PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Roady R, Hayes TL, Kemker R, Gonzales
A, Kanan C (2020) Are open set classification
methods effective on large-scale datasets? PLoS
ONE 15(9): e0238302. https://doi.org/10.1371/
journal.pone.0238302

Editor: Hao Sun, Northeastern University, UNITED
STATES

Received: February 3, 2020
Accepted: August 13, 2020
Published: September 4, 2020

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pone.0238302

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by anyone for any lawful purpose.
The work is made available under the Creative
Commons CCO public domain dedication.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files.

Funding: TH and CK were supported during this
work in part by DARPA/MTO Lifelong Learning

RESEARCH ARTICLE

Are open set classification methods effective
on large-scale datasets?

Ryne Roady®"', Tyler L. Hayes", Ronald Kemker', Ayesha Gonzales?,
Christopher Kanan'-34+*

1 Rochester Institute of Technology, Rochester, NY, United States of America, 2 Case Western Reserve
University, Cleveland, OH, United States of America, 3 Paige, New York, NY, United States of America,
4 Cornell Tech, New York, NY, United States of America

* rpr3697 @rit.edu

Abstract

Supervised classification methods often assume the train and test data distributions are the
same and that all classes in the test set are present in the training set. However, deployed
classifiers often require the ability to recognize inputs from outside the training set as
unknowns. This problem has been studied under multiple paradigms including out-of-distri-
bution detection and open set recognition. For convolutional neural networks, there have
been two major approaches: 1) inference methods to separate knowns from unknowns and
2) feature space regularization strategies to improve model robustness to novel inputs. Up
to this point, there has been little attention to exploring the relationship between the two
approaches and directly comparing performance on large-scale datasets that have more
than a few dozen categories. Using the ImageNet ILSVRC-2012 large-scale classification
dataset, we identify novel combinations of regularization and specialized inference methods
that perform best across multiple open set classification problems of increasing difficulty
level. We find that input perturbation and temperature scaling yield significantly better per-
formance on large-scale datasets than other inference methods tested, regardless of the
feature space regularization strategy. Conversely, we find that improving performance with
advanced regularization schemes during training yields better performance when baseline
inference techniques are used; however, when advanced inference methods are used to
detect open set classes, the utility of these combersome training paradigms is less evident.

Introduction

Convolutional neural networks (CNNs) work extremely well for many categorization tasks in
computer vision involving high-resolution images [1, 2]. However, current benchmarks use
closed datasets in which the train and test sets have the same classes. This is unrealistic for
many real-world applications. It is impossible to account for every eventuality that a deployed
classifier may observe, and eventually, it will encounter inputs that it has not been trained to
recognize. Open set classification (OSC) is the ability for a classifier to reject a novel input
from classes unseen during training rather than assigning it an incorrect label [3]. This
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capability is particularly important for the development of 1) safety-critical software systems
(e.g., medical applications, self-driving cars) and 2) lifelong learning agents that must automat-
ically identify novel classes to be learned by the classifier [4-7].

For OSC in large-scale datasets, the major challenge is the presence of ‘unknown unknowns’
since the set of possible inputs outside of the training set is unbounded. Within recent machine
learning literature, the OSC problem is highly related to a number of different applications
including selective classification [8], classification with a reject option [9, 10], and out-of-distri-
bution (OOD) detection [11-14]. For our study, the goal of an open set classifier is to correctly
classify inputs that belong to the same distribution as the training set and to reject inputs that
are outside of this distribution. This is a narrower definition than the broad application of
OOD detection which is only concerned with finding a function to determine whether an
input belongs to the training distribution and not concerned with the correct classification of
samples which are in-distribution.

Additionally in recent literature, the differences between these names have indicated a
degree of difference between the training set distribution and the evaluation set containing
outlier samples. In classification with a reject option, the test distribution has the same catego-
ries as the training distribution; however, a classifier should reject inputs it cannot confidently
classify. In OOD detection as selective classification, the outlier data used in test cases often
comes from broadly different data distributions than the training set or in special cases from
adversarially generated data designed to fool a classifier into non-sensical predictions [15, 16].
In open set recognition, a classification model is often tested on known classes and novel
inputs from related classes not observed during training. Surprisingly, there has been little
work comparing methods developed for each of these paradigms.

To organize our evaluations we seperate the strategies for OSC into two general approaches.
The first is specialized inference mechanisms for determining if the input to a pre-trained
CNN should be rejected. The second is to alter the CNN during learning so that it acquires
more robust representations of known classes that reduce the probability of a sample from an
unknown class being confused. This often takes the form of collapsing class conditional fea-
tures in the deep feature space of CNNss.

Finally, the vast majority of prior work for OSC in image classification has focused on
small, low-resolution datasets, e.g., MNIST and CIFAR-100. Deployed systems like autono-
mous vehicles, where outlier detection would be critical, often operate on images that have far
greater resolution and experience environments with far more categories. It is not clear from
previous work if existing methods will scale. In this paper we compare methods across open
set classification paradigms on large-scale, high-resolution image datasets.

Our major contributions are:

o We organize OSC methods for CNNs into families and identify the relevant benefits and
penalties of different methods.

o We are the first to directly compare inference methods and feature space regularization strat-
egies for OOD and open set recognition to quantify the benefit gained from combining these
techniques.

o We extensively compare combinations of inference and feature space methods, many of
which have not been previously explored, on the ImageNet large-scale classification datset.

« Using a challenging open set image classification protocols, we find that the relative OSC
performance benefit from specialized inference methods is consistent across different OOD
types and feature space representations.
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o We also find that the relative benefit from certain feature space regularization methods such
as confidence loss with a background class is very dependent on the relationship between the
background class and the in/out-of-distribution datasets.

1 Problem formulation

While OSC is related to uncertainty estimation [17] and model calibration [18], its function is
to reject outlier inputs to the CNN. We formulate the problem as a variant of traditional multi-
class classification where an input belongs to either one of the K categories from the training
data distribution or to an outlier/rejection category, which is denoted as the K + 1 category.
Given a training set D, i, = {(X1, y1)> (X2, ¥2)s - - -» (X Y1)}, Where X; is the i-th training input
tensor and y; € Cy4i, =11, 2, . . ., K} is its corresponding class label, the goal is to learn a classi-
fier F(X) = (f1, . . ., fi), that correctly identifies the label of a known class and separates known
from unknown examples:

argmax, F(X) if S§(X) >0
- { (1)

K+1 if S(X) <o

where S(X) is an acceptance score function that determines whether the input belongs to the
training data distribution and § is a threshold.

For testing, the evaluation set contains samples from both the set of classes seen during
training and additional unseen classes, i.e., Dyegs = {(X1, ¥1), (X2, ¥2); - - » (X )}, where
¥i € (Chrain |J Cuni) and C,,,x contains classes that are not observed during training.

2 Open set classification in CNNs

We have organized methods for OSC into two complementary families: 1) inference methods
that create an explicit acceptance score function for separating novel inputs, and 2) regulariza-
tion methods that alter the feature representations during training to better separate in-distri-
bution and novel samples.

2.1 Inference methods

Inference methods use a pre-trained neural network to perform OSC, but modify how the net-
work outputs are used. Using pre-trained networks is advantageous since no modifications to
training need to be made to handle outlier samples, and the feature representations of pre-
trained deep CNNs have been shown to generalize across many different image datasets [19].
We briefly descript the OSC inference methods below and summarize their acceptance score
functions and inference complexity in Table 1.

Table 1. The studied inference methods for OOD detection. Inference complexity refers to the number of passes
through a deep CNN (forward and backward) during inference.

CLASSIFICATION METHOD ACCEPTANCE SCORE FUNCTION INFERENCE COMPLEXITY
7-Softmax [11] Simple Threshold 1
DOC [20] Per-Class Threshold 1
ODIN [12] Temp Adjusted Threshold 3
OpenMax [21] Per-Class EVT Rescaling 1
One-Class SVM [22] SVM Score 1
Mahalanobis [14] Generative-Distance Metric 3

https://doi.org/10.1371/journal.pone.0238302.t001
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2.1.1 Confidence thresholding. The simplest approach to OSC in deep CNN classifica-
tion models is thresholding the output of a model after normalizing by a softmax activation
function, thus producing a probabilistic confidence estimate among the known classes. For
multi-class classifiers, the softmax layer assumes mutually exclusive categories, and in an ideal
scenario would produce a uniform posterior prediction for a novel sample. Unfortunately, this
ideal scenario does not occur in practice and serves as a poor estimate for uncertainty [23, 24].
Still, the max output of the softmax layer has been shown to follow a different distribution for
outlier samples than in-distribution samples drawn from the known classes [11]. In our experi-
ments, we refer to this thresholding on the confidence output of the model as 7-Softmax.

Confidence thresholding can be further improved as a means of detecting open set classes
by improving the model calibration during inference. Techniques for improving classification
model calibration have been extensively studied [18, 25]; however, the Out-of-Distribution
Image Detection in Neural Networks (ODIN) technique [12] was the first to extend these
methods to exclusively improve OOD detection performance. This is accomplished by simul-
taneously temperature scaling the activation of the network prior to softmax output and apply-
ing a small input perturbation based on the gradient of this temperature adjusted softmax
output. In this application, the sign of the gradient is used to enhance the probability of inputs
that are in-distribution while minimally adjusting the output of outlier samples.

Additional work on confidence thresholding for OSC has focused on establishing per-class
thresholds rather than a global threshold for rejection. One of the first methods to employ this
strategy in deep neural networks was the Deep Open Classification (DOC) model [20], which
alters a typical multi-class CNN architecture by replacing the softmax activation of the final
layer with a one-vs-rest layer containing K sigmoid functions for the K classes seen during
training. The sigmoid activation helps to avoid the normalization properties of the softmax
activation and creates more discriminative per-class thresholds. A threshold, k;, is then estab-
lished for each class by treating each example where y = k; as a positive example and all samples
where y # k; as negative examples. During inference, if all outputs from the sigmoid activa-
tions are less than the respective per-class thresholds, then the sample is rejected. For our eval-
uations, we separate this per-class thresholding strategy from the one-vs-rest model training
strategy to isolate the benefits of the inference strategy from the benefits of training using a
binary cross-entropy loss function.

2.1.2 Distance metrics. Outlier detection can also be done using a variety of distance-
based metrics in deep feature space. Following the formulation of Knorr and Ng [26], a num-
ber of distance-based methods [27-30] have been developed based on global and local density
estimation by computing the distance between a sample and the underlying data distribution
including the Nearest Class Mean and Nearest Non-Outlier [31] metrics.

While Euclidean distance metrics have been typically used in the deep feature space of
CNNs for OSC [32, 33], they often fail in high-dimensional feature spaces containing many
classes. To mitigate this issue, the most successful recent method for OSC in CNNss uses a near-
est class Mahalanobis metric [14] across the feature space of mulitple layers within the net-
work. This method requires a seperate set of class means and a tied covariance matrix to be
calculated (learned) at each layer within a network. It then requires that a linear classifier be
learned through cross-validation for the metrics across different layers to be combined into a
single acceptance score function. Interestingly, the utility of the Mahalanobis metic in deep
feature space of pre-trained networks is justified by showing that the cross-entropy loss used
for the pre-trained network approximates a Gaussian discriminant analysis classifier with a
tied covariance matrix between classes [34]. To date, this simple metric approach has been the
most successful for adapting a pre-trained classification network to perform OOD detection of
outlier samples.
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2.1.3 One-class classification. Another technique for determining a decision boundary in
feature space to separate in-distribution data from outlier data is to attach a one-class classifier
to the deep feature representation of a pre-trained network. The most popular one-class classi-
fication techniques are currently based on Support Vector Machines (SVM) [22, 35]. One-
class SVMs find the maximum margin decision boundary such that some portion of training
samples fall inside the boundary. The estimate of the proportion of training data that should
be considered as the ‘outlier’ class is a hyper-parameter that must be set through cross-valida-
tion. Beyond SVMs, recent work has also focused on training deep one-class neural networks
that learn an additional feature space to enable anomaly detection [36, 37]; however, training
these auxilliary novelty detectors on top of a pre-trained CNN can be much more time con-
suming than many of the other methods mentioned here. For our study we evaluate the one-
class SVM approach as a representative way of applying a one-class classifier for detecting
novel samples in a pre-trained CNN.

2.1.4 Extreme value theory. OSC methods based on extreme value theory (EVT) recog-
nize novel inputs by characterizing the probability of occurrences that are more extreme than
any previously observed. This is typically implemented by characterizing class-conditional dis-
tributions in feature space. It has been directly adapted to CNN classifiers by modeling the dis-
tance to the nearest class mean in deep feature space as an extreme value distribution [38, 39]
and calculating an acceptance score function as the posterior probability based on this EVT
distribution. OpenMax [21] specifically applies EVT to construct a sample weighting function
to re-adjust the output activations of a CNN based on a per-class Weibull probability distribu-
tion. The output is rebalanced between the closed set classes and a rejection class, and samples
are rejected if the rejection class has a maximum activation or if the maximum activation falls
below a threshold set from cross-fold validation.

2.2 Feature representation methods

In contrast to inference methods that calculate an acceptance score function from the feature
space of a pre-trained network, we define feature representation OSC methods as strategies
that alter the architecture of the network or how the network is trained in order to learn repre-
sentations that enable better OSC performance.

2.2.1 One-vs-rest classifiers. The most common method for training a CNN classifier
with K disjoint categories is using cross-entropy loss calculated from a softmax activation func-
tion. Although the softmax function is good for training a classifier over a closed set of classes,
it is problematic for outlier detection because the output probabilities are normalized, resulting
in high-probability estimates for inputs that are either absurd or intentionally produced to fool
anetwork [15, 23]. One-vs-rest classification models eliminate the softmax layer of a tradi-
tional closed-set classifier and replace it with a logistic sigmoid function for each class. While
these per-class sigmoid activations no longer have a probabilistic interpretation in a multi-
class problem, they reduce the risk of incorrectly classifying a novel sample by treating each
class as a closed-set classification task, which can be individually thresholded to identify outli-
ers. The aforementioned DOC model is one version of a one-vs-rest classifier that replaces the
traditional softmax layer with a one-vs-rest layer of individual logistic sigmoid units [20].

2.2.2 Background class regularization. Another method for improving OSC perfor-
mance via feature space regularization is using a representative background class to separate
novel classes from known training samples. This technique is most commonly applied in
object detection algorithms where the use of separate region proposal and image classification
algorithms result in a classifier that must handle ambiguous object proposals [40]. Often these
classifiers represent the background class as a separate output node which is trained using
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datasets that have an explicit ‘clutter’ class such as MS COCO [41] or Caltech-256 [42]. Alter-
natively, newer approaches have used background samples to train a classifier to predict a uni-
form distribution when presented with anything other than an in-distribution training sample
[43]. This is done by using an auxillary loss function that penalizes model predictions that
diverge from a uniform distribution for novel samples. Recent methods that have incorporated
this regularization for OSC include Confidence Loss [44] and Entropic Open Set Loss [45].
These methods have better OSC performance than just modeling the background class as an
additional output node from the classifier. Nevertheless, evaluation of these methods on large-
scale datasets has been very limited to date because of the difficulty in constructing a robust
large-scale background dataset exclusisve of the training classes. We explore this shortcoming
by evaluating models on large-scale datasets with various background datasets.

2.2.3 Generative models. Using CNNs for generative modeling has been an active area of
research with the advent of generative adversarial networks [46] and variational auto-encoders
[47]. Generative models have extended earlier density estimation approaches for outlier detec-
tion by more accurately approximating the input distribution. A well-trained model can be
used to directly predict if test samples are from the same input distribution [48] or estimate
this by measuring reconstruction error [49]. Specifically to train open set classifiers, generative
models have been used to create outlier inputs from the training set in order to condition a
classifier to produce low confidence estimates, similar to how an explicit background class is
used for model regularization [50]. These methods have proven less powerful than a well cho-
sen background class for anything other than simple datasets [44, 51]. Thus, they are not
explicitly evaluated in our comparisons.

3 Feature space visualization

To visually illustrate the differences between various methods, we trained a simple model for
outlier detection using the MNIST dataset. We used a shallow CNN with a bottle-necked fea-
ture layer, i.e., the LeNet++ architecture [52], to allow visualization of the resulting decision
boundaries. Fig 1 shows the 2-D decision boundaries with blue representing in-distribution
classification at a 95% true positive rate threshold and red representing the resulting rejection
region. Additionally, we mapped samples from an unknown class represented by the Fashion-
MNIST [53] dataset in Fig 2 to understand how the decision boundaries relate to the deep
CNN features of known and unknown classes.

These results illustrate that for a given feature space, inference strategies can be divided
between those that have unbounded acceptance regions (e.g., 7-Softmax) with those that are
bounded (e.g., OpenMax). Much has been made of this distinction [3] and it is seen as a
strength of the inference methods with bounded regions. However, as Fig 2 represents,
unknown inputs are rarely mapped into these unbounded regions, but rather are centered
around the origin in the deep feature space of a CNN. This implies that properly mapping the
acceptance/rejection region around the origin is critical for OSC performance. Of the bounded
acceptance region methods, OpenMax and Mahalanobis create the most compact decision
boundaries. However, having compact boundaries may not be the best option when generali-
zation to test inputs and unknown novel inputs is desired.

The goal of different feature space regularization strategies is to build robustness into the
deep feature space by separating knowns from potential unknowns. While naively the One-vs-
Rest training strategy appears to be a good solution by creating more compact class conditional
distributions, the technique does not directly impact how features from unknown inputs will
be mapped into the deep feature space. Instead we see that regularizing the model with a repre-
sentation of the unknown class creates better separation between the known and unknown
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Test Data and Baseline Temperature EVT on Output  One-Class  Mahalanobis Dist
Class Boundaries Thresholding Scaling (OpenMax) SVM Thresholding

o - - - - -
Background Class i
Regularization 3

Fig 1. Decision boundaries. 2-D visualization of the decision boundaries created from the different inference methods studied using the LeNet
+ architecture and MNIST [52] as the training set. Blue is the acceptance region for in-distribution samples calibrated at a 95% True Positive Rate
(TPR) for training data. Red is the rejection region (outlier).

https://doi.org/10.1371/journal.pone.0238302.9001

One-vs-Rest
(Binary Cross-Entropy)

[44, 45]. The difficulty in this approach, however, lies in large-scale datasets with many hun-
dreds of classes.

4 Empirical assessment of open set classification methods

To compare performance of current state-of-the-art OSC methods on large-scale realistic data-
sets we asked three questions: 1) What is the benefit to be gained from the additional computa-
tional complexity that many of the specialized OSC inference methods introduce for detecting
novel classes on complex large-scale visual recognition tasks using pre-trained ImageNet mod-
els? 2) How does does performance change as the similarity between the open set classes and
closed set classes differs? Many of the methods tested have shown impressive results testing
against OOD inputs drawn from either random noise or seperate datasets than the training
set, but it is not clear whether performance degrades gradually or sharply as OOD samples
become more similar to the in-distribution set, i.e., does the performance benefit from special-
ized inference methods increase or decrease as the open set detection problem becomes more

(a) Cross-Entropy (b) One-vs-Rest (c) Bkg. Class Reg.

Fig 2. Feature space regularization. 2-D visualization of the effect of the different feature space regularization strategies on separating in-distribution
and outlier inputs The in-distribution training set is MNIST while the open set classes are drawn from the Fashion-MNIST dataset [53]. For
background class regularization, the EMNIST-Letters dataset [54] is used as a source for background samples.

https://doi.org/10.1371/journal.pone.0238302.9002
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difficult. Finally, 3) Does additional model regularization during training aid in detection of
open set classes when using one of the specialized inference mechanisms. Many of the afore-
mentioned regularization techniques were only tested with baseline confidence thresholding
to detect outlier samples, so it is unclear whether they would work harmoniously with current
state-of-the-art inference methods.

To quantify OSC performance, we use two seperate metrics for evaluation. First we use the
area under the receiver operating characteristic curve (AUROC) metric to assess OSC perfor-
mance of each approach as a binary detector for seperating in-distribution and outlier samples.
AUROC characterizes the performance across a full range of threshold values, regardless of the
range of unique values for each inference method’s scoring function. AUROC has been a com-
monly used metric for measuring OOD detection capabilities in image classification datasets
[11, 12, 14, 43, 44]. This metric is best suited for comparing the inference methods which use
the same pre-trained model; however, when comparing regularization techniques where the
underlying closed-set accuracy can differ between models, we want a more discriminating
measure.

Thus, we also adopt the area under the open set classification characteristic curve [45]
(AUOSC), which is an adaptation on the traditional ROC curve measuring instead the correct
classification rate versus false positive rate. This correct classification rate is the difference
between the model accuracy and the false negative rate. Intuitively, this metric takes into
account whether true positive samples are actually classified as the correct class and thus
rewards methods which reject incorrectly classified positive samples before rejecting samples
that are correctly classified. We extend the open set classification charactistic curve from [45]
to calculate the area under the curve which provides an easy assessment of performance across
different experimental paradigms and datasets.

To estimate the ability of OSC methods to scale, we trained models on the ImageNet large-
scale image classification dataset (ImageNet). The ImageNet dataset was part of the ImageNet
large-scale Visual Recognition Challenge [55] between 2012 and 2017 and evaluated an algo-
rithm’s ability to classify inputs into one of 1,000 possible categories. The dataset consists of
1.28 million training images (732-1300 per class) and 50,000 labeled validation images (50 per
class), which we use for evaluation. We train an 18-layer ResNet model [1] for image classifica-
tion on 500 randomly chosen classes, reserving the remaining 500 for intra-dataset OSC
experiments.

To train the models, we use stochastic gradient descent with a mini-batch size of 256,
momentum weighting of 0.9, and weight decay penalty factor of 0.0001. All models are trained
for 90 epochs, starting with a learning rate of 0.1 that is decayed by a factor of 10 every 30
epochs. Training parameters were held constant for all feature space regularization strategies
unless otherwise noted. The baseline cross-entropy trained model for the 500 class partition
achieves 78.04% top-1 (94.10% top-5) accuracy.

4.1 Inference method comparison

To begin our assessment, we compare six of the inference methods described in Sec. 2 on
large-scale image classification datasets using a pre-trained deep CNN model trained with
cross entropy loss. The specific implementation details for the inference methods evaluated are
as follows:

1. 7-Softmax—This simple baseline approach finds a global threshold from the final output of
the model after the associated activation function is applied. The method yields good results
on common small-scale datasets [11] and can be easily extended to datasets with many
classes.
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2. DOC—Per-class thresholding has been shown to successfully reject outlier inputs during
testing on common, small-scale datasets [56]. Adapting this method to larger datasets is
more computationally expensive than 7-Softmax because a per-class threshold must be
established.

3. ODIN—This approach can outperform 7-Softmax when using well-trained CNNs; how-
ever, the technique adds computational complexity during inference to calculate input per-
turbations [12]. ODIN also adds additional hyperparameters for the magnitude of input
perturbation and a temperature scaling factor which must be determined through cross-
validation.

4. OpenMax—OpenMax is one of the only methods previously tested on ImageNet [21].
It models a per-class EVT distribution and has multiple hyperparameters that must be
tuned through cross-validation making it relatively cuambersome to use for large-scale
datasets during training. Once these parameters have been found, however, it presents a
robust inference method for estimating whether a sample belongs to one of the known
classes or to an explicitly modeled outlier class. In the original implementation the deci-
sion rule for rejection involves a two step process where a sample is rejected as novel if
either the outlier class is largest or the maximum class confidence of in-distribution clas-
ses is below a user-defined threshold. Because we evaluate methods across a range of
thresholds, we have simplified this decision rule by setting the model confidence to zero if
the outlier class is largest, otherwise the largest non-outlier confidence class is returned as
the acceptance score value.

5. One-class SVM—One-class SVMs have been employed as a simple unsupervised alterna-
tive to density estimation for detecting anomalies. They have been tested across a wide vari-
ety of datasets, but not on the large-scale image datasets and CNN architectures used in this
analysis. We use a radial basis function kernel to allow a non-linear decision boundary in
deep feature space and tune hyperparameters via cross-validation.

6. Mahalanobis—In [14], the Mahalanobis metric was computed at multiple layers within a
network and then combined via a linear classifier that was calibrated using a small valida-
tion set made up of in-distribution and outlier samples. To avoid biasing the model by
training with open set data, we only compute the Mahalanobis metric in the final feature
space. Adapting this metric to a large-scale dataset is straightforward, however, there is
additional computational and memory overhead to estimate and store class conditional
means and a global covariance matrix in feature space.

Hyperparameters for each inference method are tuned using outlier samples drawn from
uniform noise to avoid unfairly biasing results to the datasets used for evaluation. Performance
of each of the inference methods listed is shown in Fig 3.

Because the OSC performance increase from ODIN comes at a computational and memory
cost, we also want to understand which elements of the inference method contribute most to
the overall improvement in order to find the most efficient application of computational
resources for OSC. To do this we performed an ablation of the method by looking at the OSC
performance gained from temperature scaling and input perturbation independently as shown
in Fig 4. For temperature scaling, we performed two variations: one where the temperature is
chosen based on the procedure to minimize overall model calibration error as outlined in [18]
and another where we grid search on a leave-out validation set for the best temperature for
OSC performance independent of the impact on overall model calibration or closed set classi-
fication performance.
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4.2 OSC similarity comparison

To evaluate the large-scale open set classification capabilities across a variety of OOD datasets,
we created three separate outlier detection problems that vary in difficulty:

1. Noise: As the easiest OSC task, we evaluate both uniform and Gaussian noise inputs, which
has been widely studied as a baseline [11, 12, 44, 57]. For the Gaussian images, we generate
synthetic images from a zero mean, unit variance Gaussian distribution to match the data
normalization scheme used for training our models.

2. Inter-dataset: As a problem of intermediate difficulty, we study each method’s ability to
detect outlier samples drawn from a seperate medium to high resolution image classifica-
tion dataset. We include samples drawn from the Oxford Flowers dataset [58] and select
categories of the Places dataset [59]. Specifically we removed overlapping categories from
the Places dataset with our ImageNet training set determined using the hypernym/hypo-
nym relationship from the Wordnet lexicon [60]. Additionally, for the Places dataset we
sampled only from the outdoor categories leaving the indoor categories for regularization
experiments as described below.

3. Intra-dataset: As the hardest outlier detection task, we used the remaining 500 categories
from ImageNet that were not used for training,

In summary, the training set and models are kept fixed across the three paradigms, but the
test sets vary across them. We construct the open set evaluation samples for each problem by
randomly choosing 10,000 in-distribution samples evenly among the in-distribution classes
and 10,000 outlier samples evenly among the open set classes within each respective dataset’s
validation set. This evaluation process was repeated 5 times and the resulting metrics were
averaged.

To plot OSC performance across the varying OOD datasets against a meaningful metric, we
use the maximum mean discrepancy (MMD) metric with a Gaussian kernel [61], i.e.,

MMD*(P, Q) = Z (p,p,) + Z 9 9) — ZG%%

i# i#j i#j

where P and Q are the in-distribution and OOD sample spaces respectively and G(-, -) is a
Gaussian kernel whose scaling parameter is set to the median Euclidean distance of the aggre-
gate set (P U Q). MMD is commonly used for quantifying the distance between datasets drawn
from different distributions. Using this metric, we plot the OSC performance as a function of
the MMD similarity in Fig 5.

4.3 Regularization comparison

Finally to assess the benefit of feature space regularization, we tested across three different
training paradigms, including standard cross entropy training. The feature space regulariza-
tion strategies for improving outlier detection were implemented as follows:

1. Cross-entropy—As a baseline, we train each network with standard cross-entropy loss to
represent a common feature space for CNN-based models.

2. One-vs-rest—The one-vs-rest training strategy was implemented by substituting a sigmoid
activation layer for the typical softmax activation and using a binary cross-entropy loss
function. In this paradigm, every image is a negative example for every category it is not
assigned to. This creates a much larger number of negative training examples for each class
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https://doi.org/10.1371/journal.pone.0238302.9005

than positive examples. For this reason, we re-weight the negative-class training loss to be
proportional to the positive-class loss to ensure comparable closed-set validation accuracy.

3. Background class regularization—The Entropic Open Set method [45] is a regularization
scheme which uses a background class and a unique loss function during training to opti-
mize the feature space of a neural network for separating known classes from potential
unknowns. Similar to the confidence loss term in [44], the entropic open set loss forces
samples from the background class to the null vector in feature space by calculating the
cross-entropy of a uniform distribution for these samples. An additional regularization
term is used to measure the hinge loss of the magnitude between samples in the background
class and the training samples in feature space. For the background class, we use samples
drawn from classes in the Places dataset that do not overlap with ImageNet classes and
are distinct from the classes in the Places OSC experiments. Implementation details are
described below.

For background class regularization of an ImageNet trained model, we use the Places data-
set, which contains high-resolution images of scenes which are grouped into categories based
on their human-related function [59]. We removed 103 categories from Places that overlapped
with ImageNet, which were determined using the hypernym/hyponym relationship from the
Wordnet lexicon [60]. The remaining classes were then split into outdoor and indoor sub-
groups. The indoor classes are used for training models that require background class regulari-
zation, while images from the outdoor classes are used for our inter-dataset OSC experiments
of intermediate difficulty. Results from these experiments are shown in Table 2. In Fig 6 we
also show the resulting ROC curves for the ImageNet Intra-Dataset problem across the three
feature spaces tested. While qualitatively there appears to be little benefit from background
class regularization versus standard cross-entropy training we did find significant differences
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Table 2. Area Under the Open Set Classification curve (AUOSC) for outlier detection and open set classification performance in ImageNet trained models averaged
over 5 runs. Top performer for each in-distribution / OOD combination is in blue along with statistically insignificant differences from the top performer as determined
by DeLong’s test [62] (o = 0.01 with a correction for multiple comparisons within each column).

Features Space

CrossEntropy

Background Class Regularization

https://doi.org/10.1371/journal.pone.0238302.t002

One-vs-Rest

Inference Method Gaussian Places-Out ImageNet-Open
7-Softmax 0.786 0.713 0.688
DOC 0.786 0.713 0.688
ODIN 0.787 0.744 0.714
OpenMax 0.786 0.712 0.687
One-Class SVM 0.744 0.632 0.632
Mahalanobis 0.751 0.523 0.502
7-Softmax 0.649 0.539 0.539
DOC 0.633 0.483 0.483
ODIN 0.650 0.560 0.560
OpenMax 0.649 0.500 0.500
One-Class SVM 0.637 0.499 0.499
Mahalanobis 0.623 0.439 0.439
7-Softmax 0.751 0.746 0.717
DOC 0.751 0.746 0.720
ODIN 0.784 0.765 0.739
OpenMax 0.734 0.672 0.737
One-Class SVM 0.743 0.719 0.719
Mahalanobis 0.750 0.545 0.493

in the AUROC metric calculated across the full range of OOD detection thresholds as reported
in Table 2.

4.4 Model depth and width

Current state-of-the-art networks on large-scale image datasets often have hundreds of layers
and hundreds of convolutional filters per layer. Previous work has shown that deeper and
wider networks produce more accurate results, but often lead to uncalibrated predictions [18].

As an additional experiment, we desire to understand if there is a correlation between
model capacity in a CNN, i.e., the depth and width of convolutional layers, and the resulting
OSC performance. Our results indicate that in general novelty detection performance is
related to overall model accuracy and varies as the feature space representation changes. To
answer this question, we follow the protocol of [18] and train a series of ResNet models with
either a fixed convolutional filter width (64) and varying depths (10-152 layers) or fixed depth
(18 layers) and varying number of filter channels per layer (16-128). The results from these
experiments are shown in Fig 7. Since performance on detecting open set samples largely
tracks overall model accuracy it is not overly surprising that as the depth and width grow and
model accuracy increases, then outlier detection performance also increases. Unlike the previ-
ously reported negative effect of model capacity on confidence calibration, there is no indica-
tion that increasing model depth or width negatively impacts OSC performance.

4.5 Discussion

For inference methods, we see that ODIN performs best on detecting open set classes from the
ImageNet dataset for a pre-trained model across all three feature space regularization methods
and across all outlier datasets evaluated. These results show the power of input perturbation
and temperature scaling by showing improved performance over baseline methods and even
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more advanced methods on ImageNet, regardless of the feature space and difficulty of the
OSC problem. However, this improvement comes at nearly a third reduction in image
throughput and more than three times the memory cost during inference (see Fig 3). Results
among the remaining inference methods are mixed, with the baseline global thresholding
method (7-Softmax) performing equal to or better than all other methods for the most diffi-
cult, open set, outlier detection problem. Finally, while in general OSC performance decreases
as the similarity between the OOD and in-distribution data increases, the relative performance
increase of the ODIN method above the other methods tested is consistent across the different
OOD datasets tested.

A large portion of the performance gain from ODIN can be acheived through temperature
scaling alone as shown in Fig 4, which comes at virtually no increase in computational com-
plexity or memory cost during inference as compared to the input perturbation method. This
appears contradictory to recent improvements in OSC [13, 14] which have soley focused on
utilizing the input perturbation methods to improve performance. Additionally our experi-
ments show that finding a temperature scaling factor to optimize OSC performance is a sepa-
rate task than finding the optimal temperature for minimizing calibration error.

Additionally, looking closer at the benefit of the different feature space representation
methods tested, the results are mixed depending on the difficulty of the OSC problem. In gen-
eral one-vs-rest training, results in reduced overall classification performance as seen in the
lower AUOSC results which makes it a less desirable option for actually performing open set
classification. Further, the benefit of background class regularization is demonstrated most sig-
nificantly when detecting outlier samples that are similar to the background dataset used for
training. The quantity of this improvement is reduced, however, as the OSC problem becomes
more difficult. Nevertheless, background class regularization did not hurt either outlier detec-
tion or open set classification performance for any inference method except the Mahalanbois
method.

Fundamentally, the increase in OSC difficulty as the similarity increases between OOD and
in-distribution samples is due to the network confusing OOD inputs with known classes. This
confusion stems from the feature space of the CNN classifier which learns to be most sensitive
to variations in the training distribution that are semantically meaningful while ignoring varia-
tions that are not semantically meaningful among the known classes. Dealing with semanti-
cally meaningful variations in images from both known and unknown classes that are not
included in the training set is ultimately the most significant problem in the OSC process.

5 Conclusion

Research in OSC has largely focused on either developing inference strategies for pre-trained
models or a feature representation strategy for baseline inference methods for detecting outlier
samples. However, as our results show, a large performance increase can be gained by combin-
ing an advanced inference technique with a feature space regularization strategy. Nevertheless,
the performance increase over baseline techniques appears to be much smaller as the dataset
becomes more complex and the novelty detection problem becomes more difficult.

In this paper, we performed a comprehensive comparison of OSC methods for CNNs using
large-scale image classification datasets. We organized strategies into inference and feature
space regularization methods, outlined the general applicability of these methods, and tested
unique combinations of these two approaches previously unseen in any known literature.
Additionally, we established a testing paradigm with varying difficulty using different outlier
datasets. Through this paradigm, we demonstrated that novelty detection performance is very
dataset dependent but generally decreases as the similarity between the in-distribution and
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open set classes increases. Finally, there is still difficulty applying current state-of-the-art fea-
ture representation strategies for OSC to large-scale datasets that work in accordance with
advanced inference methods. Ultimately, challenges remain in adapting open set classification
methods for large-scale datasets and producing reliable recognition of novel inputs.
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