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Abstract

Recent developments in high-throughput methods have resulted in the collection of high-

dimensional data types from multiple sources and technologies that measure distinct yet

complementary information. Integrated clustering of such multiple data types or multi-view

clustering is critical for revealing pathological insights. However, multi-view clustering is

challenging due to the complex dependence structure between multiple data types, includ-

ing directional dependency. Specifically, genomics data types have pre-specified directional

dependencies known as the central dogma that describes the process of information flow

from DNA to messenger RNA (mRNA) and then from mRNA to protein. Most of the existing

multi-view clustering approaches assume an independent structure or pair-wise (non-direc-

tional) dependence between data types, thereby ignoring their directional relationship. Moti-

vated by this, we propose a biology-inspired Bayesian integrated multi-view clustering

model that uses an asymmetric copula to accommodate the directional dependencies

between the data types. Via extensive simulation experiments, we demonstrate the nega-

tive impact of ignoring directional dependency on clustering performance. We also present

an application of our model to a real-world dataset of breast cancer tumor samples collected

from The Cancer Genome Altas program and provide comparative results.

Introduction

The advancements in high throughput technologies and the emergence of several supportive

programs such as The Genome Technology Program at the National Human Genome

Research Institute and The Cancer Genome Atlas program have enabled the capabilities for

rapid, high-quality, and low-cost collection of genomics data from multiple sources [1, 2].

These data types, collected from several heterogeneous sources for the same set of objects or

patients, often provide unique but complementary information. They can be thought of as pro-

viding different views for the same underlying phenomenon (with each data type representing

a particular view) and thus are referred to as “multi-view” datasets.
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With this explosion of data, there is a strong need for integrated analysis of multi-view data

to not only provide an immense amount of added information for making inference about the

objects but also to explore and utilize the complex associations between multiple data types

[3]. Hence, an integrated analysis of multi-view data has emerged as one of the promising

areas of research. In several studies, integration of multiple data types has been shown to pro-

vide more comprehensive and radically new perspectives for understanding molecular path-

ways and the progression of diseases such as cancer as compared to analyzing individual data

types separately [3–5].

In this research, we are concerned with proposing an effective approach for an integrated

multi-view clustering where the objective is to group a set of patients, based on different geno-

mic data types—an emerging field with only a few publications so far [6]. Following the exist-

ing literature in this domain, we refer to this integrative clustering as vertical multi-view

clustering or consensus clustering [3, 6, 7].

Existing studies on vertical multi-view clustering can be primarily categorized into the fol-

lowing two groups [3]:

i. Separate or source-specific clustering of each data type followed by post-hoc integration of

the clustering outcomes often without incorporating any association between the data types

[8, 9]. This is also referred to as late integration or ensemble clustering [10].

ii. Concatenating the data types prior to clustering (or early integration) to obtain a single or

unified model using the concatenated/joint data [11].

The two-stage late integration approach often fails to explore and exploit the association

between different data types by assuming no dependence structure. On the other hand, early

integration with concatenated data can have scaling and high-dimensionality issues and fail to

recognize the individual contribution of each data type [3].

Hence, effective multi-view data integration methods are required that accommodates the

dependence structure across the data types. Incorporating such dependencies between the

multiple data types has been shown to encapsulate comprehensive information and deep

understanding [5, 12]. However, effective multi-view data integration to capture the depen-

dence between multiple data types remains a key challenge [13].

Recently, authors in [7] proposed an approach for integrative analysis via multiple dataset

integration (MDI) by modeling each dataset (or data types) using a Dirichlet-multinomial

mixture model and the association between the data types was captured by using the pairwise

dependence between the clusters. Their method allowed for the identification of groups of

genes that often fell together in one cluster. However, it did not provide a direct route to obtain

the overall clustering, which is often of interest in practical applications. Along the similar

lines, authors in [3] proposed a statistical model, called Bayesian consensus clustering (BCC),

for integrating two or more data types. Similar to MDI, BCC also assumes a Dirichlet-multino-

mial mixture model for the data types. However, their approach was based on defining a

source-specific cluster (i.e., separately clustering the objects for each of the datasets) as well as

a consensus (i.e., overall) clustering. The dependence between the data types was captured by

defining a parameter that controls the adherence of the source-specific clustering to the con-

sensus clustering. They also emphasized on the computational scalability and robustness of the

Bayesian framework for simultaneously estimating the consensus clustering as well as the

source-specific clustering as compared to both late and early integration [3].

These recent studies on integrative analysis have focused both on the issue of source-spe-

cific and provides an effective way of consensus clustering while accounting for the depen-

dence between multiple data types. However, the dependence between different data types is
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extremely complex and is governed by the underlying molecular biology (in the case of geno-

mics data). Specifically, genomics data types have dependencies that are often directional. For

example, the central dogma of molecular biology [14, 15] describes the flow of information

from DNA to messenger RNA (mRNA) through transcription and then from mRNA to pro-

tein through translation [16, 17], making these data types directionally dependent. Further, the

central dogma explains that this transfer of information is acyclic (with a pre-specified direc-

tion), for example, the transfer of information from gene to protein and not from protein to

protein or protein to gene [18].

This directional relationship between the data types is crucial for explaining physiological

traits and clinical outcomes [19]. Furthermore, it has been analytically proven that the more

remote an omics level or data source is from a physiological trait, the smaller the magnitude of

their correlation is. For instance, the proteome-trait (protein level) correlation test is more

powerful than the transcriptome-trait (RNA level) correlation test, which in turn is more pow-

erful than the genotype-trait (DNA level) correlation test [19]. Nonetheless, the current multi-

view clustering studies in the literature do not incorporate this directional information into

their modeling. To address this gap, we propose a biology-inspired integrated multi-view clus-

tering model called Bayesian directional multi-view clustering that incorporates the directional

dependence between the data types using a copula function.

Copulas are multivariate distribution functions that allow us to model the dependence

structure by considering the marginals [20]. Owing to the modeling flexibility provided by

copulas, they have been used extensively in the literature for obtaining the dependencies

between the data types. For instance, [21] used a Gaussian copula to construct a Dirichlet

prior mixture of multivariate distributions to perform dependency-seeking clustering

and showed significant improvement in the clustering results. Nonetheless, to the best of

our knowledge, no existing work in the multi-view clustering has employed directional

dependencies.

In this work, we obtain the directional dependence between the data types using an asym-

metric copula regression. The use of asymmetric copula is crucial for modeling the directional-

ity as symmetric copulas can only provide the directional dependence in the marginal

behaviour but not in the joint behavior, as pointed out by [22]. Therefore, symmetric copulas

may not be used to capture directional dependence. Here, we used the Rodriguez-Lallena and

Ubeda-Flores [23] family of asymmetric copulas to capture the directional dependence. Fur-

ther, we analyzed the asymmetric copulas from a regression perspective that allows us to

obtain not only the direction of dependence between the data types but also to quantify this

directional dependence [22].

To evaluate the efficacy, we applied our model to both synthetic as well as a benchmark

real-world dataset. Using the results, we demonstrate that modeling the directional

dependence between different datasets improves the clustering performance. For the real-

world application, we used the dataset of breast cancer tumor samples that is publicly

available from The Cancer Genome Atlas (TCGA) program (https://www.cancer.gov/tcga)

[2, 3].

The rest of the article is organized as follows: In the Methods section, we describe the back-

ground on the Dirichlet mixture model for the integrative analysis and copula to capture direc-

tional dependence. The Copula-based multi-view clustering section presents our copula-

based multi-view clustering approach and the posterior inference. We describe the simulation

and case study examples along with the results and comparative analysis in the Results section.

Finally, we conclude the paper with a brief discussion and future works in the Conclusion

section.
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Methods

In this section, we briefly introduce the Dirichlet mixture model and extend it to a multi-view

setting. Next, we present an overview of copulas and discuss a copula framework for capturing

the directional dependence between multiple data types.

Dirichlet mixture models

Let fXmg
M
m¼1

denote a collection of M distinct data types for N objects (e.g., patients with differ-

ent cancer tumor), and for each data type m, the notation Xmi represents the data correspond-

ing to the i-th object. For example, if the first data source (indexed by m = 1) is RNA gene

expression, then X1i denotes the RNA gene expression profile for the i-th patient. In the con-

text of this work, we assume that each data type is available for all N objects. For each data

type, m, let Lmi = {1, 2, . . ., K} denote a latent variable corresponding to the data Xmi such that

Lmi = k implies that the i-th object belongs to the k-th cluster.

Since the objective of multi-view clustering is to partition the N objects into K clusters

using the integrated data, it is intuitive to consider that the data Xmi for each data type m is

generated from a mixture density given as [24, 25]:

pmðXmiÞ ¼
XK

k¼1

pmk f ðXmijymkÞ ð1Þ

where πmk = Pr[Lmi = k] 2 [0, 1] represents the probability of Xmi belonging to the k-th cluster,

and f(Xmi|θmk) is a probability density function for the data Xmi indexed by the parameters θmk.

If f(�) is chosen to be a Gaussian density Nðmmk; s
2
mkÞ with mean μmk and variance s2

mk, then we

have θmk = (μmk, σmk), leading to a Gaussian mixture model [26]. For a detailed explanation for

the mixture model, refer to [25]. With this, a hierarchical structure of Dirichlet mixture model

for each data source m may be obtained as [27–29]:

XmijLmi; ym � FðymLmi
Þ; ymk � Gð0Þ ð2Þ

Lmijpm � Multinomialðpm1; pm2; . . . pmKÞ ð3Þ

pm1; pm2; . . . pmK � Dirichletða=K; . . . :a=KÞ ð4Þ

where F is the (cumulative) distribution function for the density f(�) participating in the mix-

ture density in Eq (1), G(0) denotes a base measure for the parameter θmk, and α> 0 denotes

the scaling parameter for the Dirichlet distribution in Eq (4). For a detailed description for the

Dirichlet mixture model, and its practical implementation for clustering, refer to [30].

Directional dependency and copula

One of the fundamental ideas of molecular biology is the central dogma [14, 15], which

describes the process of information flow via a two-step process of transcription and transla-

tion, where the information in genes flow to proteins: DNA to mRNA, and mRNA to protein.

Further, the central dogma explains that this transfer of information is acyclic (with a pre-spec-

ified direction), for example, the transfer of information is from gene to protein and not from

protein to protein or protein to gene [18].

The key motivation of our research is to subsume this directional dependency into a multi-

view clustering problem [3, 17, 31], leading to a unified and directionally dependent clustering

model.
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Directional dependence was first presented by authors in [32] using an ordinary linear

regression model. Under this framework, a random variable X is directionally dependent on Y,

if the square of sample skewness of Y, denoted by ĝ2
Y , is less than that of X when we regress X

on Y. That is, ĝ2
Y < ĝ2

X when X = βY + �. The fundamental notion here is that the square of the

skewness of the response variable in a linear regression setting is always less than equal to the

square of the skewness of the explanatory variable. More recently, authors in [22, 33–35]

argued that copula regression models might offer a possibility to capture the directional depen-

dence between variables. This is mostly because the copula regression approach can model the

joint dependence structure between the random variables, independently from the choice of

the marginal distributions.

In this paper, we make use of copulas [36, 37] to accommodate directional dependency into

a multi-view clustering framework. Copulas are widely used to model the dependence struc-

ture between random variables by decoupling the dependence structure from the marginal

distribution [38]. Specifically, an n-dimensional copula function C = C(u1, u2, . . ., un) is a mul-

tivariate distribution function defined on a unit hypercube with uniform marginals given as:

Cðu1; u2; . . . ; unÞ ¼ PðU1 � u1; . . . ;Un � unÞ ð5Þ

where Ui� uniform(0, 1), i = 1, 2, . . ., n. Given a vector of random variables denoted by

X = {X1, X2, . . ., Xn} with joint distribution function given as:

Fðx1; x2; . . . ; xnÞ ¼ PðX1 � x1;X2 � x2; . . . ;Xn � xnÞ;

the uniqueness of the copula associated with F was initially observed in Sklar’s theorem [39].

Theorem 1 (Sklar’s theorem). Let F be an n-dimensional joint distribution function with
margins F1, . . ., Fn. Then there exists an n-dimensional copula C that satisfies the following
equality for all x ¼ ðx1; . . . ; xnÞ 2 R

n
:

Fðx1; . . . ; xnÞ ¼ CðF1ðx1Þ; . . . ; FnðxnÞÞ ð6Þ

Additionally, if all the marginals are continuous, then C is unique. Conversely, if C is a copula,

and all the margins F1, . . ., Fn are univariate distribution functions, then the function F that sat-
isfies the above equation is a joint distribution function with margins F1, . . ., Fn.

Using Eq (6), we can now represent the joint density of multivariate random variables

X = {X1, X2, . . ., Xn} in terms of a copula function and the marginals. Thus, copula offers a

simple, yet powerful approach to sample from the joint distribution of random variables with

known marginals.

Copula for directional dependency

The key idea behind accommodating directional dependency between two random variables,

say U and V, using copula is to construct an asymmetric copula [40]. Formally, a bivariate

asymmetric copula C(u, v) : [0, 1]2! [0, 1] is defined by any copula function that satisfies

CU|V(u, v) 6¼ CV|U(v, u), where CU|V(u, v) = @C(u, v)/@v and CV|U(v, u) = @C(v, u)/@u. In this

paper, we consider an asymmetric copula from the Rodriguez-Lallena and Ubeda-Flores fam-

ily and is given as [23]:

Cðu; v; �Þ ¼ uvþ f ðuÞgðuÞ ¼ uvþ Wuvð1 � uÞað1 � vÞb ð7Þ

where u, v 2 [0, 1], and ϕ = (ϑ, α, β), α> 1, β> 1. The association parameter ϑ 2 [−1, 1] mea-

sures the dependence between u and v, while the asymmetry in the copula is captured by the

parameters α and β. Given n observations fðui; viÞg
n
i¼1

, the maximum likelihood estimates
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(MLE) of α and β are given as:

â ¼

Pn
i¼1
ðð1 � uiÞ log ð1 � uiÞ � uiÞPn

i¼1
ui log ð1 � uiÞ

b̂ ¼

Pn
i¼1
ðð1 � viÞ log ð1 � viÞ � viÞPn

i¼1
vi log ð1 � viÞ

ð8Þ

Given α and β, the admissibility bound for ϑ as shown by [41] is given as:

� min
aþ 1

a � 1

� �a� 1

;
bþ 1

b � 1

� �b� 1
( )

� W � min
aþ 1

a � 1

� �a� 1

;
bþ 1

b � 1

� �b� 1
( )

ð9Þ

Let ρv!u denote the degree of directional dependency of U on V, with a higher value indicates

a stronger directional dependency. Adopting the idea of [22], ρv!u for the copula in Eq (7) can

be expressed as:

rv!u ¼ 12 � E½ðrUjVðuÞÞ
2
� � 3 ð10Þ

where the expectation E[�] is taken with respect to the copula regression function rU|V(u)

defined by rUjVðuÞ ¼ 1 �
R 1

0
CUjVðu; vÞdv. For the Rodriguez-Lallena and Ubeda-Flores copula,

we can express Eq (10) in a closed-form [22, 33]:

rv!u ¼
3W

2
a2b

2

ð2þ bÞ
2
ð1þ 2aÞ

and ru!v ¼
3W

2
a2b

2

ð2þ aÞ
2
ð1þ 2bÞ

ð11Þ

With this copula approach to model directional dependency, we now extend the Bayesian

framework presented in Eqs (2)–(4) to incorporate directional dependency for multi-view

clustering.

Copula-based multi-view clustering

In this section, we present our Dirichlet mixture model to incorporate directional dependence

for multi-view clustering followed by the details of posterior inference for our model.

Copula-based dirichlet mixture model

The Dirichlet mixture model as presented in Eqs (2)–(4) has been constructed for each data

source, m, individually. Hence, there is no information borrowing between datasets. In what

follows, we make use of the formula of directional dependency between a pair of data sets (see

Eq (11)), and subsequently utilize these quantities in clustering through the Dirichlet mixture

model.
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A hierarchical formulation for a copula-based Dirichlet mixture model based on the Rodri-

guez-Lallena and Ubeda-Flores copula is given as:

XmijLmi; y � FðymLmi
Þ; ymk � Gð0Þ ð12Þ

pðL1i; . . . LMijg; rÞ /
YM

m¼1

gmLmi

YM

m¼1

YM

k¼1;k6¼m

ð1þ rm!k1fm!kg1fLmi¼Lkig
Þ ð13Þ

gm1; gm2; . . . ; gmK � Gammaðam=K; 1Þ ð14Þ

rm!k � Hm;k ð15Þ

where Gamma(a, b) denotes the gamma distribution with shape parameter a and rate parame-

ter b, and 1fm!kg is an indicator function such that 1fm!kg ¼ 1 (otherwise zero) if there exists a

known directional dependency from the m-th dataset towards the k-th dataset, while ρm!k is

the degree of directional dependency associated with the two data types (see Eq (11). Notations

F, G(0), and θmk are used in the same way as used in the Dirichlet mixture model (Eqs (2)–(4)).

The weights gmLmi
are derived from πmk as shown in Eq (3) such that pmj ¼ gmj=

PK
k¼1
gmk.

Finally, Hm,k is the prior on the parameter ρm!k and it will be discussed in the following

sections.

From the foregoing model, we note that: (a) the major distinction between the proposed

model (Eqs (12)–(15)) and the standard Dirichlet mixture model (Eqs (2)–(4)) is observed by

the clustering allocation procedure induced by the latent variables L1i, L1n, . . ., LMi and (b) the

integration of directional dependency via ρu!v provides an advancement over the existing

integrative models such as [3, 7].

Directional dependence prior

For each i, given two data types u and v, let the notations â i
uv and b̂i

uv denote the MLEs of the

two parameters, α and β, of the Rodriguez-Lallena and Ubeda-Flores copula, given by Eq (8).

Then after averaging each of the quantities over the n observations, that is, âuv ¼
1

n

Pn
i¼1
â i
uv

and b̂uv ¼
1

n

Pn
i¼1
b̂i

uv, we can express the directional dependence of the v-th dataset on the u-th

dataset as follows [33]:

ru!v ¼
3W

2

uvâ
2
uvb̂

2
uv

ð2þ âuvÞ
2
ð1þ 2b̂uvÞ

ð16Þ

where ϑuv is a measure of association between the random variables U and V. Note that ρu!v

in Eq (16) is a copula-based random variable: first, two quantities âuv and b̂uv are driven from a

directional copula; and second, ϑuv is the stochastic part, rendering ρu!v as a random quantity.

In this work, we consider a Gaussian distribution for the random variable ϑuv, given by

Wuv � Nð0; b2
uv=9Þ, where the buv is obtained by the admissibility bound presented in Eq (9) as:

buv ¼ min
i2f1;...;ng

â i
uv þ 1

â i
uv � 1

� �â iuv� 1

;
b̂i

uv þ 1

b̂i
uv � 1

 !b̂ iuv � 1
8
<

:

9
=

;
ð17Þ

The motivation behind this choice of buv is as follows: as a Gaussian random variable, ϑuv
has a variance of b2

uv=9 such that P(|ϑuv|�buv) = 0.997. This implies that − buv� ϑuv� buv
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holds with a very high probability. Since − buv� ϑuv� buv holds with a very high probability,

the posterior updates are all conjugate updates without the added computational burdens

of truncated distributions. Moreover, as ϑuv is normally distributed, it is easy to see that

ru!v / W
2

uv and follows a gamma distribution. In particular,

ru!v � Gamma
1

2
;
4ð2þ âuvÞ

2
ð1þ 2b̂uvÞ

2â2
uvb̂

2
uvðbuv=3Þ

2

 !

ð18Þ

This defines our prior Hu,v on ρu!v.

Posterior updates

In this section, we present a general Bayesian framework to estimate the posterior updates

using a Gibbs sampling approach. For this, we follow the posterior inference, as presented in

[7]. We begin by referring to our general model in Eq (13). We first obtain the joint density of

the latent allocation variable Lmi’s by defining a normalizing constant Z as:

Z ¼
XK

j1¼1

� � �
XK

jM¼1

YM

k¼1

gkjk

YM

k¼1

YM

‘¼1;‘6¼k

ð1þ rk!‘1fk!‘g1fjk¼j‘gÞ

" #

ð19Þ

such that the joint density for N objects is given as:

pðfL1i; . . . LMig
N
i¼1
Þ ¼

1

ZN

YN

i¼1

YM

k¼1

gkjk

YM

k¼1

YM

‘¼1;‘6¼k

ð1þ rk!‘1fk!‘g1fjk¼j‘gÞ

" #

ð20Þ

Following [42], we define the following joint density function using a strategic latent variable ξ
to provide the basis for a fully Bayesian framework:

pðfL1i; . . . LMig
N
i¼1
; xÞ ¼

x
N� 1 exp ðxZÞ
ðN � 1Þ!

� pðfL1i; . . . LMig
N
i¼1
Þ ð21Þ

such that the conditional distribution for the latent variable is given as:

xj� � GammaðN;ZÞ ð22Þ

Subsequently, we note that the conditional on gmjm
is given as:

gmjm
j� � Gammaðag; bgÞ ð23Þ

ag ¼
XN

i¼1

1fLmi ¼ jmg þ
aM
K

ð24Þ

bg ¼ x
XK

j1¼1

� � �
XK

jm� 1¼1

XK

jmþ1¼1

� � �
XK

jM¼1

YM

k¼1;k6¼m

gkjk

YM

k¼1

YM

‘¼k;‘6¼k

ð1þ rk!‘1fk!‘g1fjk¼j‘gÞ

" #

þ 1 ð25Þ
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In a similar fashion, the conditional on ρm!p may be deduced as:

rm!pj� � Gammaðar; brÞ ð26Þ

ar ¼
XN

i¼1

1fLmi ¼ Lpig þ
1

2
ð27Þ

br ¼ x
XK

j1¼1

� � �
XK

jm� 1 ¼ 1

jmþ1 ¼ 1

� � �
XK

jp� 1 ¼ 1

jpþ1 ¼ 1

� � �
XK

jM¼1

�
YM

k¼1

gkjk

YM

k¼1

YM

‘ ¼ 1

‘ 6¼ k; ‘ 6¼ p

ð1þ rk!‘1fk!‘g1fLki¼L‘igÞ�

YM

k ¼ 1

k 6¼ m; k 6¼ p

ð1þ rk!p1fk!pg1fLki¼LpigÞ

�

þ
4ð2þ âmpÞ

2
ð1þ 2b̂mpÞ

2â2
mpb̂

2
mpðbmp=3Þ

2

ð28Þ

Finally, the conditional distribution for the latent variables Lmi is given as:

pðLmi ¼ cjg; r; xmi; xc
m;� i; L� m;i; Lm;� iÞ ¼ bLgmc

Ym� 1

k¼1

ð1þ rk!m1fk!mg1fLki¼Lmig
Þ�

YM

k¼mþ1

ð1þ rm!k1fm!kg1fLmi¼Lkig
Þ �

Z

fmðxmi; x
c
m;� ijymÞg

ð0Þ

m ðymÞdym

ð29Þ

where xmi is observation i for data type m, xc
m;� i are all the observations not including

xmi in data type m associated with component c, Lm,− i are all the Lmj such that i 6¼ j,
L−m,i are all the Lki such that k 6¼m, and bL is a normalizing constant that ensures
PK

c¼1
pðLmi ¼ cjg; r; xmi; xc

m;� i; L� m;i; Lm;� iÞ ¼ 1. Please note that a latent variable ξ has been

added to help with the computational efficiency and that the updates on θm will depend on the

choice of fm(�) and G(0). The posterior updates are based on pairwise directional dependence.

To obtain the consensus/global clustering, we leverage the fundamental idea of the central

dogma, i.e., the directional dependence in genomic data. Based on prior studies [19], we note

that the more remote an omics level or data source is from a physiological trait, the smaller the

magnitude of their correlation is. Since protein data is closest to the physiological trait (i.e.,

cancer type), we deem the clustering result of the protein as the final or global clustering.

Results

To demonstrate the effectiveness of incorporating directional dependencies in multi-view clus-

tering, we consider both simulated and real-world examples. We also compare the perfor-

mance of our approach with competing methods such as [3] and [7].

Simulated data

For the simulation experiment, we consider two data types, U and V, each generated from a

univariate Gaussian mixture model with two components. The corresponding means and

standard deviations of the mixture model are 0, 3 and 1, 0.5, respectively, and the directional

dependency is captured by an asymmetric Tawn copula given as:

Cðu; vÞ ¼ exp log ðuÞ þ log ðvÞA
log ðvÞ

log ðuÞ log ðvÞ

� �� �

ð30Þ
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where A(.) is called the Pickands dependence. For the Tawn copula, the Pickands function is

given as:

AðtÞ ¼ ð1 � c1Þð1 � tÞ þ ð1 � c2Þt þ ½ðc1ð1 � tÞÞy þ ðc2tÞ
y
�
1=y ð31Þ

In this case, we consider the Tawn copula of Type 1 for which ψ2 = 1. For the current simula-

tion study, we set the values of ψ1 and θ to 0.5 and 30, respectively, and the direction of depen-

dence is set from V to U. Details on the Tawn copula can be found in [43]. For each data type,

we generate 500 data points, and the measure of directional dependence (from V to U) is esti-

mated from Eq (11). For the Tawn copula constructed above, the directional dependence is

equal to 1.73. Note that the dependence in the opposite direction was obtained to be -1.02,

indicating no notable dependence.

We test the performance of the proposed methodology using three different scenarios:

i. when the true directionality is used, i.e., 1fV!Ug,

ii. when there is no direction of dependence, and

iii. when the direction of dependence is reversed, i.e., 1fU!Vg.

In the first case, the method is able to correctly predict the 2 clusters and is shown in the

joint similarity matrix in Fig 1(a). The similarity matrix displays the posterior probability of

samples i and j to belong to the same cluster (see [7] for details). The overall accuracy of clus-

tering for this case is 97.8%. The clustering results corresponding to cases (ii) and (iii) are pre-

sented in the joint similarity matrix shown in Fig 1(b) and 1(c). We note that the clustering

performance is affected in both the cases, but more in case (iii), where we observe three differ-

ent clusters as opposed to two clusters as in cases (i) and (ii). The intuition behind the signifi-

cantly worse performance of case (iii) as compared to cases (i) and (ii) is that in case (iii), we

wrongly reverse the directional dependence between the data types. In contrast, case (ii) is

more reminiscent of the integrative analysis presented by [3, 7]. The clustering outcome is

affected since the underlying models consider dependence without any directionality. Addi-

tionally, in case (ii), where no directionality is considered, we do get two clusters. However,

the clustering accuracy is 97.2%, lower than that of the first case.

In addition to studying the effect of causal relations on the clustering performance, we also

investigate the effect of different copulas and sample size. We first look at the effect of different

copulas. In this simulation study, we refer to three different copulas: Tawn Type 1 (TT1),

Tawn Type 2 (TT2), and BB1 copula. See [43] for the functional form and dependence struc-

ture. Note that by varying the copula model, we essentially modify the dependence structure.

Results obtained from 10 simulation runs show that clustering accuracy for TT1, TT2, and

BB1 copulas for each of the aforementioned cases (case (i), (ii), and (iii)) are (0.97, 0.96, 0.84),

(0.95, 0.93, 0.94), and (0.97, 0.92, 0.94), respectively. The average number of clusters were

recorded as (2, 2, 3.67), (2, 3, 3.4), and (2, 3, 2). We note that by incorporating the directional

dependency, we are able to consistently achieve a higher accuracy as well as identify the two

clusters. For case (ii), i.e., integrative clustering without any direction of dependence achieves

marginally lower accuracy but fails to identify the two clusters correctly. Case (iii) performs

worse both in terms of accuracy and the number of clusters.

Next, we look at the effect of the sample size. For this, we fix our copula to Tawn Type 1

and obtain the results for three different sample sizes: 250, 500, 750. Corresponding to these

sample sizes, the clustering accuracy was noted as (0.97, 0.96, 0.84), (0.97, 0.97, 0.87), (0.97,

0.96, 0.64). In addition, the average number of clusters were obtained as (2, 2, 3.67), (2, 2, 3),
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and (2, 2, 5). We again note that the proposed methodology performs better as compared to

the case when no directionality is considered and when the direction is reversed.

We also note that the computational complexity scales linearly with the sample size. In fact,

the computational complexity of the present method is directly proportional to the number of

data sources M, the number of clusters K, and the number of genes N. So the algorithm scales

as O(NMK). For sample sizes of 250, 500, and 750, the algorithm converges in 167.2 sec, 364.5

sec, and 520.16 sec when running in parallel. Convergence of the method can also be argued

from the standpoint of clustering results, i.e., as sufficient data is made available, the clusters

estimated from the method will closely resemble the true clusters [3].

TCGA breast cancer data

For the application of our model to a real-world dataset, we considered the breast cancer

tumor samples from TCGA program that consists of multi-source genomic data for a common

set of patients. Since breast cancer is a heterogeneous disease and can be effectively used in the

case studies for clustering models. This dataset has become a benchmark dataset used in sev-

eral multi-view clustering studies, such as [3]. This dataset is available for download from the

web portal of TCGA (https://www.cancer.gov/tcga) and contains a common set of 348 breast

cancer tumor samples (i.e., N = 348) and four distinct data types (i.e., M = 4):

• RNA gene expression (GE) data for 645 genes.

• DNA methylation (ME) data for 574 probes.

• miRNA expression (miRNA) data for 423 miRNAs.

• Reverse phase protein array (RPPA) data for 171 proteins.

We chose the 171 genes, probes, and miRNAs corresponding to the 171 existing proteins in

the other three data types. These 171 genes (or their product proteins) are carefully chosen to

contain the genes such as PIK3CA, PTEN, AKT1, TP53, GATA3, CDH1, RB1, MLL3,

MAP3K1, and CDKN1B that are well-known to be important for classification of breast cancer

subtypes [2].

It is known that these four data types manifest differently, but at the same time, are highly

related in that they are directionally dependent [14, 15]. This directional dependence can be

Fig 1. Similarity matrix for the simulation study: (a) the true direction of dependence is considered, (b) no directional dependence is considered, (c)

the direction of dependence is reversed. The colormaps show the posterior probability of samples i and j to belong to the same cluster.

https://doi.org/10.1371/journal.pone.0238996.g001
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determined by the central dogma of molecular biology, where the transcription and transla-

tion process determines the direction of dependence between DNA to RNA gene expression

and from RNA gene expression to protein, respectively. Fig 2 shows the four data types used

in this study, along with the direction of dependence between them. We consider three path-

ways for directional dependence. The first dependence pathway is from RNA gene expres-

sion to protein. This is the fundamental relationship, as explained by the central dogma. The

second dependence pathway is from RNA gene expression to protein via miRNA (or micro-

RNAs). MiRNAs are single-stranded RNAs that exert their regulatory action by binding

RNAs gene expression and preventing their translation into proteins. The last pathway is

from DNA methylation to protein via miRNAs. This dependence is primarily based on

recent studies that have shown the influence of DNA methylation directly on the expression

of miRNAs [44]. Note that these relationships are not exhaustive and additional experiments

will be needed to fully model the pathways that influence the production of protein from

DNA.

As discussed in the foregoing, the central dogma explains that this transfer of information

has a pre-specified direction, for example, the transfer of information is from gene to protein

and not from protein to protein or protein to gene [18]. From a statistical perspective, both

transcription and translation might be designed in terms of directional dependency in our cop-

ula model because opposite dependencies (i.e., Protein to RNA and RNA to DNA) may not

exist. Considering the two directions are a priori known, we can design them by providing

deterministic directional indicators {k! p} for each process where k and p are indices for the

corresponding data types. Also, the corresponding strengths of directional dependencies are

quantified by ρk!p. From a numerical perspective, we note that providing a deterministic

Fig 2. The central dogma of molecular biology. Directional dependencies among biological components.

https://doi.org/10.1371/journal.pone.0238996.g002

PLOS ONE Directionally dependent multi-view clustering using copula model

PLOS ONE | https://doi.org/10.1371/journal.pone.0238996 October 23, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0238996.g002
https://doi.org/10.1371/journal.pone.0238996


directional indicator into our model reduces the computational burden in the summation of

bρ, and therefore, contributes to the computation speed.

Since we use the copula at the data level, not at the latent level, matching the data dimen-

sions for each data type is necessary (D1 = D2 = D3 = D4 = 171). This is because we modeled

the dependence between the data types through the directional relationship between their fea-

tures (such as genes, RNAs, proteins, etc.). These four data types are measured on different

platforms and represent different biological components. However, they all represent genomic

data for the same sample set, and it is reasonable to expect shared structure while considering

directional dependencies at hand [45].

As explained in the previous section, we are clustering samples based on four data types:

gene expression, DNA methylation, microRNA, and RPPA for breast cancer from the TCGA

data. Prior studies using this data have found that the total number of clusters can vary from

two [46] to 10 [47]. However, mainly four prominent subtypes have been identified based on

multi-source consensus clustering of the TCGA data as Basal, Luminal A, Luminal B, and

HER2 [2]. We incorporated our prior biological knowledge, i.e., the directional dependence

based on the central dogma [15, 18], into our integrative clustering algorithm. Since proteins

are the final outcome, we consider the consensus (or final) clustering to be the protein clusters,

which summarize all the information from the other three datasets inside itself.

To initialize the Bayesian posterior update algorithm, we take advantage of our finite

Dirichlet mixture model to define the number of clusters (K). Although our model considers a

finite mixture model, it is equivalent to a Dirichlet process mixture model when N!1 and

therefore, K specifies an upper bound on the number of clusters present in the data. Authors

in [48] argue that if the number of clusters specified by K is sufficiently large, the posterior

updates can automatically determine the true number of clusters present in the data. Based on

this analogy, [7] suggest that a pragmatic choice for the upper bound on the number of cluster

to avoid the computational burden is K = dN/2e. From our experimental studies, we note that

even if this upper bound is as high as 500, our algorithm correctly predicts the number of clus-

ters to be four, similar to the sub-typing in TCGA. This shows that the clustering results are

not contingent on the choice of K.

Since copy number variation or the focal amplification/deletion of a region of gene, is asso-

ciated with breast cancer risk and prognosis [49–53], we calculate the fraction of the genome

altered (FGA) as a measure of copy number activity as described in the Supplementary Section

VII of [2] (with copy number level threshold T = 0.15) for each cluster. Our results are summa-

rized in Table 1 and visualized in Fig 3. The TCGA breast cancer subtypes and our clusters

have different structures, but they are non-independent based on the Chi-squared test of inde-

pendence (p-value < 0.0001). Clusters 1 is mostly a combination of Luminal like breast cancer

subtypes (Luminal A and Luminal B), which are similar to each other with average FGA of

0.19 ± 0.15 and almost 10% of their samples have high FGA of more than 0.4. Cluster 2 is

Table 1. Confusion matrix for the clustering assignment.

Estimated cluster

True cluster 1 2 3 4

Her2 5 4 22 8

Basal 2 5 48 17

Lum A 41 103 2 15

Lum B 34 22 5 15

The results are shown for the clustering of four cancer data types: Her2, Basal, Lum A, and Lum B.

https://doi.org/10.1371/journal.pone.0238996.t001
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mostly Luminal like breast cancer B with higher FGA (0.2 ± 0.14). Moreover, cluster 2 contains

similar high FGA in comparison to cluster 1 with almost 10%. Cluster 3 contains more of

HER2 and Basal subtypes, which are more similar to each other with the highest FGA

(0.28 ± 0.14) and very high FGA (approximately 19%). Even though cluster 4 is more spread

over the four known subtypes (Her2, Basal, Luminal A and Luminal B), they include samples

with high FGA (0.24 ± 0.14) and lower standard deviation compared to cluster 2. Moreover,

cluster 4 is second in having high FGA samples with almost 13%.

As mentioned in the foregoing, two other state-of-the-art algorithms for integrative cluster-

ing exists: Bayesian Consensus Clustering (BCC) [3] and Multiple Dataset Integration (MDI)

[7]. However, it is not feasible to compare our results with MDI as it provides separate cluster-

ing for each data type as opposed to a consensus or global clustering. To compare the perfor-

mance of our method with BCC, we use the Rand index as the number of clusters reported by

BCC is three, while four clusters exist in the TCGA dataset. Essentially, the Rand index mea-

sures the level of similarity between two clustering methods without employing the data labels

[54]. When one of the clustering methods is the ground truth, it essentially measures the pro-

portion of the correct allocations. We note that the Rand index of BCC is 0.68, and for the pro-

posed method, it is 0.70. Not only BCC performs marginally worse in terms of correctly

labeling the datasets, but also the algorithm needs to know the true number of clusters before-

hand, which is a major limitation. The authors developed a heuristic approach to calculate the

number of clusters as a pre-processing step that suggested only three clusters as opposed to

four true clusters predefined in the TCGA dataset. In comparison, our integrated analysis

method correctly identified the four clusters out of the maximum number 174 potential clus-

ters (K = dN/2e).

Conclusion

It is known that the genomics data types collected from multiple sources are often related, and

their integrated analysis can significantly improve the downstream analysis such as the cluster-

ing outcome. Several studies have been proposed in the literature for integrated analysis of

multi-view data that attempts to capture the association or dependence between different data

types. Nonetheless, the dependence between real-world data types often have many added

Fig 3. Distribution of FGA across four clusters of breast cancer. Dashed line represents the genes with high FGA

values.

https://doi.org/10.1371/journal.pone.0238996.g003
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level of complexity due to the underlying natural phenomena. This is often true in genomics,

where, underlined by the central dogma, the data types are not only dependent but direction-

ally dependent. We utilized this domain knowledge and proposed a novel method for multi-

view clustering by incorporating the pre-specified directional dependence between the geno-

mic data types using a copula model. The use of copulas to model the directional dependence

provides a robust and versatile tool to capture the directional dependence in joint behavior.

The application of the proposed method on synthetic as well as real datasets demonstrates its

efficacy. Most importantly, we believe that capturing directional dependence instead of simple

dependence can provide an added understanding of the underlying process.

With the groundwork of directionally dependent multi-view clustering in this work, several

improvements can be made over the proposed model. Firstly, we can utilize spike-slab priors

[55–57] for feature selection while performing directional clustering in high-dimensional

TCGA applications. Secondly, an approach to deal with a different number of features in each

data type can add more flexibility to the proposed model. Thirdly, we may incorporate hidden

Markov models (HMM) in our proposed approach for modeling longitudinal clustering

where the class type (or process state) of a patient is a hidden variable, and the multiple data

sources are the observed variables. [58–60]. Finally, more rigorous and in-depth comparative

analysis between the dependence and directional dependence seeking multi-view clustering

with several datasets are needed.
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