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Abstract

Chlorophyll content is an important indicator of the growth status of japonica rice. The objec-

tive of this paper is to develop an inversion model that can predict japonica rice chlorophyll

content by using hyperspectral image of rice canopy collected with unmanned aerial vehicle

(UAV). UAV-based hyperspectral remote sensing can provide timely and cost-effective

monitoring of chlorophyll content over a large region. The study was based on hyperspectral

data collected at the Shenyang Agricultural College Academician Japonica Rice Experimen-

tal Base in 2018 and 2019. In order to extract the salient information embedded in the high-

dimensional hyperspectral data, we first perform dimension reduction by using a successive

projection algorithm (SPA). The SPA extracts the characteristic hyperspectral bands that

are used as input to the inversion model. The characteristic bands extracted by SPA are

410 nm, 481 nm, 533 nm, 702 nm, and 798 nm, respectively. The inversion model is devel-

oped by using an extreme learning machine (ELM), the parameters of which are optimized

by using particle swarm optimization (PSO). The PSO-ELM algorithm can accurately model

the nonlinear relationship between hyperspectral data and chlorophyll content. The model

achieves a coefficient of determination R2 = 0.791 and a root mean square error of RMSE =

8.215 mg/L. The model exhibits good predictive ability and can provide data support and

model reference for research on nutrient diagnosis of japonica rice.

Introduction

Japonica rice is a major Asian rice variety with a large cultivation area in Northeastern China.

Japonica rice has a long growth period, high protein content, and good flavor [1]. Chlorophyll

content is an important indicator for characterizing the growth status of japonica rice. Non-

destructive, rapid, and large-scale estimation of the chlorophyll content of japonica rice has long

been an important research direction for precision agriculture [2–5]. Recently there have been

growing interests of employing unmanned aerial vehicle (UAV) low-altitude remote sensing plat-

forms in precision agriculture. Compared to other remote sensing methods, UAV remote sensing

platforms have the advantages of low cost, high flexibility, large coverage area, and versatility in
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terms of collected data. This motivates the development of UAV hyperspectral remote sensing

platform for rapid assessment of japonica rice chlorophyll content at near-earth scale, which has

important practical significance for assisting field precision fertilization and pesticide application.

Accurate, rapid and nondestructive access to rice growth information is essential for timely

evaluation of rice growth status, which can provide valuable information for crop fertilization.

Traditional methods of measuring crop growth indicators, such as chlorophyll content, leaf

area index, biomass, etc., are mainly manual measurements with indoor chemical analysis,

which is time-consuming and labor intensive. The manual approach is often poorly timed,

and it seriously limits the timeliness and effectiveness of crop growth monitoring. In addition,

most existing studies employ conventional optical sensors, which cover only the visible light

spectrum. On the other hand, hyperspectral sensors cover both the visible light spectrum and

part of the infrared spectrum, and it can obtain sensitive information that are critical to rice

growth status evaluation. Therefore, the development of hyperspectral monitoring system on

UAV platforms can significantly improve the efficiency and accuracy of growth status moni-

toring and precision management of rice field.

Hyperspectral data have been used to assess chlorophyll content for a variety of crops [6–9].

In [6], hyperspectral imaging of potato leaves were collected at different vertical leaf positions,

and a rational function-partial least squares (RF-PLS) model was developed to estimate the

chlorophyll content at different vertical leaf positions by using the hyperspectral data. The

results show that the hyperspectral reflectance varies with different vertical leaf positions. In

[7], Li et al. studied the reflectance spectrum of winter wheat canopy in the range of 325 to

1075 nm, and a genetic algorithm (GA) was used to optimize the spectral characteristic param-

eters. In combination with correlation analysis, a least squares-support vector regression

method was used to establish a winter wheat chlorophyll content prediction model, which pro-

vided support for subsequent fertilization decisions. A UAV low-altitude remote sensing plat-

form was used to collect hyperspectral images of wheat canopy in [8]. A leaf chlorophyll

content inversion model was developed by establishing a comprehensive growth index (CGI)

during a key wheat production period. The inversion model achieved a coefficient of determi-

nation greater than 0.7, which provides a good reference for monitoring wheat chlorophyll

content. In [9], hyperspectral data were used to estimate the canopy cholorophyll content of

spring wheat by using a partial least squares regression model. It was found that integrating

the maximum reflectance of the hyperspectral data from 820 to 940 nm can provide an accu-

rate estimate of the chlorophyll content.

Most current research on crop chlorophyll inversion with hyperspectral data were devel-

oped by using statistical regression models, and they can be roughly divided into two catego-

ries: vegetation index models [10–12], and direct spectrum models [13, 14]. In the vegetation

index models, the hyperspectral data are first used to construct various vegetation indices,

which are then used to develop multiple linear or nonlinear regression methods to establish an

inversion model between these indices and chlorophyll content. Such an approach has the

advantage of simple model constructions with clear physical meanings. However, it requires

the construction of a large number of spectral indices in an ad hoc manner, without a system-

atic guidance to general crop varieties. The various spectral indices depend on the type and

region of a given species, thus it lacks universal applicability [10–12]. The direct spectrum

models rely on the modeling of the entire hyperspectral bands, which is usually a high dimen-

sion vector. Direct utilizing the entire hyperspectral band can results in high model complexity

or even model overfitting [13]. This problem can be partially solved by employing dimension

reduction techniques, such as principal component analysis (PCA) or PLS [14].

The hyperspectral data of most of the above existing works were collected on the ground or

at low altitude. Therefore the coverage area of the measurement is very small. On the other
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hand, the proposed UAV platform can operate at a higher altitude, which enables efficient

large scale data collection. Specifically, the proposed system operates at an altitude of 150 m,

and can obtain the hyperspectral image of an 1000 m2 area in 15 seconds. In addition, many

existing methods in the literature were developed by using traditional regression methods,

where many of the model parameters were initialized in a heuristic manner based on past

experience. The proposed approach using a data-drive approach, such that all model parame-

ters are obtained through the collected data. The data-driven approach can remove human

bias, and obtain a more accurate prediction results.

The objective of this work is to develop an inversion model that can predict japonica rice

canopy chlorophyll content by using hyperspectral imaging (HSI) data collected with a UAV

remote sensing platform. The pixels in the HSI image are obtained by using hyperspectral

reflectance data, that is, each pixel in the image contains the hyperspectral reflectance informa-

tion at the corresponding location. The study was based on data collected at the Shenyang

Agricultural College Academician Japonica Rice Experimental Base in 2018 and 2019. In addi-

tion to hyperspectral data of japonica rice canopy collected by UAVs, rice samples were also

collected on the ground and analyzed in the lab to provide ground truth for the inversion

model. In order to reduce model complexity and avoid model overfitting, we first employ a

successive projection algorithm (SPA) to extract the characteristic bands from the high dimen-

sion hyperspectral vector. Based on our experiment data, the characteristic bands extracted by

SPA are 410 nm, 481 nm, 533 nm, 702 nm, and 798 nm, respectively. With the extracted char-

acteristic bands as input, the inversion model is developed by using an extreme learning

machine (ELM) [15]. The parameters of ELM, including population size, inertia weight, learn-

ing factor, and the velocity position correlation coefficient, are optimized by using particle

swarm optimization (PSO) [16].

ELM is a feed-forward neural network with a single or multiple hidden layers. Unlike con-

ventional neural network with back propagation (BP), the parameters of the nodes in the hid-

den layers of ELM are randomly assigned and never tuned. One main advantage of ELM is

that it can learn much faster compared to conventional neural network with BP. However, due

to the randomness of the parameters of the hidden layer nodes, a large number of hidden layer

nodes are usually needed to achieve the desired accuracy in many practical applications. In

addition, the conventional ELM architecture sometimes does not have good generalization

capability [17, 18]. To address the above issues, we propose to employ a particle swarm limit-

ing learning machine algorithm that employs a combination of PSO and ELM [19]. Specifi-

cally, the PSO algorithm is used to optimize the weights of the input layer and the deviations of

the hidden layer. In this case, the number of hidden layer nodes is learned automatically from

the data, such that a good optimization performance can be achieved with a relatively small

number of hidden layer nodes with low complexity.

It has been demonstrated in this paper that the PSO-ELM algorithm outperforms conven-

tional ELM algorithm in terms of the number of hidden layer nodes and network generalizations.

The PSO-ELM algorithm accurately models the nonlinear relationship between hyperspectral

data and chlorophyll content. The proposed UAV-HSI platform equipped with the PSO-ELM

algorithm can facilitate the development of precision agriculture system, increase crop yields, and

promote the socio-economic development of the society.

Materials and methods

Experiment setup

The experiment was carried out between June and September in 2018 and 2019, respectively.

It took place at the Liaozhong Kalima Academician Rice Experimental Station (41˚470N,122˚
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710E) of the Shenyang Agricultural University. The rice strain was “Shendao 529“” The japon-

ica rice test plots were designed with four different nitrogen fertilizer gradient treatments,

namely CK, N1, N2 and N3. Each treatment was repeated three times. There were a total of 12

test plots, and the size of each test plot is 30 × 45 m2. Among them, CK represents the control

group, i.e., no nitrogen fertilizer was applied; N1 represents the local standard nitrogen fertil-

izer application level, and the nitrogen fertilizer application amount was 45 kg/ha; N2 repre-

sents the low nitrogen fertilizer application level, and the application amount was half that of

N1; N3 is the group with the high nitrogen fertilization level, and the application amount was

1.5 times that of N1. The applications of phosphate fertilizer and potash fertilizer were carried

out based on local standard application quantities, that is, 51.75 kg/ha for phosphate fertilizer,

and the standard application amount is 18 kg/ha for potassium fertilizer. Fig 1 shows the

design of the test area and test plots for this study.

UAV hyperspectral image data acquisition

The UAV hyperspectral platform adopts the M600 PRO six-rotor UAV from Shenzhen

Dajiang Innovation Co., Ltd. (Shenzhen, Guangdong, China). The hyperspectral images were

collected by using the GaiaSky-mini built-in push-broom airborne hyperspectral imaging sys-

tem from Sichuan Shuangli Hepu Company (Sichuan, China). The frequency range of the data

acquired by the hyperspectral imaging sensor is 400 to 1000 nm. The data is preprocessed by

using spectral difference calculations with a hyperspectral resampling interval set to 2.35 nm,

which results in 255 bands over the spectral range between 400 to 1000 nm. The two bands on

the upper and lower boundaries of the spectrum are removed, which leads to 253 effective

bands. The hyperspectral imaging system is shown in Fig 2.

The Gaiasky-mini airborne hyperspectral imaging system is used to obtain hyperspectral

remote sensing images of the rice canopy. The hyperspectral imaging sensor has a built-in

Fig 1. Test plots used for data collection.

https://doi.org/10.1371/journal.pone.0238530.g001
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push-sweep imaging function, thus the hyperspectral image was obtained by keeping the

drone hovering steadily over the rice fields during the data acquisition process. During data

acquisition, the drone is hovered with an altitude of 150 m and stationary to the ground. and

the corresponding coverage area of one hyperspectral scene image is 1000 m2. The acquisition

time of a scene image is 15 seconds. All hyperspectral images used in this work are obtained

during the rice fertility period.

The acquisitions of the hyperspectral images were performed on selected Wednesdays

between 11:00 AM and 12:00 PM in the morning. The data were collected on days with sunny

or lightly cloudy weather (cloud less than 20%), and the solar light intensity was relatively sta-

ble. The flying height of the UAV was a true height of 150 m. The collected hyperspectral data

were processed and extracted with the ENVI5.3+IDL software tool. During processing, the

spectral angle mapper (SAM) method was first used to remove impacts from interfering

objects, then the hyperspectral image was generated by calculating the average spectrum of

each area of interest. Before data analysis, hyperspectral reflectance calibration was performed

to achieve black-white correction in the HSI image. The hypersectral reflectance calibration is

performed as follows:

rt ¼
DNt � DN1

DN2 � DN1

ðr2 � r1Þ þ r1

where ρt and DNt are, respectively, the reflectivity and DN values of the ground objects to be

converted, DN1 and DN2 are the DN values of the calibration blanket, and ρ1 and ρ2 are the

reflectivity of the calibration blanket.

Ground data acquisition and analysis

In addition to hyperspectral image data, we also performed manual ground data collection in

the japonica rice field. Data collected on the ground will serve as ground truth for the UAV

hyperspectral data. A total of 196 rice plant samples were collected and analyzed for ground

data acquisition and analysis, with 4 plants in each test plot. The four rice cavities selected for

Fig 2. UAV hyperspectral imaging system.

https://doi.org/10.1371/journal.pone.0238530.g002
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the same sample for this study were based on the similarity of rice growth in the rice experi-

mental area. The sampled rice plants were located in the middle of the test plots where the

growth was even. The 196 ground data samples cover all six stages of the key growth periods of

japonica rice, including tillering, jointing, booting, heading, flowering, and filling. Every 50

canopy leaves were placed in a sealed bag and stored in a cooler with temperature around 4˚C.

A hand-held differential GPS device (manufacture: XAG, model: RTK, precision: cm scale)

was used to measure the geographical coordinates of the sampling points, which were then

correlated with the hyperspectral data collected by the UAV [22–22]. The hyperspectral remote

sensing image obtained by UAV hyperspectral remote sensing platform contains GPS infor-

mation of each pixel. The ground data of a given sample are then mapped to a pixel in the HSI

data with the same GPS coordinate.

After the japonica rice samples were returned to the laboratory, fully-expanded leaves of the

japonica rice samples were selected and cut into small pieces. Pieces from the same leaf are

mixed together, and 0.4 g of the leaf mixture was placed in 200 mL of an extraction solution,

which contains acetone, ethanol, and distilled water at a ratio of 9:9:2. The solutions with leaf

mixture are left to stand in the shady area of a laboratry with temperature around 20˚C. Once

the leaf sample appeared to be completely white, colorimetry was then performed with a

Hengping 754 UV-visible spectralphotometer. The spectralphotometer covers the wavelength

range from 190 nm to 1000 nm, with a step size of 0.1 nm. The spectrophotometer is to mea-

sure the optical density (OD) at 663 nm and 645 nm, respectively. The principle of spectropho-

tometer measurement is to measure the absorption intensity of chlorophyll solution at

different wavelengths, and the strength of chlorophyll content can then be deduced from the

absorption intensity at different wavelengths. For spectroscopic measurement, most of the

essential information is expressed at the characteristic wavelengths of 663 nm and 645 nm. It

should be noted that the proposed UAV-HSI system is measuring the reflectance information

of leaves in solid form, thus the reflectance characteristic wavelengths used by the UAV-HSI

platform will be different from 663 nm and 645 nm. Based on the colorimetry result, the chlo-

rophyll content of the japonica rice samples was calculated according to Eq (1) [23]

Chlðmg=LÞ ¼ 5:134OD663 þ 20:436OD645 ð1Þ

where Chl is the chlorophyll level, and OD663 and OD645 are the ODs at 663 nm and 645 nm,

respectively.

A total of 10 experimental data collections were conducted in this study, and 196 valid data

samples were collected. Of these, 84% were selected to form a modeling dataset (165 samples),

and the remaining 16% were used to construct a validation dataset (31 samples). Table 1 shows

division of the experimental data training set and validation set for this paper. The statistical

characteristics of the sampled data are shown in Table 1.

According to Table 1, the modeling and validation dataset share similar statistical proper-

ties with the exception of sample size. Additionally, the coefficient of variation was greater

than 40%, indicating that the chlorophyll content data exhibited high dispersion.

Extraction of characteristic hyperspectral bands

The successive projection algorithm (SPA) was used to extract hyperspectral information from

characteristic spectral bands of the japonica rice canopy. Information obtained from SPA was

then used as input to the chlorophyll content inversion model. Previous research by our group

verified that the change in chlorophyll content of japonica rice mainly affects the spectral
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reflectance between 400 to 800 nm Fig 3. The detailed analysis method is described in [24, 25].

Therefore, 400 to 800 nm was selected as the hyperspectral interval in this study.

SPA is a forward variable selection algorithm that minimizes collinearity in a vector space.

Define a size M × J calibration data matrix as Xcal = [x1,. . .,xJ], where J is the number of candi-

date wavelengths, M is the number of calibration waveforms from the hyperspectral image,

and xj is a length M vector. The objective of SPA is to identify a subset of N< J columns of Xcal

with minimum collinearity, where N is a predefined parameter. Such an approach can identify

a subset of wavelengths with minimum redundant information.

SPA performs forward subset selection in an iterative manner. It starts with one wave-

length, and then add a new wavelength at each iteration until N wavelengths are selected.

Define the set of selected wavelengths as A, and the set of unselected wavelengths as S, such

that A [ S ¼ J ¼ f1; . . . ; Jg.
During the iterative selection process, we will project each vector with wavelength in S

onto the subspace spanned by the vectors indexed by the elements in A. The vector with the

largest residue after projection contains the most new information that is not represented by

the elements in A, thus the corresponding wavelength will be added to A.

The initial values of A and S are A ¼ ; and S ¼ J , respectively, where ; is the empty set.

At the beginning of the iteration, assign yj = xj, for all j 2 S. The values of Yj will be iteratively

updated throughout the iteration process. Denote the wavelength selected at the k-th iteration

as ak. The corresponding vector with index ak is represented as zk ¼ yak . Each iteration con-

tains the following three steps [26, 27].

Table 1. Statistical characteristics of chlorophyll content in japonica rice in test plots.

Sample set Number of

samples

Chlorophyll content

maximum (mg/L)

Chlorophyll content

minimum (mg/L)

Chlorophyll content

average (mg/L)

Standard deviation

(mg/L)

Coefficient of

variation (%)

Overall 196 99.70 2.60 54.66 26.94 49.28

Modeling

dataset

165 99.70 2.60 54.33 27.31 50.27

Validation

dataset

31 93.80 10.70 56.42 25.22 44.70

https://doi.org/10.1371/journal.pone.0238530.t001

Fig 3. Global sensitivity analysis of the input parameters in the PROSPECT model.

https://doi.org/10.1371/journal.pone.0238530.g003
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Step 1 (Projection). During the k-th iteration, we first project all vectors Yj, j 2 S, into the

null space of zk-1 as

ej ¼

( yj � zk� 1ðzTk� 1
zk� 1Þ

� 1zTk� 1
yj; k > 1;

yj; k ¼ 1;
8j 2 S ð2Þ

For the first iteration with k = 1, since A is empty, the projection operator to the null space

of the vectors indexed by A is simply the size M identity matrix IM.

Step 2 (Selection). The index of the residual vector ej with the largest ℓ2 norm is selected as

the new wavelength as

ak ¼ argmax
j2S

kejk2 ð3Þ

Step 3 (Update). Update the sets A ¼ A
S
fakg and S ¼ S fakg, where the operator n rep-

resents the difference between two sets. Update all Yj as the residual of the projection as

yj ¼ ej; for all j 2 S: ð4Þ

The output of SPA is the set of wavelength indices A. To further reduce the number of

wavelengths, multiple linear regression (MLR) models were applied to all subsets of A. The

subset that results in the smallest root mean square error (RMSE) is selected as effective char-

acteristic hyperspectral bands.

PSO-ELM inversion modeling of chlorophyll content

The inversion model of japonica rice canopy chlorophyll content was established by using the

subset of characteristic hyperspectral bands obtained from the previous section. The relation-

ship between the chlorophyll content and the characteristic hyperspectral bands were modeled

by using extreme learning machine (ELM) with particle swarm optimization (PSO). The PSO

algorithm was used to optimize the selection of input layer weights and hidden layer biases of

the ELM to calculate the output weight matrix. The parameters of the PSO algorithm consid-

ered in this study mainly include population size (pop), inertia weight (w), learning factor (C1,

C2), and the velocity position correlation coefficient (m). It has been demonstrated that the

PSO-ELM outperforms conventional ELM algorithm in terms of the number of hidden layer

nodes and network generalizations [28]. In this study, the accuracy of the inversion model is

assessed by using the RMSE and the coefficient of determination (R2).

Results and discussion

Extraction of characteristic hyperspectral band

We first study the correlation between the japonica rice chlorophyll content and the various

hyperspectral bands from the japonica rice canopy reflectance data. Three methods, including

Pearson’s correlation coefficient, distance correlation coefficient, and maximum information

coefficient (MIC), were used to analyze the correlation between chlorophyll and each individ-

ual band. Before applying the correlation methods, the Savitzky-Golay convolution smoothing

algorithm was used to smooth the 400 to 800 nm reflectance spectral data, obtained from the

test plots and reduce the effect of noise on chlorophyll content inversion accuracy. The japon-

ica rice canopy hyperspectral curve after noise reduction is shown in Fig 4.

Results from the correlation analysis are shown in Fig 5. Results from all three methods in

general have similar trends: the maximum correlation between chlorophyll content and
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hyperspectral reflectance is achieved in the wavelength range between 701 to 705 nm. Specifi-

cally, the peak correlation is located at the wavelength of 702 nm for all three methods, with

the distance, Pearson and MIC correlation coefficients being 0.66, 0.64, and 0.53, respectively.

In addition to the maximum correlation band, relatively strong correlations are also observed

at other bands, such as the band with wavelength between 410 to 480 nm. Even though the

reflectivity of 400 to 450 nm is lower than 0.1, the signal-to-noise ratio of all bands is between

6.0 dB to 15.9 dB, which is sufficient to extract the characteristic information of the response.

The SNR of each band is obtained by calculating the ratio between the total power of the signal

and the variance of the signal in the range between 400 to 800 nm.

The SPA algorithm described in Section 1 was used to extract characteristic hyperspectral

bands for the chlorophyll content inversion model. Based on our experiment data, the

extracted characteristic wavelengths were 410 nm, 481 nm, 533 nm, 702 nm, and 798 nm. Fig

6 shows the average reflectance marked with the extracted characteristic bands.

Fig 4. Noise reduction of hyperspectral information smoothing.

https://doi.org/10.1371/journal.pone.0238530.g004

Fig 5. Single band correlation analysis results.

https://doi.org/10.1371/journal.pone.0238530.g005
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PSO-ELM chlorophyll content results

The inversion model of cholorophyll content is studied in this subsection. In the inversion

model, the reflectance data on the characteristic hyperspectral bands extracted from SPA

are used as independent variables. The chlorophyll contents obtained through ground data

acquisition constitute the dependent variables. The inversion model was established by using

PSO-ELM. For comparison, we also include the results obtained from conventional ELM. In

PSO-ELM, the number of particle swarm iterations was 100. The chlorophyll contents pre-

dicted by hyperspectral data with the inversion model are compared to those obtained from

ground data, and the performance is evaluated by using the coefficient of determination (R2).

Due to the large number of parameters of the PSO algorithm, an orthogonal array test was

designed to identify the optimum PSO parameter settings. The results are shown in Table 2,

where each parameter can take one of 5 values, and there are 5 parameters.

Table 3 summarizes the orthogonal array test results of the PSO-ELM parameters, where

Wij is the sum of R2 obtained from the i-th value of parameter j. For example, W11 is obtained

by calculating the sum of R2 corresponding to the first value of the first parameter, pop = 40,

and W12 is obtained by calculating the sum of R2 corresponding to the first value of the second

parameter, w = 0.3, as

W11 ¼ R2

1
þ R2

2
þ R2

3
þ R2

4
þ R2

5
ð5Þ

W12 ¼ R2

1
þ R2

6
þ R2

11
þ R2

16
þ R2

21
ð6Þ

Other values of Wij are calculated in a similar manner, and the results are shown in Table 3.

Each column of Table 3 indicates the impacts of one parameter on the perdiction accuracy.

For example, on the first column, the differences among Wi1, for i = 1, . . ., 5, reveal how the

choice of population size affect the accuracy of the inversion model, regardless the values of

other parameters. Since W21�Wi1, it is concluded that the population size that maximize R2

shoud be the 2th value in the orthogonal array test, that is, pop = 50. Similary, the columns

corresponding to w, C1, C2, and m are maximized at W52, W33, W34, and W35, respectively.

Consequently, the optimum values of the parameters are pop = 50, w = 0.9� 0.3, C1 = 1.65,

C2 = 2.8, and m = 0.2.

Fig 6. Selection of characteristic bands of SPA in the canopy layer of japonica rice.

https://doi.org/10.1371/journal.pone.0238530.g006
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With the set of parameters obtained through the orthogonal array test, we can obtain the

PSO-ELM japonica rice chlorophyll content inversion model. Applying the newly developed

inversion model to the experiment data, we obtain R2 = 0.791 and RMSE = 8.215 mg/L.

These results are much better than the conventional ELM model, which obtains R2 = 667 and

RMSE = 11.308 mg/L. The inversion effect is shown in Fig 7. From the inversion results, it

can be seen that the PSO-ELM used in this study demonstrates significantly better prediction

performance for chlorophyll content than the model established by the conventional ELM

method.

Table 2. Orthogonal array test for PSO-ELM.

No Model pop w C1 C2 m C2

1 PSO-ELM 40 0.3 1.1 1.1 0.02 0.721

2 PSO-ELM 40 0.9 1.3 1.3 0.06 0.763

3 PSO-ELM 40 1.5 1.65 1.65 0.2 0.753

4 PSO-ELM 40 0.9�0.3 2.8 2.8 0.6 0.773

5 PSO-ELM 40 0.3�1.5 3.5 3.5 1 0.772

6 PSO-ELM 50 0.3 1.3 1.65 0.6 0.773

7 PSO-ELM 50 0.9 1.65 2.8 1 0.758

8 PSO-ELM 50 1.5 2.8 3.5 0.02 0.759

9 PSO-ELM 50 0.9�0.3 3.5 1.1 0.06 0.757

10 PSO-ELM 50 0.3�1.5 1.1 1.3 0.2 0.773

11 PSO-ELM 60 0.3 1.65 3.5 0.06 0.761

12 PSO-ELM 60 0.9 2.8 1.1 0.2 0.765

13 PSO-ELM 60 1.5 3.5 1.3 0.6 0.721

14 PSO-ELM 60 0.9�0.3 1.1 1.65 1 0.773

15 PSO-ELM 60 0.3�1.5 1.3 2.8 0.02 0.746

16 PSO-ELM 70 0.3 2.8 1.3 1 0.739

17 PSO-ELM 70 0.9 3.5 1.65 0.02 0.779

18 PSO-ELM 70 1.5 1.1 2.8 0.06 0.687

19 PSO-ELM 70 0.9�0.3 1.3 3.5 0.2 0.773

20 PSO-ELM 70 0.3�1.5 1.65 1.1 0.6 0.773

21 PSO-ELM 80 0.3 3.5 2.8 0.2 0.773

22 PSO-ELM 80 0.9 1.1 3.5 0.6 0.762

23 PSO-ELM 80 1.5 1.3 1.1 1 0.733

24 PSO-ELM 80 0.9�0.3 1.65 1.3 0.02 0.760

25 PSO-ELM 80 0.3�1.5 2.8 1.65 0.06 0.760

ELM 0.667

https://doi.org/10.1371/journal.pone.0238530.t002

Table 3. Analysis of the PSO-ELM orthogonal array test results.

pop w C1 C2 m

W1j 3.782 3.767 3.716 3.749 3.765

W2j 3.820 3.827 3.788 3.756 3.728

W3j 3.766 3.653 3.805 3.838 3.837

W4j 3.751 3.824 3.796 3.737 3.802

W5j 3.788 3.836 3.802 3.827 3.775

https://doi.org/10.1371/journal.pone.0238530.t003
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Discussions

We have developed an inversion model that can estimate the japonica rice chlorophyll content

by using hyperspectral data of japonica rice canopy collected by UAVs. The inversion model

enables rapid monitoring and assessment of japonica rice chlorophyll content with UAV

remote sensing. Compared to existing methods, the proposed inversion model has two main

contributions.

First, an efficient dimension reduction method with SPA was employed to extract the

salient information embedded in the high dimensional hyperspectral data. The SPA-based

dimension reduction approach provides a more efficient and accurate representation of

the hyperspectral contents than the conventional one-dimensional or multiple-regression sta-

tistical models, which may not fully express the nonlinear relationship between spectral infor-

mation and chlorophyll contents [29–32]. The subset of the characteristic hyperspectral band

extracted by the SPA algorithm are used as the input of the inversion model.

Second, the inversion model was constructed by using the PSO-ELM algorithm. Conven-

tional ELM algorithm suffers from poor generalization ability and low calibration accuracy

due to random input weights and hidden layer thresholds when there are fewer hidden layer

nodes. To solve these problems, the PSO algorithm provides a systematic way to optimize

input weights and hidden layer thresholds, thus renders a much better model accuracy com-

pared to conventional ELM algorithms.

The five characteristic bands extracted in this study are 410 nm, 481 nm, 533 nm, 702 nm,

798 nm. The two bands in 702 nm and 798 nm are are consistent with the 705 nm and 750 nm

range used for chlorophyll content retrieval index in [33]. The characteristic bands of 410 nm,

481 nm, and 533 nm in this paper are similar to those bands used in the study of the rice joint-

ing stage in the literature [34]. Comprehensive analysis shows that there are overlaps and dif-

ferences in the spectral regions of the characteristic bands among different studies. The

differences in characteristic bands are mainly caused by differences in strain varieties, growth

periods, environmental conditions, and data processing methods. The difference in the spe-

cific characteristic bands is mainly due to the following factors: 1) the rice variety used in this

study is different from previous works; and 2) the hyperspectral information might be affected

by the presence of water, weeds, and soil in rice fields.

Fig 7. Inversion results of japonica rice canopy chlorophyll content.

https://doi.org/10.1371/journal.pone.0238530.g007
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The accuracy of the inversion model can be improved by increasing the amount of data col-

lected from both the UAV platform and ground data. More data can reduce the uncertainties

caused by noise, interference, and inevitable collection errors. In addition, the inversion model

was established only for experimental japonica rice varieties. Future research will focus on

increasing the number of test species and establishing chlorophyll content inversion models

for different growth stages of japonica rice in order to improve model accuracy and universal

applicability.

The proposed UAV-HSI platform enables rapid, accurate, and non-destructive assessment

of rice growth information. The method developed in this paper enables us to obtain timely

understanding of the rice growth status, which is essential for rice fertilization planning.

One challenge faced by the proposed method is that the chlorophyll content of rice leaves

varies with changes in rice varieties, fertility period, growing environment and other factors.

The results obtained in this work are applicable to the crop stage of northeastern rice. New

model parameters will need to be obtained for other rice strains.

Conclusions

We have developed an inversion model that can predict japonica rice chlorophyll content by

using rice canopy hyperspectral data collected from UAV platforms. The model was developed

by using data collected from the Shendao 529 rice variety with both UAV and ground mea-

surement performed in 2016 and 2017. The inversion model was developed by using a combi-

nation of the SPA method and the PSO-ELM algorithm. Specifically, the SPA method was

used to achieve hyperspectral data dimension reduction by extracting the hyperspectral char-

acteristic bands, which were then used used as the input to the PSO-optimized ELM algorithm

to establish the nonlinear relationship between the chlorophyll content and hyperspectral data.

Based on the experimental results, we have the following conclusions.

• The SPA algorithm is effective in extracting hyperspectral characteristic bands in the range

of 400 to 800 nm. The characteristic hypersepctral bands selected by the SPA algorithm were

410 nm, 481 nm, 533 nm, 702 nm, and 798 nm, respectively.

• The proposed inversion model achieves R2 = 0.791 and RMSE = 8.215 mg/L, which are sig-

nificantly better than the inversion model of the conventional ELM algorithm with R2 =

0.667 and RMSE = 11.308 mg/L. The model exhibits good predictive ability and can provide

data support and model reference for Northeast japonica rice chlorophyll content research

and nutrient diagnosis.
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