text).

Dataset M Sσ H½s�
log M (

H½s�
log Ss

) d1-d2 ð�t; �rÞ H[S]-Majority (τ, ρ)

Abalone 4174 28 0.34 (0.85) (0.38, 0.51) (0.65, 0.81)

Football 115 12 0.52 (0.98) (0.85, 0.93) (0.62, 0.82)

Railway 301 20 0.47 (0.89) (0.81, 0.92) (0.89, 0.97)

Red wine 1598 6 0.16 (0.66) (0.55, 0.73) (0.56, 0.74)

White wine 4898 7 0.15 (0.65) (0.48, 0.55) (0.53, 0.73)

Leaf 1600 100 0.62 (1.00) (0.78,0.90) (0.76, 0.88)

TREC 878 10 0.28 (0.82) (0.69, 0.82) (0.52, 0.65)

Synthetic 1000 68 0.45 (0.74) (0.80, 0.88) (0.70, 0.87)

Protein 734 83 0.47 (0.70) (0.66, 0.76) (0.82, 0.93)

Stocks (2 digits) 4000 68 0.42 (0.82) (0.72, 0.85) (0.79, 0.90)

Stocks (3 digits) 4000 302 0.56 (0.81) (0.85, 0.92) (0.91, 0.96)

Crime (murder) 2215 45 0.30 (0.61) (0.27, 0.31) (0.75, 0.90)

Crime (robbery) 2215 46 0.33 (0.66) (0.237, 0.34) (0.85, 0.95)

Crime (auto) 2215 65 0.41 (0.76) (0.29, 0.37) (0.78, 0.89)

MNIST 70000 10 0.18 (0.90) (0.91, 0.96) (0.82, 0.94)

https://doi.org/10.1371/journal.pone.0239331.t001

PLOS ONE Unsupervised ranking of clustering algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0239331 October 26, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0239331.t001
https://doi.org/10.1371/journal.pone.0239331


6 Results

The rest of the paper will be devoted to testing the accuracy of this prediction, by comparing it

with the ranking provided by the distance to the ground truth, according to the measures dis-

cussed above. We classify the datasets based on the associated ground truth cluster structure.

This is to show that our metric is indeed independent of the ground truth structure. We report

in detail the methodology for the stock dataset which covers the case of different granularity

levels of ground truth while for other cases we mainly report the results obtained. For all these

cases the same methodology has been employed to obtain the results. For general information

about each dataset (size, number of clusters in the ground truth) refer to Table 1.

6.1 Ground truth with different granularity

Dataset: To illustrate, we consider stock market dataset consisting of 4000 data points and two

sets of ground truth (Sσ = 68, 302).

Observations: For each algorithm and choice of the measure, we compute the value of Ĥ ½s�
for the cluster structure obtained for Sσ clusters and compare it to the distance to the ground

truth classification with two digits, for ARI, NMI and Purity. The plots for NMI and ARI versus

Ĥ ½s� in Fig 2 show a clear positive correlation that we quantify by computing the Kendall’s-τ
and Spearman’s rank correlation ρ between the corresponding rankings. A pairwise compari-

son between Ĥ ½s� and the different measures, and among the different measures, is shown in

Table 2 for the stock dataset considering SEC codes at 2 digits. The corresponding results con-

sidering SEC codes at 3 digits are presented in Table 3. Different distances rank the algorithms

differently and their correlation, though positive, is not one. For this reason, as already dis-

cussed, we also extract a majority ranking that combines the predictions of ARI, NMI and

Purity. The correlation between majority ranking and the other rankings is also reported in

Table 2 (last column). The top entry of the rightmost column (boxed) is reported in the last col-

umn of Table 1 for all the other datasets. This shows that Ĥ ½s� correlates remarkably well with

the majority ranking in most cases. As a comparison, we look into how the three similarity mea-

sures correlate among themselves. To this aim we calculate mean Kendall’s and Spearman’s

correlation between the rankings obtained through Purity-NMI, Purity-ARI and NMI-ARI

(underlined entries in Table 2). Further note that Ĥ ½s� outperforms both SH and DB.

6.2 Ground truth built from different attributes

Dataset: We illustrate with the crime dataset with ground truth constructed from three attri-

butes which are—(i) murders per 100k population, (ii) robberies per 100k population and (iii)

auto-thefts per 100k population.

Observations: In Fig 3(top), Fig 3(middle) and Fig 3(bottom) we plot Ĥ ½s� against purity,

NMI and ARI for the cluster structure obtained from each algorithm for crime murder, crime

robbery and crime auto respectively. The similarity between the rankings obtained through

Ĥ ½s�, purity, NMI, ARI and majority for the corresponding ground truths are reported in

Tables 4, 5 and 6 respectively. In almost all the cases Ĥ ½s� correlates highly with purity and

NMI while with ARI the correlation is low. The similarity of Ĥ ½s� ranking with majority is high

irrespective of the ground truth used. Ĥ ½s� seems to perform better than SH and DB.

6.3 Small number of ground truth clusters compared to the number of points

Datasets: For this scenario, we consider wine and TREC datasets here. For TREC M = 878 and

Sσ = 10 and the corresponding numbers for red and white wines are M = 1598, Sσ = 6 and
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M = 4598, Sσ = 7 respectively. MNIST consists of 70000 data points and 10 clusters (i.e., M =

70000 and σ = 10).

Observations: We plot Ĥ ½s� against purity, NMI and ARI for the cluster structure obtained

from each algorithm for red wine (top), white wine, TREC and MNIST (bottom) in Fig 4 (top

Fig 2. H[S] versus purity, NMI and ARI for the stock dataset, using SEC codes at 2 (top) and 3 (bottom) digits. Different algorithms are represented by a

code that depends on the distance metric used (“l1” or “l2”) and the algorithm (SI, AV and CO for single, average and complete linkage, KM for k-means,

AP for affinity propagation).

https://doi.org/10.1371/journal.pone.0239331.g002
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to bottom in the same order). The similarity scores between the rankings obtained through

Ĥ ½s�, purity, NMI, ARI and majority are reported in Tables 7 and 8 for the respective wine

datasets. In both these cases rankings obtained through Ĥ ½S�, correlates only moderately with

the majority ranking. In fact, the similarity values are low among the rankings obtained

through other metrics as well. The similarity is reasonably high for TREC (refer to Table 9)

and MNIST (refer to Table 10).

6.4 Ground truth clusters with very few points

Datasets: We consider the examples of football (M = 115, Sσ = 12) and railway (M = 301, Sσ =

20) datasets.

Observations: In Fig 5 (top) and (bottom) we plot Ĥ ½s� against purity, NMI and ARI for

the cluster structure obtained from each algorithm for football and railway. Ĥ ½s� is indeed

closely related with the other metrics in both cases which proves the effectiveness our metric.

We further report the similarity among various rankings of the clustering algorithms obtained

through the different metrics in Tables 11 and 12. In fact we observe a very high correlation

between Ĥ ½s� and majority ranking.

6.5 Ground truth clusters are of equal sizes

Datasets: Here we consider the leaf and the abalone datasets. While for leaf the number of

points in each ground truth cluster is exactly 16, the corresponding number for abalone is� 90.

Observations: In Fig 6(top) and (bottom) we plot Ĥ ½s� against purity, NMI and ARI values

of the cluster structure obtained as output from all the clustering algorithms. A strong positive

Table 2. Kendall’s Tau and Spearman correlation for stock considering SEC codes at 2 digits. The correlation between the majority ranking and Ĥ ½s� ranking (top-

right boxed entry) is reported in the last column of Table 1, whereas the average of the correlations between rankings provided by the different measures (underlined

entries) is reported in the d1-d2 column of Table 1 for all datasets.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.79,0.90 0.58,0.76 0.82,0.91 -0.03,-0.08 0.45,0.60 0.79,0.90

Purity 0.79,90 1.0,1.0 0.73,0.85 0.79,0.90 -0.12,-0.22 0.48,0.65 0.94,0.98

NMI 0.58,0.76 0.73,0.85 1.0,1.0 0.64,0.81 -0.21,-0.41 0.7,0.81 0.79,0.87

ARI 0.82,0.91 0.79,0.90 0.64,0.81 1.0,1.0 -0.09,-0.14 0.64,0.76 0.85,0.95

SH -0.03,-0.08 -0.12,-0.22 -0.21,-0.41 -0.09,-0.14 1.0,1.0 -0.15,-0.30 -0.12,-0.22

DB 0.45,0.60 0.48,0.65 0.7,0.81 0.64,0.76 -0.15,-0.30 1.0,1.0 0.55,0.69

Majority 0.79,0.90 0.94,0.98 0.79,0.87 0.85,0.95 -0.12,-0.22 0.55,0.69 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t002

Table 3. Kendall’s τ and Spearman’s correlation result for stock considering SEC codes at 3 digits.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.91,0.96 0.91,0.96 0.78,0.89 -0.07,-0.06 0.82,0.93 0.91,0.96

Purity 0.91,0.96 1.0,1.0 1.0,1.0 0.78,0.89 0.02,-0.006 0.91,0.97 1.0,1.0

NMI 0.91,0.96 1.0,1.0 1.0,1.0 0.78,0.89 0.02,-0.006 0.91,0.97 1.0,1.0

ARI 0.78,0.89 0.78,0.89 0.78,0.89 1.0,1.0 0.16,0.22 0.78,0.90 0.78,0.89

SH -0.07,-0.06 0.02,-0.006 0.02,-0.006 0.16,0.22 1.0,1.0 0.02,0.03 0.02,-0.006

DB 0.82,0.93 0.91,0.97 0.91,0.97 0.78,0.90 0.02,0.03 1.0,1.0 0.91,0.97

Majority 0.91,0.96 1.0,1.0 1.0,1.0 0.78,0.89 0.02,-0.006 0.91,0.97 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t003
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dependence suggests that Ĥ ½s� is able to correctly rank the performance of the clustering algo-

rithms. High correlation between the rankings of clustering algorithms obtained through Ĥ ½s�
and majority (refer to Tables 13 (leaf) and 14 (abalone)) further supports our hypothesis.

6.6 Ground truth cluster sizes are skewed

Datasets: Here we consider the synthetic and the protein datasets where the ground truth clus-

ter size distributions are skewed.

Fig 3. H[S] versus purity, NMI and ARI for (i) crime murder (top), (ii) crime robbery (middle) and (iii) crime auto (bottom).

https://doi.org/10.1371/journal.pone.0239331.g003

Table 4. Kendall’s τ and Spearman’s correlation result for Crime (murder).

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.67,0.82 0.78,0.90 -0.2,-0.05 0.82,0.94 0.56,0.79 0.75,0.90

Purity 0.67,0.82 1.0,1.0 0.82,0.92 -0.02,0.03 0.56,0.75 0.6,0.72 0.85,0.94

NMI 0.78,0.91 0.82,0.92 1.0,1.0 0.02,0.07 0.67,0.83 0.71,0.84 0.96,0.99

ARI -0.2,-0.05 -0.02,0.03 0.02,0.07 1.0,1.0 -0.16,-0.03 0.09,0.10 0.05,0.08

SH 0.82,0.94 0.56,0.75 0.67,0.83 -0.16,-0.03 1.0,1.0 0.38,0.62 0.64,0.81

DB 0.56,0.79 0.6,0.72 0.71,0.84 0.09,0.10 0.38,0.62 1.0,1.0 0.75,0.85

Majority 0.75,0.90 0.85,0.94 0.96,0.99 0.05,0.08 0.64,0.80 0.75,0.85 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t004
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Observations: It can be clearly observed from the Fig 7 top (synthetic) and bottom (pro-

tein) that Ĥ ½s� correlates nicely with other metrics in measuring the goodness of the cluster

structure obtained as output from different clustering algorithms. Higher similarity (refer to

Table 15 (synthetic) and Table 16 (protein)) between the majority ranking and that obtained

through Ĥ ½s� further indicates the effectiveness of our metric in ranking the performance of

the clustering algorithms.

6.7 Summary

To summarize we showed that performance of Ĥ ½s� is comparable to the other metrics even

though it does not require the ground truth cluster structure unlike the other competing met-

rics. Through extensive experiments on a large variety of datasets we showed that our pro-

posed metric is indeed effective as well as robust. This further indicate that Ĥ ½s� is independent

of the associated ground truth structure. Ĥ ½s� also consistently outperforms both the baseline

internal metrics across all the datasets.

6.8 Dependence on cluster structure

We have demonstrated that the proposed metric is able to outperform the existing internal

metrics across different datasets. We now focus on analysing dependence of the perfor-

mance of our metric on the complexity of the dataset. To quantify the complexity of a data-

set we define two metrics q1 ¼
Ĥ ½s�
log M and q2 ¼

H½s�
log Ss

where Ĥ ½s�measures the entropy of the

ground truth cluster for the dataset. For q1, Ĥ ½s� is normalized by the number of points in

the dataset (log M in specific) while for q2 it is normalized by the number of clusters in the

ground truth (log Sσ). Note that we calculate these two metrics for each dataset (refer to

Table 5. Kendall’s τ and Spearman’s correlation result for Crime (robbery).

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.82,0.94 0.89,0.96 -0.16,-0.04 0.82,0.94 0.56,0.79 0.85,0.95

Purity 0.82,0.94 1.0,1.0 0.93,0.98 -0.05,0.02 0.71,0.87 0.67,0.82 0.96,0.99

NMI 0.89,0.96 0.93,0.98 1.0,1.0 -0.05,0.02 0.71,0.87 0.67,0.82 0.96,0.99

ARI -0.16,-0.04 -0.05,0.02 -0.05,0.02 1.0,1.0 -0.13,-0.02 0.05,0.11 -0.02,0.03

SH 0.82,0.94 0.71,0.87 0.71,0.87 -0.13,-0.02 1.0,1.0 0.38,0.62 0.75,0.81

DB 0.56,0.79 0.67,0.82 0.67,0.82 0.05,0.11 0.38,0.62 1.0,1.0 0.64,0.81

Majority 0.85,0.95 0.96,0.99 0.96,0.99 -0.02,0.03 0.75,0.81 0.64,0.81 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t005

Table 6. Kendall’s τ and Spearman’s correlation result for Crime (auto).

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.89,0.96 0.82,0.91 -0.05,-0.009 0.78,0.90 0.64,0.81 0.78,0.89

Purity 0.89,0.96 1.0,1.0 0.78,0.90 -0.02,0.05 0.82,0.92 0.6,0.76 0.82,0.91

NMI 0.82,0.91 0.78,0.90 1.0,1.0 0.13,0.18 0.60,0.76 0.75,0.88 0.96,0.99

ARI -0.05,-0.009 -0.02,0.05 0.13,0.18 1.0,1.0 0.02,0.08 0.16,0.15 0.16,0.22

SH 0.78,0.91 0.82,0.92 0.60,0.76 0.02,0.08 1.0,1.0 0.42,0.57 0.64,0.77

DB 0.64,0.81 0.60,0.76 0.75,0.88 0.16,1.15 0.42,0.57 1.0,1.0 0.71,0.83

Majority 0.78,0.89 0.82,0.91 0.96,0.99 0.16,0.22 0.64,0.77 0.71,0.83 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t006
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Table 1 for exact values) and train a linear regression model to predict the performance

(Ĥ ½S� � Majorityðt; rÞ) on each dataset. We obtain a reasonably high R2 of 0.52. This indi-

cates that complexity of the dataset in terms of q1 and q2 is indeed correlated to the perfor-

mance of the proposed metric.

Fig 4. H[S] versus purity, NMI and ARI for (i) red wine, (ii) white wine, (iii) TREC and (iv) MNIST datasets (from top to bottom). Note that for the wine datasets we

considered two types of feature matrices. For raw features (represented in blue) we considered the values of the features as provided in the dataset to obtain the feature

vector of each point while for ‘ranked feature” (represented in red) we rank each feature based on the value and then use this rank score instead of the raw value.

https://doi.org/10.1371/journal.pone.0239331.g004
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Table 7. Kendall’s τ and Spearman’s correlation result for Red Wine.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.66,0.82 0.45,0.64 0.23,0.42 0.06,0.08 0.32,0.42 0.56,0.74

Purity 0.66,0.82 1.0,1.0 0.76,0.91 0.46,0.69 -0.12,-0.12 0.45,0.49 0.90,0.96

NMI 0.45,0.64 0.76,0.91 1.0,1.0 0.44,0.60 -0.15,-0.13 0.35,0.42 0.87,0.95

ARI 0.23,0.42 0.46,0.69 0.44,0.60 1.0,1.0 -0.24,-0.46 0.33,0.48 0.57,0.73

SH 0.06,0.08 -0.12,-0.12 -0.15,-0.13 -0.24,-0.46 1.0,1.0 0.11,0.24 -0.18,-0.14

DB 0.32,0.42 0.45,0.49 0.35,0.42 0.33,0.48 0.11,0.24 1.0,1.0 0.42,0.48

Majority 0.56,0.74 0.90,0.96 0.87,0.95 0.57,0.73 -0.18,-0.14 0.42,0.48 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t007

Table 8. Kendall’s τ and Spearman’s correlation result for White Wine.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.31,0.54 0.56,0.73 0.52,0.69 -0.15,-0.18 0.41,0.55 0.53,0.73

Purity 0.31,0.54 1.0,1.0 0.26,0.35 0.28,0.33 -0.11,-0.11 0.24,0.42 0.29,0.37

NMI 0.56,0.73 0.26,0.35 1.0,1.0 0.92,0.98 -0.21,-0.21 0.26,0.33 0.93,0.98

ARI 0.52,0.69 0.28,0.33 0.92,0.98 1.0,1.0 -0.19,-0.19 0.26,0.32 0.95,0.99

SH -0.15,-0.18 -0.11,-0.11 -0.21,-0.21 -0.19,-0.19 1.0,1.0 -0.40,-0.50 -0.22,-0.22

DB 0.41,0.55 0.24,0.42 0.26,0.33 0.26,0.32 -0.40,-0.49 1.0,1.0 0.27,0.35

Majority 0.53,0.73 0.29,0.37 0.93,0.98 0.95,0.99 -0.22,-0.22 0.27,0.35 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t008

Table 9. Kendall’s τ and Spearman’s correlation result for TREC.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.33,0.41 0.60,0.80 0.42,0.61 -0.56,-0.71 0.78,0.89 0.52,0.65

Purity 0.33,0.41 1.0,1.0 0.63,0.76 0.64,0.79 -0.07,-0.10 0.20,0.29 0.64,0.84

NMI 0.60,0.80 0.64,0.76 1.0,1.0 0.82,0.92 -0.33,-0.53 0.47,0.72 0.82,0.93

ARI 0.42,0.61 0.66,0.79 0.82,0.92 1.0,1.0 -0.31,-0.56 0.43,0.64 0.81,0.93

SH -0.56,-0.70 -0.07,-0.10 -0.33,-0.53 -0.33,-0.56 1.0,1.0 -0.78,-0.92 -0.33,-0.45

DB 0.78,0.89 0.20,0.29 0.47,0.72 0.43,0.64 -0.78,-0.92 1.0,1.0 0.38,0.58

Majority 0.52,0.65 0.64,0.84 0.82,0.93 0.81,0.93 -0.33,-0.45 0.38,0.58 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t009

Table 10. Kendall’s τ and Spearman’s correlation result for MNIST.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.87,0.95 0.87,0.95 0.82,0.94 0.16,0.15 0.47,0.68 0.82,0.94

Purity 0.87,0.95 1.0,1.0 1.0,1.0 0.87,0.95 0.11,0.09 0.51,0.67 0.96,0.98

NMI 0.87,0.95 1.0,1.0 1.0,1.0 0.87,0.95 0.11,0.09 0.51,0.67 0.96,0.98

ARI 0.82,0.94 0.87,0.95 0.87,0.95 1.0,1.0 -0.02,-0.03 0.64,0.79 0.91,0.96

SH 0.16,0.15 0.11,0.09 0.11,0.09 -0.02,-0.03 1.0,1.0 -0.2,-0.23 0.07,0.04

DB 0.47,0.68 0.51,0.67 0.51,0.67 0.64,0.79 -0.2,-0.23 1.0,1.0 0.56,0.68

Majority 0.82,0.94 0.96,0.98 0.96,0.98 0.91,0.96 0.07,0.04 0.56,0.68 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t010
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Fig 5. H[S] versus purity, NMI and ARI for (i) football (top) and (ii) railway (bottom). We consider two types of feature vectors for each data point (node). In case of

‘neighborhood” (represented in blue) the feature vector of each node ui consists of 1s and 0s depending on whether uj(j 6¼ i) is a neighbor or not. For ‘shortest path”

(represented in red) the feature vector of each node ui consists of the shortest path to uj(j 6¼ i).

https://doi.org/10.1371/journal.pone.0239331.g005

Table 11. Kendall’s τ and Spearman’s correlation result for Football.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.68,0.87 0.57,0.75 0.65,0.83 0.6,0.79 -0.01,-0.015 0.62,0.82

Purity 0.68,0.87 1.0,1.0 0.87,0.94 0.84,0.93 0.78,0.88 0.22,0.34 0.89,0.96

NMI 0.57,0.75 0.87,0.94 1.0,1.0 0.84,0.93 0.73,0.87 0.34,0.45 0.92,0.97

ARI 0.65,0.83 0.84,0.93 0.84,0.93 1.0.,1.0 0.75,0.87 0.30,0.39 0.89,0.96

SH 0.6,0.79 0.78,0.88 0.73,0.87 0.75,0.87 1.0,1.0 0.16,0.25 0.77,0.90

DB -0.01,-0.015 0.22,0.34 0.34,0.45 0.30,0.39 0.16,0.25 1.0,1.0 0.26,0.39

Majority 0.62,0.82 0.89,0.96 0.92,0.97 0.89,0.96 0.77,0.90 0.26,0.39 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t011

Table 12. Kendall’s τ and Spearman’s correlation result for Railway.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.88,0.97 0.89,0.97 0.76,0.89 0.49,0.66 0.39,0.55 0.89,0.97

Purity 0.88,0.97 1.0,1.0 0.94,0.99 0.74,0.88 0.47,0.64 0.46,0.61 0.94,0.99

NMI 0.89,0.97 0.94,0.99 1.0,1.0 0.75,0.90 0.45,0.63 0.45,0.61 0.97,0.99

ARI 0.76,0.89 0.74,0.88 0.75,0.90 1.0,1.0 0.4,0.54 0.36,0.46 0.75,0.90

SH 0.49,0.66 0.47,0.64 0.45,0.63 0.4,0.54 1.0,1.0 -0.05,-0.07 0.45,0.64

DB 0.39,0.55 0.46,0.61 0.45,0.61 0.36,0.46 -0.05,-0.07 1.0,1.0 0.42,0.60

Majority 0.89,0.97 0.94,0.99 0.97,0.99 0.75,0.90 0.45,0.64 0.42,0.60 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t012
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7 Discussion

The results discussed in this paper suggest that Infomax can be used as a completely unsuper-

vised measure, that can be computed solely from the partition size distribution, for each algo-

rithm. Using this, we can rank data clustering algorithms in an unsupervised manner.

Fig 6. H[S] versus purity, NMI and ARI for Leaf (top) and Abalone (below) datasets.

https://doi.org/10.1371/journal.pone.0239331.g006

Table 13. Kendall’s τ and Spearman’s correlation result for Leaf.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.70,0.86 0.67,0.79 0.88,0.96 0.52,0.71 0.55,0.57 0.76,0.88

Purity 0.7,0.86 1.0,1.0 0.85,0.95 0.76,0.90 0.52,0.74 0.36,0.36 0.94,0.98

NMI 0.67,0.79 0.85,0.95 1.0,1.0 0.73,0.86 0.61,0.81 0.33,0.38 0.91,0.97

ARI 0.88,0.96 0.76,0.90 0.73,0.86 1.0,1.0 0.58,0.78 0.55,0.55 0.82,0.93

SH 0.52,0.71 0.52,0.74 0.61,0.81 0.58,0.78 1.0,1.0 0.24,0.44 0.58,0.78

DB 0.55,0.56 0.36,0.36 0.33,0.38 0.55,0.55 0.24,0.44 1.0,1.0 0.42,0.44

Majority 0.76,0.88 0.94,0.98 0.91,0.97 0.82,0.93 0.58,0.78 0.42,0.44 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t013

Table 14. Kendall’s τ and Spearman’s correlation result for Abalone.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.73,0.88 0.64,0.81 0.39,0.59 0.15,0.34 0.61,0.80 0.64,0.81

Purity 0.73,0.88 1.0,1.0 0.79,0.92 0.48, 0.72 0.18,0.41 0.58,0.73 0.79,0.92

NMI 0.64,0.81 0.79,0.92 1.0,1.0 0.7,0.81 0.33,0.51 0.42,0.63 1.0,1.0

ARI 0.39,0.59 0.48,0.72 0.7,0.81 1.0,1.0 0.64,0.80 0.12,0.24 0.7,0.81

SH 0.15,0.34 0.18,0.41 0.33,0.51 0.64,0.80 1.0,1.0 -0.18,-0.13 0.33,0.51

DB 0.61,0.80 0.58,0.73 0.42,0.63 0.12,0.24 -0.18,-0.13 1.0,1.0 0.42,0.63

Majority 0.64,0.81 0.79,0.92 1.0,1.0 0.7,0.81 0.33,0.51 0.42,0.63 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t014
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On community detection. A closely related problem, that of community detection in net-

works, has received considerable attention recently in Physics. The core idea is to group nodes

in the network based on structural similarity. As in case of clustering, there exists a plethora of

algorithms for community detection as well. An immediate extension would be to deploy our

proposed metric to the problem of ranking community detection algorithms.

Fig 7. H[S] versus purity, NMI and ARI for Synthetic (top) and Protein (below) datasets.

https://doi.org/10.1371/journal.pone.0239331.g007

Table 15. Kendall’s τ and Spearman’s correlation result for Synthetic.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.70,0.87 0.73,0.89 0.42,0.62 0.48,0.58 0.67, 0.83 0.70,0.87

Purity 0.70,0.87 1.0,1.0 0.97,0.99 0.73,0.84 0.73,0.84 0.36,0.62 1.0,1.0

NMI 0.73,0.89 0.97,0.99 1.0,1.0 0.7,0.81 0.7,0.81 0.39,0.64 0.97,0.99

ARI 0.42,0.62 0.73,0.84 0.69,0.81 1.0,1.0 0.71,0.86 0.27,0.51 0.73,0.84

SH 0.48,0.58 0.73,0.84 0.7,0.81 0.70,0.84 1.0,1.0 0.21,0.28 0.73,0.85

DB 0.67,0.83 0.36,0.62 0.39,0.64 0.27,0.51 0.21,0.28 1.0,1.0 0.36,0.62

Majority 0.70,0.87 1.0,1.0 0.97,0.99 0.73,0.84 0.73,0.85 0.36,0.62 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t015

Table 16. Kendall’s τ and Spearman’s correlation result for Protein.

Ĥ ½s� Purity NMI ARI SH DB Majority

Ĥ ½s� 1.0,1.0 0.82,0.93 0.78,0.91 0.42,0.54 0.13,0.14 0.27,0.31 0.82,0.93

Purity 0.82,0.93 1.0,1.0 0.96,0.99 0.53,0.67 0.02,0.018 0.24,0.26 1.0,1.0

NMI 0.78,0.91 0.96,0.99 1.0,1.0 0.49,0.63 -0.02,-0.01 0.20,0.25 0.96,0.99

ARI 0.42,0.54 0.53,0.67 0.49,0.63 1.0,1.0 0.13,0.09 -0.09,-0.145 0.53,0.67

SH 0.13,0.14 0.02,0.02 -0.02,-0.01 0.13,0.09 1.0,1.0 0.42,0.54 0.02,0.02

DB 0.27,0.31 0.24,0.26 0.2,0.25 -0.09,-0.14 0.42,0.54 1.0,1.0 0.24,0.26

Majority 0.82,0.93 1.0,1.0 0.96,0.99 0.53,0.67 0.02,0.02 0.24,0.26 1.0,1.0

https://doi.org/10.1371/journal.pone.0239331.t016
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On experimenting with various datasets we observed that

1. The performance of clustering algorithms depends on the dataset. In case of the football

dataset we observed that average linkage was performing the best whereas in case of the rail-

way dataset k-means was performing the best.

2. The performance of clustering algorithms also depends on the distance metric used for cal-

culating distance between the data points in the dataset. This dependence is different

depending on the algorithm. For example, in the crime dataset, l2 distance performs better

than l1 in k-means, but worse than l1 in complete linkage.

3. The performance changes depending on the feature matrix used.

These observations reinforces the conclusion [8] that the search for the perfect clustering

algorithm is chimeric. This makes it important to develop unsupervised methods to rank parti-

tioning algorithms as the one we presented in this paper.
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