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Abstract

Exotic ambrosia beetles are increasing in Europe due to global trade and global warming.

Among these xylomycetophagous insects, Xylosandrus compactus (Eichhoff) (Coleoptera:

Curculionidae) is a serious threat for several Mediterranean host plants. Carob trees grow-

ing in Sicily (Italy) have been extensively attacked by beetles leading to rapid tree decline.

Although X. compactus has been found in Europe for several years, most aspects of its ecol-

ogy are still unknown. We thus studied the population structure and dynamics of X. compac-

tus, together with its twig size preference during a sampling of infested carob trees in south

east Sicily. In addition, fungi associated with insects or galleries were isolated and charac-

terized. The results showed that, in this newly-colonized environment and host plant, adult

X. compactus overwinters inside twigs and starts to fly and reproduce in mid spring, com-

pleting five generations before overwintering in late fall. The mean diameter of carob twigs

infested by the beetle varied significantly over the seasons, with the insect tending to infest

larger twigs as season progresses. The mean number of adults/gallery was 19.21, ranging

from 6 to 28. The minimum temperature significantly affected the overwintering adult mortal-

ity. Ambrosiella xylebori and Fusarium solani were the main symbionts associated with the

pest in this study. Acremonium sp. was instead recorded for the first time in Europe inside X.

compactus galleries. Several other fungi species were also found for the first time in associ-

ation with X. compactus. Our findings provide useful insights into the sustainable manage-

ment of this noxious pest.

Introduction

The number of exotic insect pests established in Europe is constantly increasing, mainly due to

global trade and global warming [1–7]. These organisms often cause economic damage as well

as an increase on pesticide applications with the consequent side effects toward non-target

organisms, the environment and human health [8–12]. Among insect pests which have
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invaded the Mediterranean Basin over the last decades, alien wood-boring beetles are of pri-

mary importance due to the high diversity of host plants and the suitable climate [13–17]. The

mild winters followed by dry and warm summers of Mediterranean regions, favour the spread

and establishment of alien Scolytinae [18], including several xylomycetophagous ambrosia

beetle species belonging to the genus Xylosandrus [19]. In particular, four of these species are

native to Asia and are now widespread in Italy. Xylosandrus morigerus (Blandford) is known as

a plant nursery pest, while X. crassiusculus (Motschulsky) and X. germanus (Blandford) are

considered pests of various cultivated and wild host species [20–23].

Since its first report in 2012 [24, 25], X. compactus (Eichhoff), also known as the black twig

borer, has been reported as an emerging pest for several plants of the Mediterranean maquis

[26], as well as for various trees and ornamental shrubs that are widespread in southern Europe

[19, 27, 28]. Among these, Laurus nobilis L. [25] and carob tree (Ceratonia siliqua L.) have

been reported as preferred host plants [29]. Unusual heavy pest infestations on large branches

and trunks, associated with serious decline and wilting, have been recently observed on carob

trees in Sicily (Southern Italy) [29–31]. Carob is a thermophilous arboreal species characteris-

tic of the olea-lentisc and carob groups (belonging to the Oleo sylvestris-Ceratonion siliquae
alliance) [32] and it is a widespread and long-living tree in Mediterranean woodland vegeta-

tion [33, 34]. This tree species, largely diffused in dry areas of Sicily, provides to farmers several

products and by-products including the flour extracted from the seeds (Locust Bean Gum,

LBG) used in food industry as thickening agent (E410) [35–37].

Xylosandrus compactus, as well as the other ambrosia beetles, develop by feeding exclusively

on fungi cultivated by females inside galleries [38–40]. In insect-fungus mutualisms, symbiotic

fungi can degrade the defensive substances of a plant and/or directly produce antagonistic

compounds against other microorganisms that may co-occur in the galleries [41]. Among the

symbiotic fungi reported in association with X. compactus, three species seem to be the most

recurrent, i.e., Ambrosiella xylebori Brader ex Arx, A. macrospora (Francke-Grosm.) L.R. Batra

and Fusarium solani (Mart.) Snyd. & Hans [26, 42–45]. On the other hand, several other fungal

species, including Geosmithia pallida, Epicoccum nigrum and Bionectria sp., have been found

in association with the black twig borer on Mediterranean maquis plants [26]. However, the

symbiotic community composition may be spatio-temporal dependent. Bateman et al. [46]

isolated A. xylebori almost exclusively from the mycetangium (a fungus spore-carrying organ),

and Fusarium spp. mainly from the body surface, clearly demonstrating that the different

fungi are spatially segregated on the insect’s body. Skelton et al. [47] demonstrated that closely

related symbionts are interchangeable by offering alternative fungal symbionts from different

Ambrosiella clade in experimental galleries inoculated with X. compactus. However, Li et al.

[48] showed that aposymbiotic specimens, deprived of Ambrosiella, in any case develop empty

mycetangia.

Although X. compactus has been in Europe for several years, causing much damage to wild

and cultivated plants, its population structure over the seasons in the newly-invaded areas has

not yet been investigated. Similarly, there is little information on the fungal communities of X.

compactus in such areas. The annual population trend of the beetle was thus monitored, and

the fungi associated with the insect or occurring inside the infested galleries were identified

and characterized.

Materials and methods

Beetle samplings and dissection of the samples

The study was carried out by sampling unmanaged carob trees (var. Latinissima) from the

beginning of November 2017 to the end of December 2018, in the town of Scicli (18m a.s.l.,
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36˚45’45.0"N, 14˚38’40.3"E) located in south east Sicily (Italy). This sampling site was charac-

terized by an area of about 10 ha of a semi-urban environment next to a natural landscape, typ-

ical of the Mediterranean environment, where many natural carob trees grow spontaneously

without any anthropic intervention. In this location, the X. compactus first appeared in

summer 2017 [29]. Climatic data were provided by the Sicilian Agrometeorological Service

(SIAS). The data (minimum, maximum and daily average temperatures) were obtained from

the nearest climatic station located 5 km from the sampling site (51m a.s.l., 36˚45’41.3"N,

14˚40’50.5"E).

A yearly population trend of X. compactus on carob trees was estimated by sampling and

dissecting twigs (20 twigs/biweekly) that showed infestation signs, such as the presence of an

ambrosia beetle entrance hole, wilting, defoliation and wood necrosis near the entrance holes

[22, 29]. Samplings were carried out every 15 days in order to increase the likelihood of sam-

pling all the different biological stages of each pest generation, given this beetle completes its

life cycle in about one month [38]. For each sampling date, four twigs/tree (approximately 1.5–

2 m above the ground) were sampled from all the cardinal points of five randomly chosen

trees located at a distance of about 50m from each other. Each sampling included ten small

twigs (diameter�7 mm; length� 50 cm), usually infested by one or few females, and ten

larger twigs (diameter�8 mm; length >50 cm), usually attacked by multiple females

[22,30,38]. Twig diameter was measured before the samplings using a Vernier caliper.

Twigs were cut using secateur-type scissors, an extendable pruner or other cutting tools,

and transferred to the laboratory and dissected the same day under environmental room con-

ditions (25 ± 2 ˚C and 60 ± 10% R.H.). Specimens found inside each brood chamber were

counted under a stereomicroscope, and the adults were identified by their main specific mor-

phological traits [49]. For each infested twig, the diameter of the twig at the entrance holes and

the number of biological stages (eggs, larvae, pupae, and adults) inside each gallery were

recorded. Dead specimens inside the galleries were also counted. For galleries infested by

adults only, the mean number of specimens/gallery was calculated.

Fungal isolation and identification

Fungi that were inhabiting the beetle’s external body surface or growing in the infested twig

galleries of each sampled twig were isolated. Sections of symptomatic twig tissues were excised

from the lesions surrounding the beetle gallery and disinfected with 1.5% sodium hypochlorite

solution, rinsed in sterile water, and placed on potato dextrose agar (3.9% PDA, Oxoid). To

prevent bacteria growth, medium plates were amended with 100 mg/liter of streptomycin sul-

phate (Sigma-Aldrich). Samples were incubated at 25 ± 1˚C, or until the fungal growth was

evident. Fungi inside the galleries were also isolated by scraping off a portion of the fungal bio-

mass with a sterile wood-stick and transferring it onto PDA. For isolation of the beetle fungal

communities, 2–3 not disinfected beetles per sample were plated on PDA. Per each sampling

date, from two to six fungal isolates were obtained from twigs or insects.

The fungi colonies were transferred onto new plates to obtain pure cultures. Single conid-

ium or hyphal tip culture fungi were then established on PDA for all fungal colonies. After

being stored in an incubator in the dark at 25 ˚C for up to two weeks, morphotypes were

assigned based on macromorphology (i.e., color, size comparison/growth rate, texture). These

cultures were separated into possible ambrosia and other fungi by examining the colony char-

acteristics [44, 46]. Representative isolates of mean species were also identified with molecular

analysis. All isolates were stored at -20 ˚C in 20% (v/v) glycerol at the Department of Agricul-

ture, Food and Environment of the University of Catania, Italy.
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Molecular identification of the fungal isolates was performed by sequencing internal tran-

scribed spacer regions of the rDNA and 5.8S region (ITS). Genomic DNA was extracted from

35 isolates using the Wizard Genomic DNA Purification Kit (Promega Corporation, WI,

USA). The ITS of the nuclear ribosomal RNA operon was amplified with primers ITS5 and

ITS4 for all isolates and species [50].

The PCR products were sequenced in both directions by Macrogen Inc. (South Korea). The

DNA sequences generated were analysed, and consensus sequences were computed with Mega

7 [51]. BLAST searches were used to compare the obtained sequences with other sequences in

the NCBI database.

Data analyses

The raw insect data obtained were preliminarily examined in order to detect the first two dates

in a row with adults only infesting the sampled twigs, i.e., the beginning of the insect reproduc-

tive diapause. Mid-December 2017 (see the Results section) was thus set as the starting sam-

pling date for analysing the yearly structure of the X. compactus population. Data were thus

divided into the following four seasons: from Dec 15 2017 to March 14 2018 (winter), from

March 15 2018 to Jun 14 2018 (spring), from Jun 15 2018 to Sep 14 2018 (summer) and from

Sep 15 2018 to Dec 14 2018 (autumn).

Raw datasets were then tested for normality and homogeneity of variance using Kolmogo-

rov-Smirnov D test and Cochran’s test, respectively, and no data transformation was needed.

Data were analysed by factorial ANOVA (at a level of significance of p� 0.05), using season as

the independent factor. The dependent variables were the specimen numbers belonging to

each biological stage (egg, larval, pupal and adult) in the whole sample, the mean diameter of

infested twigs, and the number of adults/gallery. A Bonferroni post-hoc test was conducted in

order to compare the mean diameter of infested twigs over the different seasons. The tempera-

ture dependent mortality of overwintering adults was described by a linear regression model,

studying the proportion of dead adults (number of dead adults/number of sampled adults) per

sampling date as a function of the minimum temperature trend of the two weeks before the

sampling. The trend was estimated by calculating, per sampling date, the mean minimum

daily temperature of the fourteen days preceding each sampling. Statistical analyses were car-

ried out using SPSS 22.0 software (IBM Corp., Armonk, NY, USA).

Results

Yearly beetle population structure

During the first three sampling dates, there was a decreasing trend in the proportion of imma-

ture beetles, i.e., 37, 14.3 and 0% of the sampled individuals were juveniles, in mid-November,

late-November and early December 2017, respectively (Fig 1). In line with this, on Dec 15

2017, the sampled beetles were all adults, and therefore this was considered as the starting date

for the yearly analyses. The population trend of X. compactus was affected by the season, as

shown in Fig 1. The specimen percentage of the four developmental stages varied significantly

over the seasons (eggs: F3,198 = 3.446, p = 0.018; larvae: F3,198 = 10.405, p< 0.001; pupae: F3,198

= 7.991, p< 0.001; adults: F3,198 = 3.094, p = 0.028).

During the winter (from mid December 2017 to early April 2018), only adults were found

inside the galleries. Beetle eggs occurred from April to November 2018 with five major peaks:

in early May (41.8%), mid-June (20.5%), late July (25.4%), early September (23.3%) and early

October 2018 (21.1%). Larvae were sampled from late April to late November with four major

peaks in mid-May (33.9%), late June (39.2%), early August (57%) and late September (33.8%),

and a minor one in late October 2018 (21.2%). The amount of pupae, recovered from late May
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to late November, followed the same trend as the larvae (Fig 1). Adults were always found

infesting the sampled twigs, however their numbers were constant during the winter but vari-

able from spring to autumn, with major peaks in early June (58.2%), late July (56.5%), and

early September 2018 (47.7%).

The mean diameter of infested carob twigs was 7.14 mm (± 0.34), but varied significantly

according to the season (F3,198 = 17.061; p< 0.001) (Fig 2). Results of the post-hoc Bonferroni

test showed that the mean diameter of infested twigs during the summer was significantly

Fig 1. Annual trend of the Xylosandrus compactus population structure on carob trees in Sicily (Southern Italy) from November 2017 to

December 2018. Mean percentage of eggs, larvae, pupae and adults of X. compactus found inside the sampled carob twigs. During winter only inactive

(overwintering) adults were found. The dashed line represents the biweekly mean temperature trend. Seasons: W = winter, Sp = spring, Su = summer,

A = autumn.

https://doi.org/10.1371/journal.pone.0239011.g001

Fig 2. Mean (±SE) diameter of carob twigs infested by Xylosandrus compactus from November 2017 to December 2018 in Sicily (Southern

Italy). Seasons: W = winter, Sp = spring, Su = summer, A = autumn.

https://doi.org/10.1371/journal.pone.0239011.g002
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different from the other seasons (summer vs spring, summer vs autumn, and summer vs win-

ter: p< 0.001). However, no significant difference was found between the mean infested diam-

eter during spring, autumn and winter (spring vs autumn: p = 0.984; spring vs winter and

autumn vs winter: p = 1.000). Specifically, during the winter, it ranged from 7.17 ± 0.87 mm in

January to 10.86 ± 1.47 mm in March. While, during the summer, the mean diameter of

infested twigs ranged from 4.50± 0.22 mm in June to 5.50 ± 0.34 mm in August. This value

also decreased during the spring and was higher during the winter (Fig 2).

There was no significant difference between the number of adults/gallery among the sea-

sons (F3,136 = 0.137; p = 0.938). The mean value of adults/gallery during the monitoring period

was 19.21± 0.40 (mean ±SE), ranging from 18.91± 0.80 in winter to 19.58 ± 0.70 in autumn.

Specifically, the minimum and maximum number of adults of X. compactus found inside a sin-

gle gallery was 6 and 28, respectively.

The highest percentage of X. compactus dead adults, inside the infested twigs, was recorded

from December to March (Fig 3), when the minimum temperatures (weekly mean) were con-

sistently lower than 10 ˚C. The mortality peak (39.82% dead adults) occurred in the second

half of January after several weeks with minimum daily temperatures lower than 5 ˚C. Results

of the linear regression model (Fig 4) of the proportion of dead adults as a function of the min-

imum temperature trend showed that the temperature affected significantly the mortality of

overwintering adults (R2 = 0.72; F1,13 = 33.434; p< 0.001).

Fungal isolation, identification and characterization

A total of 54 fungal isolates belonging to different genus and species were obtained from galler-

ies and beetles, and were identified using morphological and/or molecular analyses. In total,

eight different species were associated with the beetle and/or galleries. Based on culture mor-

phology, most isolates (13) were identified as A. xylebori and produced aleurioconidiophore

Fig 3. Mortality of Xylosandrus compactus overwintering adults inside carob twigs in Sicily (Southern Italy). Mean percentage of live and dead

adults found infesting the sampled carob twigs. The dashed line represents the mean minimum temperatures of the period.

https://doi.org/10.1371/journal.pone.0239011.g003
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with single aleurioconidium, in agreement with the description of this species by Brader

(1964) and von Arx & Hennebert (1965) [52, 53].

The following species were identified from the other isolates: F. solani (9 isolates), Xenoacre-
monium recifei (10), Clonostachys rosea (12), Acremonium sp. (1), Cytospora sp. (4), Aureobasi-
dium pullulans (3), and Penicillium sp. (2). To confirm the taxonomic identification, BLAST

searches were performed for representative isolates of each species. ITS sequences of isolates

CR 32 and CR 18 showed 99.6% and 100% homology with the holotype strain of A. xylebori
(CBS 110.61) and F. solani (FKKM2), respectively. Similarly, the ITS sequences of CR 31 and

CR 58 showed 99.2% and 100% identity with X. recifei (CBS 137.35) and C. rosea (CBS 149.52),

respectively.

Fusarium and Ambrosiella species were the most prevalent isolates from galleries, i.e.,

25.71% and 37.14%, respectively. On the other hand, X. recifei and C. rosea were isolated from

both galleries and beetles. Occasionally, Acremonium sp., Cytospora sp. and Penicillium sp.

were obtained from galleries, while A. pullulans were obtained from beetles.

Discussion

This study provides the first data on the population structure and dynamics of X. compactus in

Europe, and specifically on carob trees growing in Sicily (Southern Italy). The results of the

annual beetle population trend show that, in the monitored environment, X. compactus over-

winters inside twigs as adult and brood production begins in spring, after female emergence.

Different generations were thus identified thanks to the study of the proportion of biological

stages over the seasons (Fig 1). Egg peaks occurred in early May, mid-June, late July, early Sep-

tember and early October. These findings strongly suggest that the pest completed five

Fig 4. Temperature-dependent mortality of Xylosandrus compactus overwintering adults on carob twigs in Sicily (Southern Italy)

considering the proportion of dead adults as a function of the minimum temperature trend.

https://doi.org/10.1371/journal.pone.0239011.g004
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generations, being active and reproducing from April and starting to overwinter in late

autumn. The same number of peaks was found for the larval stage, and the time interval

between adult peaks (about 6 weeks) was sufficient for X. compactus to complete its biological

cycle, to find a new host plant/twig and establish a new gallery. In agreement with our findings,

Ngoan et al. (1976) and Hara (1977), found that the X. compactus life cycle, from egg to adult,

lasted 28.5 days [38, 54]. In addition, the female progeny left parental galleries from 7 to 9 days

after pupal ecdysis, starting to lay eggs from 4 to 14 days after initial boring in a new twig [39].

The results of this study support the data obtained by sampling flying X. compactus adults

using ethanol-baited traps in an earlier study by Gugliuzzo et al. (2019) [29]. These authors

reported that the first flight of the year occurred in April, with temperatures consistently

higher than 20 ˚C, and that the flight activity stopped in autumn, when the daily mean temper-

ature decreased rapidly. In addition, the presence of only adults inside the twigs during the

cold season confirms that the pest overwintered as adults, in line with a study that investigated

the unusual behaviour of beetles on carob branches and trunks [30]. Sheltered and inactive

groups of X. compactus adults were also found by Pennacchio et al. (2012) after a survey con-

ducted on infested laurel plants in north western Italy [27]. Similarly, in Florida X. compactus
were found to overwinter as adults inside successfully-infested twigs of flowering dogwood

[38]. On the other hand, in Uganda the pest infesting robust a coffee was continuously active

and all the biological stages occurred throughout the year [55].

Several studies report that this species prefers to attack small twigs and lateral small

branches with a diameter<7 mm [22, 38, 56]. Our results showed that the mean infested

diameter of carob twigs varied significantly over the seasons, reaching the minimum and max-

imum values during the summer (<4 mm) and the winter (>10 mm), respectively. In addi-

tion, during the cold season, the percentage of dead adults correlated negatively with the

minimum temperature trend. This suggests that thicker twigs may represent a good shelter for

X. compactus in order to survive the coldest periods. However, specific investigations are

needed to verify these hypotheses. The beetle’s movement to larger twigs before overwintering

indicates that pest control should be carried out by pruning and disposing the pruned material.

Likewise, the preference shown by the beetle for small twigs during the summer suggests these

twigs should be monitored and should be the focus of any possible control strategies.

In our study, the number of adults found inside carob galleries with only X. compactus
adults ranged from 6 to 28 individuals per gallery. Considering galleries infested by both adults

and young instars, other authors have reported that the number of specimens/gallery ranged

from 3 to 36 on L. nobilis [24], 1 to 40 on Cornus florida L. [38] and 1 to 41 on Coffea cane-
phora P. [22]. Similar data were also found by Gugliuzzo et al. (2019) on infested large

branches and trunks of carob [29], where the mean number of adults/gallery was 19.98.

We found that the symbiotic fungus A. xylebori was the main ambrosia species associated

with the black twig borer and isolated from galleries, as reported by Vannini et al. (2017) in

Italy [26]. This species has been isolated from several host species in association with X. com-
pactus worldwide [46, 57–60] and it has also been described in association with other beetle

species, including congeneric taxa [61] and other taxa that are more distantly related [62].

Von Arx & Hennebert (1965) designated a type for the genus and species based on Brader’s

isolate (CBS 110.61) [53]. In addition, as reported by Mayers et al. [60], Brader [52] and von

Arx & Hennebert [53] described two types of aleurioconidiophores produced by the Ambro-
siella species: one with disarticulating monilioid conidiophore cells, breaking off with attached

aleurioconidia, and a second, straight, hyphoid aleurioconidiophore with a single, attached

aleurioconidium. Ambrosiella xylebori has been described with the second conidiophore type.

Similarly, A. xylebori isolates in our collection produced single aleurioconidia from simple

aleurioconidiophores, which likely do not disarticulate, and ITS sequences showed a high
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homology with the holotype strain (CBS 110.61). Although the role of these fungi still needs to

be determined, some knowledge is already available in literature. Ambrosiella xylebori is a pri-

mary symbiotic fungus which is typically transported in the mycetangium of X. compactus and

supports insect growth in the host tree. All known Ambrosiella spp. produce a fruity aroma

[63], and these chemical volatiles may play a key role in attracting ambrosia beetles within the

galleries [64].

In addition to the primary symbiont, some often non-mycangial fungi, are also associated

with ambrosia beetles [46]. In this study, we isolated a Fusarium species from infested galleries,

here identified as F. solani. Fusarium solani is a name given to a complex “Fusarium solani Spe-

cies Complex” (FSSC) of over 45 morphologically cryptic species [65] and a recent study

showed that FSSC is actually another genus of the Nectriaceae family named Neocosmospora
[66]. Members of this genus have been reported in association with X. compactus and other

ambrosia beetles, and they are often reported as pathogenic to the host tree [22, 38, 44, 67],

and to other woody crops (i.e., avocado) in Sicily [68]. A recent study also demonstrated that

X. compactus females are attracted to several bioactive volatile compounds released by F. solani
[67]. Wood tunneling by X. compactus females interrupts the transmission of water and nutri-

ents within the plant, leading to wilting of the infested plant part within weeks [22, 38]. In

addition, secondary pathogens, fungal symbionts, and a plant response likely contribute to the

dieback [69].

The other fungi isolated from the sampled galleries were Acremonium sp., already reported

by Bateman et al. [46], and Penicillium sp., reported in association with X. germanus [19]. The

latter appears to be passively introduced during gallery excavation [70]. By contrast, to the best

of our knowledge, this study reports for the first time the association of Cytospora sp., A. pullu-
lans, X. recifei and C. rosea with this ambrosia beetle. Cytospora species are canker and dieback

pathogens of woody hosts [71, 72], whereas A. pullulans, X. recifei and C. rosea have not been

reported as pathogens, and their role still needs to be determined and merits further study. As

reported by Hofstetter et al. (2006), some fungi consistently carried by bark beetles have been

found to be commensal or even antagonistic [73]. In addition, the low isolation frequency of

some isolates suggests either contamination or incidental association related to abiotic factors,

which may influence the presence of fungi associated with X. compactus and the occurrence

during the isolation process [42, 43, 59]. Considering that the fungi identification of this study

is based on ITS sequences, a companion investigation is currently ongoing with the aim of

sequencing additional loci of the fungal isolates associated with X. compactus. Such further

study will focus on molecular characterization and multi-locus phylogeny allowing a definitive

fungi identification at the species level.

Taken as a whole, our findings highlight that in this newly colonized environment the pest

is able to complete five generations per year. Moreover, our results allowed to intercept the key

steps of the population phenology and the spring first flight of the beetle. Thus, these data pro-

vide useful knowledge for ameliorating the monitoring and sustainable control of X. compac-
tus, namely, winter pruning and removal of infested twigs coupled with summer monitoring

of younger twigs may represent an effective and environmentally-friendly strategy for X. com-
pactus control on carob trees.

This study was carried out in one of the very first areas (south east Sicily, Southern Italy)

among those recently invaded by X. compactus in Europe, and on the main host plant severely

affected by this pest in the described area, i.e. carob tree. However, considering the high inva-

sive potential and wide host range of X. compactus, further investigations on its population

dynamics and symbiotic associations in other environments and host plants would provide

more definitive insights into the invasion process, multitrophic interactions and real potential

damage of X. compactus in the Mediterranean Basin.
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46. Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. Fungal associates of the Xylosandrus compactus

(Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ Entomol.

2016; 45(4): 883–890.

47. Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J. A selective fungal transport organ

(mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles

and their symbionts. Proc R Soc B. 2019; 286(1894): 20182127.

48. Li Y, Ruan YY, Stanley EL, Skelton J, Hulcr J. Plasticity of mycangia in Xylosandrus ambrosia beetles.

Insect Sci. 2019; 26(4): 732–742.

49. Rabaglia RJ, Dole SA, Cognato AI. Review of American Xyleborina (Coleoptera: Curculionidae: Scolyti-

nae) occurring north of Mexico, with an illustrated key. Ann Entomol Soc Am. 2006; 99: 1034–1056.

PLOS ONE Population structure of Xylosandrus compactus and its associated fungi

PLOS ONE | https://doi.org/10.1371/journal.pone.0239011 September 11, 2020 12 / 13

https://doi.org/10.1371/journal.pone.0239011


50. White TJ, Bruns T, Lee SJWT, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA

genes for phylogenetics. PCR protocols: a guide to methods and applications. 1990; 18(1): 315–322.

51. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for big-

ger datasets. Mol Biol Evol. 2016; 33(7): 1870–1874.

52. Brader L. Etude de la relation entre le scolyte des rameaux du cafeir, Xyleborus compactus Eichh. (X.
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