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Abstract

The standard GLM and GAM frequency-severity models assume independence between

the claim frequency and severity. To overcome restrictions of linear or additive forms and to

relax the independence assumption, we develop a data-driven dependent frequency-sever-

ity model, where we combine a stochastic gradient boosting algorithm and a profile likeli-

hood approach to estimate parameters for both of the claim frequency and average claim

severity distributions, and where we introduce the dependence between the claim frequency

and severity by treating the claim frequency as a predictor in the regression model for the

average claim severity. The model can flexibly capture the nonlinear relation between the

claim frequency (severity) and predictors and complex interactions among predictors and

can fully capture the nonlinear dependence between the claim frequency and severity. A

simulation study shows excellent prediction performance of our model. Then, we demon-

strate the application of our model with a French auto insurance claim data. The results

show that our model is superior to other state-of-the-art models.

Introduction

Insurance claims modeling is a topic of great concern in non-life insurance. The model helps

an insurer accurately estimate potential loss and make appropriate actuarial decisions. Specifi-

cally, the model enables an insurer to set a fair premium for each individual policy. It is impor-

tant to charge the policyholder with a fair premium. For instance, Dionne, Gouriéroux, and

Vanasse [1] point out that in auto insurance, if an insurer charges too little for young drivers

and too much for old drivers, young drivers will be attracted while old drivers will switch to

competitors. Then, the insurer loses profitable and gain underpriced policies, both resulting in

economic losses. Further, the model helps the insurer determine a suitable level of risk capital.

The underestimation of loss can make the insurer not hold enough risk capital and hence raise

bankruptcy risk. In contrary, the overestimation can reduce liquid capital of the insurer and

then hamper business expansion. Thus, an accurate model of insurance claims is significant to

competency and profits of an insurer.

The frequency-severity model is a standard model of insurance claims, which separately

models the claim frequency and average claim severity. The claim frequency examines the

number of claims and the average claim severity takes account of the average amount of claims
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conditional on occurence. The claim frequency and severity depend on characteristics of an

individual policy. For instance, in auto insurance, the characteristics include the age, gender

and motor vehicle record points of the policyholder, per capital income and population den-

sity of the policyholder’s residential area, age and model of the vehicle, etc. Thus, there is a

need of predictive models. The traditional frequency-severity model uses generalized linear

models (GLM) for modeling the claim frequency and severity. The frequency part often uses

Poisson or negative binomial regressions and the severity part uses gamma or inverse Gaussian

regressions. There is a large literature extending the model to capture different features of the

data. For instance, multivariate models can give a joint analysis of the frequency or severity at

different levels of classification. Anastasopoulos, Shankar, Haddock, and Mannering [2] intro-

duce a multivariate Tobit model to study accident rates categorized by severities. The condi-

tional autoregressive model can be used for accommodating spatial correlation. Huang, Song,

Xu, Zeng, Lee, and Abdel-Aty [3] develop a macro-level Bayesian spatial model with condi-

tional autoregressive prior and a micro-level Bayesian spatial joint model for predicting the

claim frequency. Zeng, Wen, Wong, Huang, Guo, and Pei [4] use a bivariate conditional auto-

regressive model to simultaneously analyze daytime and nightime claim frequencies. Aguero-

Valverde [5] introduces a multivariate conditional autoregressive model to estimate excess

claim frequencies at different severity levels. Generalized linear mixed models and the other

random parameters models can be used to capture unobserved heterogeneity across observa-

tions. Barua, El-Basyouny, and Islam [6] develop a multivariate random parameters condi-

tional autoregressive model to predict claim frequencies. Zeng, Wen, Huang, Pei, and Wong

[7] propose a multivariate random parameters Tobit model to analyze accident rates by sever-

ity. Zeng, Guo, Wong, Wen, Huang, and Pei [8] introduce a multivariate random parameters

spatio-temporal Tobit model to accommodate spatio-temporal correlation and interaction.

Dong, Ma, Chen, and Chen [9] use a mixed logit model to examine the difference of single-

vehicle and multivehicle accident probabilities. Chen, Chen, and Ma [10] adopt a mixed logit

model to analyze the hourly accident probability for highway segments. Chen, Song, and Ma

[11] develop a random parameters bivariate ordered probit model to investigate the injury

severity of the two drivers involved in the same crash.

However, there are two major limitations in the frequency-severity model. First, the

model has a linear predictor form. In practice, there are nonlinear effects from predictors. For

instance, in auto insurance, the nonlinear relation between the claim severity and the insured’s

age is well documented (Frees, Shi, and Valdez [12]). Generalized additive models (GAM)

developed in Hastie and Tibshirani [13] and popularized by Wood [14] overcome the restric-

tive linear form by modeling continuous variables with smooth functions estimated from data.

However, the additive form of GAM models can’t automatically capture complex interactions

among predictors. Though interaction terms can be manually added to the structure of the

model, identifying interactions terms can be tedious when many predictors are involved. Miss-

ing important interactions can reduce prediction accuracy. Second, the standard frequency-

severity model assumes an independent relation between the claim frequency and severity.

However, in practice, the claim frequency and severity are often dependent. For instance, in

auto insurance, the claim frequency and severity are often negatively correlated (Gschlößl and

Czado [15]). Home insurance claims due to natural hazard such as earthquake or flood are

both large and frequent in affected areas. Frees, Gao, and Rosenberg [16] also point out that

the claim frequency has a significant effect on the claim severity for outpatient expenditures.

Gschlößl and Czado [15], Frees, Gao, and Rosenberg [16], Erhardt and Czado [17], Shi, Feng,

and Ivantsova [18] and Garrido, Genest, and Schulz [19] capture the dependence between the

claim frequency and severity by treating the claim frequency as a predictor variable in the

regression model for the average claim severity. Shi, Feng, and Ivantsova [18] show that the
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predictor method applied to the GLM frequency-severity model can only measure a linear

relation between the claim frequency and severity. Czado, Kastenmeier, Brechmann, and Min

[20], Krämer, Brechmann, Silvestrini, and Czado [21] and Shi, Feng, and Ivantsova [18] model

the joint distribution of the claim frequency and average claim severity through copulas. How-

ever, popular copulas, such as elliptical and Archimedean copulas, can only capture the sym-

metric or limited dependence structures. The multivariate conditional autoregressive model

(Aguero-Valverde [5]) with its random parameters version (Barua, El-Basyouny, and Islam

[6]) and the multivariate Tobit model (Anastasopoulos, Shankar, Haddock, and Mannering

[2]) with its random parameters version (Zeng, Wen, Huang, Pei, and Wong [7]) and its ran-

dom parameters spatio-temporal version (Zeng, Guo, Wong, Wen, Huang, and Pei [8])

accommodate the correlation between the claim frequency and severity by modeling claim fre-

quencies or accident rates at different severity levels. But the usage of finitely many severity lev-

els only partially captures the dependence between the claim frequency and severity. Thus,

there is a need to develop a data-driven dependent frequency-severity model, which can learn

the optimal model structure from the data and can flexibly capture the nonlinear dependence

between the claim frequency and severity.

Boosting is one of the most successful ensemble learning methods, which combines a

large number of weak prediction models (weak learners) in an additive form to enhance

prediction performance. The seminal work is Freund and Schapire [22], which introduce a

boosting algorithm named AdaBoost for classification. Breiman et al. [23] and Breiman [24]

observe an intrinsic connection between the AdaBoost algorithm and the functional gradient

descent algorithm. Friedman, Hastie, Tibshirani, et al. [25] reveal another important fact

that the AdaBoost and other boosting algorithms are additive models, i.e., an additive combi-

nation of weak learners. Then, they propose a general boosting algorithm named gradient

boosting for both of classification and regression. The algorithm can be viewed as an estima-

tion method for an additive model that combines weak learners. From this new perspective,

many boosting regression models are developed. They are different in forms when different

loss functions, weak learners or optimization schemes are used. Friedman, Hastie, and Tib-

shirani [26] and Friedman [27, 28] develop boosting regression models with the least-

squares, least absolute deviation and Huber loss functions. Ridgeway [29, 30] propose the

boosting Poisson regression and boosting proportional hazards regression models. Kriegler

and Berk [31] introduce the boosting quantile regression model. In actuarial literature, Noll,

Salzmann, and Wuthrich [32] show that the boosting Poisson regression model performs

better than the GLM model in predicting the claim frequency. Yang, Qian, and Zou [33]

develop a gradient boosting Tweedie compound Poisson model, where they use a profile

likelihood approach to estimate the index and dispersion parameters. They show that the

model makes more accurate premium prediction than GLM and GAM Tweedie compound

Poisson models. In order to cope with extremely unbalanced zero-inflated data, Zhou, Yang,

and Qian [34] introduce a gradient boosting zero-inflated Tweedie compound Poisson

model by using a similar method. In fact, the method that combines the gradient boosting

algorithm and profile likelihood approach can be used to develop any gradient boosting

exponential family regression models. Sigrist and Hirnschall [35] apply the method to

develop a gradient boosting Tobit model for predicting defaults on loans made to Swiss

small and medium-sized companies. They show that the model outperforms other state-of-

the-art models in predictive performance.

In this paper, we apply the method to develop a gradient boosting frequency-severity model

(D-FSBoost). We illustrate the model with a Poisson distribution for modeling the claim fre-

quency and with a gamma distribution for modeling the claim severity. We use the profile
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likelihood approach to estimate the dispersion parameter in the gamma distribution. The

gradient boosting frequency-severity model with other exponential family distributions for

modeling the claim frequency and severity can be developed in the same manner. Following

Gschlößl and Czado [15], Frees, Gao, and Rosenberg [16], Erhardt and Czado [17], Shi, Feng,

and Ivantsova [18] and Garrido, Genest, and Schulz [19], we capture the dependence between

the claim frequency and severity by treating the claim frequency as a predictor in the regres-

sion model for the average claim severity. Since the gradient boosting gamma regression

model can learn the optimal model structure from the data, the D-FSBoost model can fully

capture the nonlinear dependence between the claim frequency and severity. The D-FSBoost

model inherits all advantages of boosting models, such as the data-driven model structure,

high prediction accuracy, automatic feature selection and high capacities of avoiding overfit-

ting problems, etc. In a simulation study, we demonstrate that the D-FSBoost model can flexi-

bly capture the nonlinear relation between the claim frequency (severity) and predictors and

complex and higher order interactions among predictors and can fully capture the nonlinear

dependence between the claim frequency and severity. We compare the D-FSBoost model

with GLM and GAM frequency-severity models and show that the D-FSBoost model can

make more accurate prediction in claim frequency and severity distributions. We apply the

D-FSBoost model to analyze a French auto insurance claim data. We provide further evidence

on the dependence between the claim frequency and severity and indicate that the frequency-

severity model can be significantly improved by taking the claim frequency as a predictor in

the regression model for the average claim severity. We also show that the D-FSBoost model is

superior to other state-of-the-art models in prediction of pure premium.

The rest of this paper is organized as follows. In section 2, we review the gradient boosting

algorithm and introduce the D-FSBoost model. In section 3, we show high prediction accuracy

of the model in a simulation study. Finally, in section 4, we apply the model to analyze a

French auto insurance claim data.

Stochastic gradient boosting frequency-severity model

In this section, we introduce the stochastic gradient boosting algorithm. Then, we show the

implementation of the D-FSBoost model.

Stochastic gradient boosting

In this subsection, we briefly review the stochastic gradient boosting algorithm in Friedman

[28]. Denote by x = (x1, . . ., xp) the set of predictors and y the response variable. Given a train-

ing sample fyi; xig
d
i¼1

and a loss functionC(y, f(x)), the algorithm estimates the optimal predic-

tion function f̂ ðxÞ by minimizing loss over the training sample,

f̂ ðxÞ ¼ arg min
f ðxÞ

Xd

i¼1

Cðyi; f ðxiÞÞ; ð1Þ

where f(x) is constrained to a form of a sum of weak learners as

f ðxÞ ¼ hðx; a0Þ þ
XM

m¼1

bmhðx; amÞ; ð2Þ

where h(x; am) is a weak learner with a parameter vector am, bm 2 R is an expansion coeffi-

cient, M is the number of weak learners.
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The algorithm estimates the function f̂ ðxÞ in a forward stagewise manner. Let the constant

f0(x) be an initial estimate of f̂ ðxÞ as

f0ðxÞ ¼ hðx; a0Þ ¼ arg min
r

Xd

i¼1

Cðyi; rÞ: ð3Þ

Denote by fm−1(x) the estimate of f̂ ðxÞ at the (m − 1)th step. Then, at the mth step, the algorithm

randomly selects a subsample of size ~d < d, f~yi; ~x ig
~d
1
, computes the negative gradient

~zi ¼ �
@Cð~yi; f ð~x iÞÞ

@f ð~x iÞ

�
�
�
�
f ð~x iÞ¼fm� 1ð~x iÞ

; ð4Þ

and then fits the weak learner h(x; am) by minimizing the following least square sum

am ¼ arg min
a

X~d

i¼1

ð~zi � hð~x i; aÞÞ
2
: ð5Þ

The optimal value of βm is determined by

bm ¼ arg min
β

X~d

i¼1

Cð~yi; fm� 1ð~x iÞ þ βhð~x i; amÞÞ: ð6Þ

Then, the current estimate of f̂ ðxÞ is updated as

fmðxÞ ¼ fm� 1ðxÞ þ nβmhðx; amÞ; ð7Þ

where 0< ν� 1 is the shrinkage factor that controls the learning rate. Friedman [27] points

out that small ν reduces overfitting and enhances predictive performance.

The algorithm reduces to a standard gradient boosting algorithm when the full sample is

used at each iteration in place of the randomly selected subsample. Friedman [28] shows that

the stochastic gradient boosting algorithm has a faster computation speed and higher predic-

tion accuracy.

The D-FSBoost model

In this subsection, we introduce the dependent frequency-severity model. Then, we estimate

mean parameters by using the stochastic gradient boosting algorithm.

In the frequency-severity model, we model the claim frequency N with a Poisson distribu-

tion with the parameter λ> 0,

fNðnjlÞ ¼
l
n

n!
e� l for n ¼ 0; 1; 2; . . . : ð8Þ

For N> 0, denote by

~Y ¼
Y1 þ . . .þ YN

N
ð9Þ

the average claim severity, where Yj is the jth claim amount. We model the average claim
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severity ~Y conditional on N via a gamma distribution with parameters μN> 0 and δ> 0

f~Y jNðsjmN ; dÞ ¼
1

sG
1

d

� �
s
mNd

� �
1

de
�

s
mNd for s > 0; ð10Þ

where we model the dependence between the claim frequency and severity by making the

mean parameter μN depend on N.

Denote by x the vector of predictors representing characteristics of an individual policy.

We assume that the parameters λ and μN are determined by the following two regression

models:

logðlÞ ¼ FNðx;αÞ and logðmNÞ ¼ F~Y jNðx;N; βÞ; ð11Þ

where log link functions are used, FN : Rp ! R and F~Y jN : Rp � N! R are two regression

functions, and α and β denote the vector of parameters for FN and F~Y jN , respectively. The func-

tions FN and F~Y jN are restricted to linear and additive forms in GLM and GAM models, respec-

tively. In our model, FN and F~Y jN are ensembles of weak learners.

For the time being, we assume that the dispersion parameter δ is given. We will estimate δ
later. Then, we apply the stochastic gradient boosting algorithm to estimate the functions FN
and F~Y jN .

Denote by {ni, si, xi} the claim frequency, the average claim severity and the vector of predic-

tors for the ith policy, respectively. We consider θ independent insurance policies. Then, we

have the log-likelihood function as follows:

‘ðα; β; djfni; si; xig
y

i¼1
Þ ¼

Xy

i¼1

log
eniFN ðxi ;αÞ

ni!
e� eFN ðxi ;αÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l1ðαÞ

þ
Xy

i¼1

log
1

siG
1

d

� �
si

deF~Y jN ðxi ;ni;βÞ

� �
1

de
�

si
deF~Y jN ðxi;ni ;βÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l2ðβ;dÞ

:

ð12Þ

Since maximizing the above log-likelihood function is equivalent to maximizing l1(α) and

l2(β, δ), respectively, we use negative log-likelihood functions −l1(α) and −l2(β, δ) as loss func-

tions and estimate the functions FN(x;α) and F~Y jNðx;N; βÞ by minimizing loss over the sample

fni; si; xig
y

i¼1
,

f̂ ðxÞ ¼ arg min
f ðxÞ

Xy

i¼1

C1ðni; f ðxiÞÞ and ĝðx;NÞ ¼ arg min
gðx;NÞ

Xy

i¼1

C2ðsi; gðxi; niÞÞ; ð13Þ
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where

C1ðni; f ðxiÞÞ ¼ � log
enif ðxiÞ

ni!
e� e

f ðxiÞ

C2ðsi; gðxi; niÞÞ ¼ � log
1

siG
1

d

� �
si

degðxi ;niÞ
� �

1

de
�

si
degðxi ;niÞ

;

8
>>>>>>><

>>>>>>>:

ð14Þ

and the functions f(x) and g(x, N) are confined to the form of a sum of weak learners as (2).

Then, the gradient boosting algorithm estimate f̂ ðxÞ and ĝðx;NÞ in a forward stagewise

manner. The initial estimates are computed as

f0ðxÞ ¼ arg min
r

Xy

i¼1

C1ðni; rÞ

g0ðx;NÞ ¼ arg min
r

Xy

i¼1

C2ðsi; rÞ

:

8
>>>>><

>>>>>:

ð15Þ

Denote by fm−1(x) and gm−1(x, N) the estimates of f̂ ðxÞ and ĝðx;NÞ at the (m − 1)th step,

respectively. At the mth step, the algorithm randomly selects a subsample of size ~y < y,

f~ni;~si; ~x ig
~y

i¼1
, and computes the negative gradient

~zfi ¼ ~ni � efm� 1ð~x iÞ

~zgi ¼
~sie� gm� 1ð~x i ;~niÞ � 1

d

:

8
><

>:
ð16Þ

Then, the algorithm fits weak learners hf ðx; afmÞ and hgðx;N; agmÞ by minimizing the following

least square sums,

afm ¼ arg min
a

X~y

i¼1

ð~zfi � hf ð~x i; aÞÞ
2

agm ¼ arg min
a

X~y

i¼1

ð~zgi � hgð~x i; ~ni; aÞÞ
2

:

8
>>>>>><

>>>>>>:

ð17Þ

We use K-terminal node regression trees as weak learners, i.e.,

hf ðx; afmÞ ¼
XK

k¼1

n̂k1fx2Uk;mg

hgðx;N; agmÞ ¼
XK

k¼1

ŝk1fðx;NÞ2Vk;mg

;

8
>>>>><

>>>>>:

ð18Þ
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where

n̂k ¼

X~y

i¼1

~ni1f~x i2Uk;mg

X~y

i¼1

1f~x i2Uk;mg

ŝk ¼

X~y

i¼1

~si1fð~x i ;~niÞ2Vk;mg

X~y

i¼1

1fð~x i ;~niÞ2Vk;mg

;

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð19Þ

and fUk;mg
K
k¼1

and fVk;mg
K
k¼1

are disjoint regions of x and (x, N) spaces, respectively, which rep-

resent terminal nodes of regression trees. In this case, the parameters afm and agm are splitting

variables and split points of regression trees, which determine the regions fUk;mg
K
k¼1

and

fVk;mg
K
k¼1

. The optimization problem (17) is solved by a greedy algorithm with a least squared

splitting criterion (Friedman [27]).

Once the weak learners hf ðx; afmÞ and hgðx;N; agmÞ are obtained, the optimal expansion coef-

ficients b
f
m and b

g
m are solved by

b
f
m ¼ arg min

b

X~y

i¼1

C1ð~ni; fm� 1ð~x iÞ þ b
XK

k¼1

n̂k1f~x i2Uk;mg
Þ

b
g
m ¼ arg min

b

X~y

i¼1

C2ð~si; gm� 1ð~x i; ~niÞ þ b
XK

k¼1

ŝk1fð~x i ;~niÞ2Vk;mgÞ

:

8
>>>>>><

>>>>>>:

ð20Þ

We can obtain the better estimation of f̂ ðxÞ and ĝðx;NÞ by replacing a single expansion coeffi-

cient b
f
m (b

g
m) with the optimal coefficient g

f
k;m (g

g
k;m), k = 1, . . ., K for each region Uk,m (Vk,m),

k = 1, . . ., K. The optimal coefficients g
f
k;m (g

g
k;m), k = 1, . . ., K are solved by

g
f
k;m ¼ arg min

g

X

~x i2Uk;m

C1ð~ni; fm� 1ð~x iÞ þ gÞ

g
g
k;m ¼ arg min

g

X

ð~x i ;~niÞ2Vk;m

C2ð~si; gm� 1ð~x i; ~niÞ þ gÞ

:

8
>>>><

>>>>:

ð21Þ

We have explicit solutions as follows:

g
f
k;m ¼ log

X~y

i¼1

~ni1f~x i2Uk;mg

X~y

i¼1

efm� 1ð~x iÞ1f~x i2Uk;mg

0

B
B
B
B
@

1

C
C
C
C
A

g
g
k;m ¼ log

X~y

i¼1

~sie
� gm� 1ð~x i ;~niÞ1fð~x i ;~niÞ2Vk;mg

X~y

i¼1

1fð~x i ;~niÞ2Vk;mg

0

B
B
B
B
@

1

C
C
C
C
A

:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð22Þ
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Then, the estimates of f̂ ðxÞ and ĝðx;NÞ are updated as

fmðxÞ ¼ fm� 1ðxÞ þ n
XK

k¼1

g
f
k;m1x2Uk;m

gmðx;NÞ ¼ gm� 1ðx;NÞ þ n
XK

k¼1

g
g
k;m1ðx;NÞ2Vk;m

;

8
>>>>><

>>>>>:

ð23Þ

where we set ν = 0.03 in our implementation.

The procedures are repeated M times. Then, we obtain fM(x) and gM(x, N) as the final

estimates.

The D-FSBoost algorithm is summarized as follows:

The D-FSBoost Algorithm
1. Initialize f0(x) and g0(x, N),

f0ðxÞ ¼ arg min
r

Xy

i¼1

C1ðni; rÞ

g0ðx;NÞ ¼ arg min
r

Xy

i¼1

C2ðsi; rÞ

:

8
>>>>><

>>>>>:

ð24Þ

2. For m = 1 to M do

1. Generate a random subsample f~ni;~si; ~x ig
~y

i¼1
.

2. Compute the negative gradient ð~zf1; . . . ; ~zf~yÞ and ð~z
g
1; . . . ; ~zg~yÞ,

~zfi ¼ ~ni � efm� 1ð~x iÞ

~zgi ¼
~sie� gm� 1ð~x i ;~niÞ � 1

d

; i ¼ 1; . . . ; ~y:

8
><

>:
ð25Þ

3. K-terminal node regression trees fit two datasets f~zfi ; ~x ig
~y

i¼1
and

f~zgi ; ð~x i; ~niÞg
~y

i¼1
with a least squared splitting criterion and obtain the

regions fUk;mg
K
k¼1

and fVk;mg
K
k¼1
.

4. Compute the optimal coefficient for each region Uk,m (Vk,m), k = 1,
. . ., K,

g
f
k;m ¼ log

X~y

i¼1

~ni1f~x i2Uk;mg

X~y

i¼1

efm� 1ð~x iÞ1f~x i2Uk;mg

0

B
B
B
B
@

1

C
C
C
C
A

g
g
k;m ¼ log

X~y

i¼1

~sie
� gm� 1ð~x i ;~niÞ1fð~x i ;~niÞ2Vk;mg

X~y

i¼1

1fð~x i ;~niÞ2Vk;mg

0

B
B
B
B
@

1

C
C
C
C
A

; k ¼ 1; . . . ;K:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð26Þ
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5. Update the estimates of f̂ ðxÞ and ĝðx;NÞ as

fmðxÞ ¼ fm� 1ðxÞ þ n
XK

k¼1

g
f
k;m1x2Uk;m

gmðx;NÞ ¼ gm� 1ðx;NÞ þ n
XK

k¼1

g
g
k;m1ðx;NÞ2Vk;m

:

8
>>>>><

>>>>>:

ð27Þ

end
3. Return fM(x) and gM(x, N).

Estimating δ and choice of tuning parameters

We estimate the dispersion parameter δ using the profile likelihood approach. The D-FSBoost

algorithm determines the value of β for each fixed δ. Denote by βδ the estimated value of β.

Then, the profile log-likelihood function for δ is given by

~lðdÞ ¼ l2ðβd; dÞ: ð28Þ

The value of the dispersion parameter δ is obtained by maximizing the profile log-likelihood

function ~lðdÞ:

d̂ ¼ argmax
d

~lðdÞ: ð29Þ

To reduce computations, we calculate d̂ by doing a simple grid search over S grid points {δ1,

. . ., δS}, i.e.,

d̂ ¼ arg max
d2fd1 ;...;dSg

~lðdÞ: ð30Þ

In the implementation, we need select tuning parameters, including the size of trees K and

the number of trees M. The value of K controls the degree of the interaction among the predic-

tors x or (N, x). The appropriate value of M avoids over-fitting and improves out-of-sample

prediction accuracy. We determine the parameters (K, M) via the cross-validation method.

The k−fold cross-validation method splits the data into k equal-sized folds. Let κ(i):{1, . . ., θ}

! {1, . . ., k} be an index function that indicates the fold to which the ith observation is allo-

cated by randomization. We calculate loss of the jth fold data by using functions estimated by

the remaining k − 1 folds. We repeat this procedure for j = 1, . . ., k. Denote by

ðf̂ � jðx;K;MÞ; ĝ � jðx;N;K;MÞÞ the functions estimated with the jth fold data removed and with

the parameters (K, M). Then, the cross-validation estimate of loss is

CVðK;MÞ ¼
Xy

i¼1

ðC1ðni; f� kðiÞðxi;K;MÞÞ þC2ðsi; g� kðiÞðxi; ni;K;MÞÞÞ: ð31Þ

The optimal (K, M) is obtained by minimizing the cross-validation estimate of loss

ðK̂ ; M̂Þ ¼ arg min
K;M

CVðK;MÞ: ð32Þ

Then, we use ðK̂ ; M̂Þ in the D-FSBoost algorithm and finish all estimates.
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Simulation study

In this section, we compare the D-FSBoost model with GLM and GAM frequency-severity

models in two simulation experiments. We consider the models in the cases that the frequency

and severity are independent and dependent. Denote by D-FSBoost, D-GAM and D-GLM

the three models in the dependent case and by FSBoost, GAM and GLM the three models in

the independent case. We compare the models in prediction accuracy of the claim frequency

and severity distributions. We also investigate the impact of the value of δ on estimating

F~Y jNðx;N; βÞ in the D-FSBoost model.

In simulation studies, we use one set of samples for training and another one for testing.

Denote by fn̂i; ŝi; x̂ ig
ŷ

i¼1
the testing sample with known true functions or parameters

fFNðx;αÞ; F~Y jNðx;N; βÞ; dg. Let ff̂ ðxÞ; ĝðx;NÞ; d̂g be the functions or parameters estimated by

the model. We use the out-of-sample loss and parameter estimation errors to measure predic-

tion accuracy of the models. Table 1 shows the specific performance measures. In the FSBoost

and D-FSBoost models, we use the five-fold cross-validation method to select parameters (K,

M) among the combinations of K 2 {1, 2, 3, 4, 5} and M 2 {100, 200, 300, 400, 500} and search

the optimal δ among 21 equally spaced values {1, 1.1, . . ., 3}.

Simple case

In this subsection, we demonstrate that the D-FSBoost model can capture the nonlinear rela-

tion between the claim frequency (severity) and predictors, complex interactions among pre-

dictors, and the nonlinear dependence between the claim frequency and severity. The sample

fni; si; xig
y

i¼1
is generated using the following specifications,

ni � PoiðliÞ; si � Gammaðmni ; dÞ; xij � Unifð0; 1Þ; i ¼ 1; . . . ; y; j ¼ 1; . . . ; 4; ð33Þ

where λi = exp(F1(xi1, xi2)), mni ¼ expðF2ðxi3; xi4; niÞÞ, δ = 2, and

F1ðxi1; xi2Þ ¼
p

15
ð3x2

i1 þ 2ð1 � xi2Þ
2
þ 10xi1xi2Þ

F2ðxi3; xi4; niÞ ¼ ln ðni þ 3Þex2
i3 � 2ð1� xi4Þ

2

þ ln ðni þ 5Þe
1

2
xi3xi4

:

8
>>><

>>>:

ð34Þ

We generate a sample of size 10000 for training and another one of size 10000 for testing.

The out-of-sample loss and parameter estimation errors on the testing sample are shown in

Table 1. Performance measures.

Measure Description Formula

Frequency Loss Out-of-sample loss for the claim frequency Pŷ

i¼1

C1ðn̂i; f̂ ðx̂ iÞÞ

Severity Loss Out-of-sample loss for the claim severity Pŷ

i¼1

C2ðŝ i; ĝ ðx̂ i; n̂iÞÞ

Frequency Error Average relative error of FN(xi;α)
1

ŷ

Pŷ

i¼1

jf̂ ðx̂ iÞ� FN ðx̂ i ;αÞj
FN ðx̂ i ;αÞ

Severity Error Average relative error of F~Y jNðx;N; βÞ
1

ŷ

Pŷ

i¼1

jĝ ðx̂ i ;n̂ iÞ� F~Y jN ðx̂ i ;n̂ i ;βÞj

F~Y jN ðx̂ i ;n̂ i ;βÞ

δ Estimation Error Relative error of δ jd̂ � dj

d

https://doi.org/10.1371/journal.pone.0238000.t001
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Table 2, which are averaged over 20 independent replications. Since the independent and

dependent models share the same claim frequency model, we only list the claim frequency

result for the dependent models. We can find that dependent models perform better than inde-

pendent ones. In dependent models, the D-FSBoost model has the best performance in terms

of the smallest out-of-sample loss and parameter estimation errors.

In contrast to the GLM, D-GLM, GAM and D-GAM models, the FSBoost and D-FSBoost

models can capture complex interactions. Denote by c1 and c2 the coefficients of cross-prod-

uct terms xi1 xi2 and xi3 xi4, respectively. In Fig 1, we change c1 from 8 to 12 and c2 from 0.3

to 0.7 to increase effects of interaction terms. We can find that the FSBoost and D-FSBoost

models have more stable predictive performance. In the GLM, D-GLM, GAM and D-GAM

models, the parameter estimation errors show an increasing trend since they can’t capture

interaction effects. Next, we use values of xi3 and xi4 in the training sample and change all val-

ues of ni, i = 1, . . ., 10000, from 0 to 20. For each value of ni, i = 1, . . ., 10000, we calculate

s ¼
1

10000

X10000

i¼1

ĝðxi3; xi4; niÞ: ð35Þ

Then, we show the change of s with respect to ni in Fig 2. The D-GLM model can only measure

a linear relation between the claim frequency and severity. Both of the D-GAM and D-FSBoost

models can capture the nonlinear dependence between the claim frequency and severity. The

D-FSBoost model performs better. The results also confirm that the D-FSBoost model can cap-

ture the nonlinear relation between the claim frequency (severity) and predictors.

Complex case

In this subsection, we demonstrate the D-FSBoost model in a complex simulation experiment.

We compare the models on a variety of randomly generated functions by using the “random

function generator” in Friedman [27].

The “random function generator” generates a function as a linear expansion of functions

fgkg
20

k¼1
:

FðxÞ ¼
X20

k¼1

akgkðzkÞ: ð36Þ

Each coefficient ak is generated from a uniform distribution on (0, 1). The variables zk is a

mk−sized subset of p-input variables x as

zk ¼ fx�ðkÞg
mk
k¼1
; ð37Þ

where ϕ(k) is an independent random permutation of integers {1, . . ., p}. The size mk is ran-

domly selected as min(b2.5 + rkc, p), where rk is generated from an exponential distribution

Table 2. Out-of-sample loss and parameter estimation errors.

Frequency Loss Severity Loss Frequency Error Severity Error δ Estimation Error

GLM - 55005.72 (3731.04) - 1.3651 (0.0893) 6.9003 (3.9905)

D-GLM 18450.51 (89.25) 46753.29 (322.34) 0.1516 (0.0030) 0.4802 (0.0181) 0.6908 (0.1391)

GAM - 50678.64 (1409.73) - 1.2669 (0.0740) 2.8192 (1.0205)

D-GAM 18384.86 (84.01) 46087.76 (218.75) 0.1449 (0.0023) 0.3928 (0.0139) 0.3200 (0.0539)

FSBoost - 46886.52 (166.85) - 0.9186 (0.0315) 0.2075 (0.0373)

D-FSBoost 18114.45 (74.25) 45541.16 (176.06) 0.0702 (0.0153) 0.1217 (0.0083) 0.0150 (0.0235)

https://doi.org/10.1371/journal.pone.0238000.t002
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with mean 2. Then, the expected number of input variables for each gk(zk) is between four and

five. Each gk(zk) is an mk−dimensional Gaussian function

gkðzkÞ ¼ exp �
1

2
ðzk � ukÞ

TVkðzk � ukÞ

� �

; ð38Þ

where each mean vector uk is generated from the same distribution as zk. The mk ×mk covari-

ance matrix Vk is generated by

Vk ¼ UkDkUT
k ; ð39Þ

where Uk is a random orthonormal matrix, Dk ¼ diagfdk
1
; . . . ; dkmk

g, and the square root of

each eigenvalue
ffiffiffiffiffi
dkj

q
is generated from a uniform distribution on (a, b), where the values of

a and b are determined by the distribution of zk. We set the number of predictors p = 10 and

generate the data fni; si; xi; yig
y

i¼1
using the following specifications,

ni � PoiðliÞ; si � Gammaðmni ; dÞ; xi � Nð0; IpÞ; yi � Nð0; IpÞ; i ¼ 1; . . . ; y; ð40Þ

Fig 1. Parameter estimation errors w.r.t. c1 and c2.

https://doi.org/10.1371/journal.pone.0238000.g001
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where λi = 1.2exp(F1(xi)), mni ¼ expðlogðni þ 5ÞF2ðyiÞÞ, δ = 2, and F1(xi) and F2(yi) are the

functions generated from the “random function generator”. The eigenvalue limits are a = 0.1

and b = 2.

We generate 10000 observations for training and another 10000 for testing. Table 3 reports

parameter estimation errors on the testing sample, which are averaged over 10 independent

replications. Fig 3 shows out-of-sample loss. The results are the same as in the simple case.

Dependent models have more accurate prediction than independent models. The D-FSBoost

model performs best in predicting the claim frequency and severity distributions.

The impact of the parameter δ
In this subsection, we investigate the impact of the value of δ on estimating F~Y jNðx;N; βÞ. We

generate 20 sets of training samples as in the complex case. Then, we estimate F~Y jNðx;N; βÞ
using the D-FSBoost algorithm for each value of δ 2 {1.5, 1.6, . . ., 2.5}. Fig 4 shows parameter

estimation errors. We can see that the value of δ has no significant effect on estimation accu-

racy of F~Y jNðx;N; βÞ.

Application

In this section, we apply the D-FSboost model to analyze a French auto insurance claim data.

We compare the models in prediction of the claim frequency and severity distributions. Then,

we introduce two important tools, variable importance measures and partial dependence

plots, from Friedman [27] to interpret the D-FSBoost model.

Fig 2. The change of s w.r.t. ni.

https://doi.org/10.1371/journal.pone.0238000.g002
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Data

We consider a French motor third-party liability dataset, where the data “freMTPL2freq” and

“freMTPL2sev” are in the R package “CASdatasets”. Noll, Salzmann, and Wuthrich [32] use

the data “freMTPL2freq” to compare the GLM, regression tree, gradient boosting Poisson

model and neural network in predicting the claim frequency. We make the same data

Table 3. Parameter estimation errors.

Frequency Error Severity Error δ Estimation Error

GLM - 4.2459 (1.6405) 6.3718 (2.1039)

D-GLM 0.4529 (0.1768) 2.9406 (0.9037) 2.4299 (0.6622)

GAM - 1.2852 (0.3275) 1.8402 (0.6285)

D-GAM 0.2175 (0.0500) 0.7398 (0.1398) 0.6570 (0.1870)

FSBoost - 0.8238 (0.2403) 0.2500 (0.0667)

D-FSBoost 0.2092 (0.0411) 0.4562 (0.0441) 0.0950 (0.0284)

https://doi.org/10.1371/journal.pone.0238000.t003

Fig 3. Out-of-sample loss.

https://doi.org/10.1371/journal.pone.0238000.g003
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preprocess as in Noll, Salzmann, and Wuthrich [32], except deleting records that have positive

claim frequency but have no claim severity and also except using different partitions on vari-

ables “VehAge” and “DrivAge”. After the data preprocess, the dataset contains 668897 records.

The dataset is openly available from S1 Dataset. Table 4 shows variables in the dataset. There

are 24944 (3.73%) policies that have positive claim frequency. Table 5 reports the distribution

Fig 4. Parameter estimation errors of the D-FSBoost model when varying the value of δ from 1.5 to 2.5.

https://doi.org/10.1371/journal.pone.0238000.g004

Table 4. Variables.

Variable Type Description

ClaimNb Numeric The claim frequency during the exposure period

Exposure Numeric The period of exposure for a policy in years

ClaimSev Numeric The average claim severity

Area Categorical The density value of the city community where the policyholder lives: from “1” for rural

area to “6” for urban centre (1-6)

VehPower Categorical The power of the car (6 classes)

VehAge Categorical The vehicle age in years ((0,1], (1,4], (4,10], (10,1))

DrivAge Categorical The driver age in years ([18, 21], (21,25], (25,35], (35,45], (45,55], (55,70], (70,1))

BonusMalus Numeric Bonus/malus: <100 means bonus and >100 means malus in France (50-150)

VehBrand Categorical The car brand (B1-B14)

VehGas Categorical The car gas (diesel or regular)

LogDensity Numeric The log-density of inhabitants of the city where the policyholder lives (number of

inhabitants per km2)

Region Categorical The policy region in France based on the 1970-2015 classification (22 classes)

https://doi.org/10.1371/journal.pone.0238000.t004

PLOS ONE Stochastic gradient boosting frequency-severity model

PLOS ONE | https://doi.org/10.1371/journal.pone.0238000 August 31, 2020 16 / 24

https://doi.org/10.1371/journal.pone.0238000.g004
https://doi.org/10.1371/journal.pone.0238000.t004
https://doi.org/10.1371/journal.pone.0238000


of the claim frequency and average claim severity. There are only several policies in which the

claim frequency is larger than 3. The average claim severity shows an increasing trend when

the claim frequency changes from 0 to 3. This implies a positive dependence structure between

the claim frequency and severity.

In Figs 5 and 6, we can find that the usage of old cars tend to incur more accidents and

higher claim payments. Young drivers have less driving experience than middle-age and old

drivers and cause more car crashes and more serious accident loss. In Fig 7, we can find that

there are interactions among predictor variables. For young drivers, the vehicle age has a sig-

nificant effect on the claim frequency. When the driver age increases, the effect gradually

decreases. For young and old drivers, there are significant difference in the claim severity

between different vehicle age groups. However, for middle-age drivers, the difference is small.

Table 5. The distribution of the claim frequency and average claim severity.

Claim frequency 0 1 2 3 4 5 6 8 9 11 16

Number of policies 643953 23570 1299 62 5 2 1 1 1 2 1

Average claim severity 0 2177.12 2932.36 4115.35 2203.49 3559.01 1608.93 3103.22 2039.41 1966.92 2220.59

https://doi.org/10.1371/journal.pone.0238000.t005

Fig 5. Histogram of the average claim frequency and severity per vehicle age group.

https://doi.org/10.1371/journal.pone.0238000.g005

Fig 6. Histogram of the average claim frequency and severity per driver age group.

https://doi.org/10.1371/journal.pone.0238000.g006

PLOS ONE Stochastic gradient boosting frequency-severity model

PLOS ONE | https://doi.org/10.1371/journal.pone.0238000 August 31, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0238000.t005
https://doi.org/10.1371/journal.pone.0238000.g005
https://doi.org/10.1371/journal.pone.0238000.g006
https://doi.org/10.1371/journal.pone.0238000


Model comparison

We use 445931 observations as training data and the remaining 222966 as testing data. Then,

we estimate the GLM, D-GLM, GAM, D-GAM, FSBoost and D-FSBoost models. In dependent

models, we take the frequency/exposure instead of the frequency as the predictor variable. The

FSBoost and D-FSBoost models can finish automatic feature selection. In the GLM, D-GLM,

GAM and D-GAM models, we remove the insignificant variables. Table 6 shows out-of-sam-

ple loss for the models. The results indicate that dependent models are more competitive than

independent models. The D-FSBoost model is most favorable.

Then, we calculate pure premium prediction from the models on the testing data. We com-

pare the models by using a Gini index to measure the discrepancy between the premium and

loss distributions (Frees, Meyers, and Cummings [36, 37]). Let B(x) be the base premium and

T(x) be the alternative premium. Denote by P(xi) and yi the pure premium and loss for the ith

observation, respectively. Frees, Meyers, and Cummings [36] define a relativity

RðxÞ ¼
TðxÞ
BðxÞ

ð41Þ

and order observations by relativities {R(x1), . . ., R(xθ)}. They define the ordered premium dis-

tribution as

FPðsÞ ¼

Xy

i¼1

PðxiÞ1RðxiÞ�s

Xy

i¼1

PðxiÞ
ð42Þ

Fig 7. Histogram of the average claim frequency and severity per driver age and vehicle age group.

https://doi.org/10.1371/journal.pone.0238000.g007

Table 6. Out-of-sample loss.

Frequency Loss Severity Loss

GLM - 82595.21

D-GLM 37664.53 82449.21

GAM - 82108.26

D-GAM 34697.80 82008.89

FSBoost - 78371.91

D-FSBoost 34155.54 78355.77

https://doi.org/10.1371/journal.pone.0238000.t006
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and the ordered loss distribution as

FLðsÞ ¼

Xy

i¼1

yi1RðxiÞ�s

Xy

i¼1

yi

: ð43Þ

The graph of (FP(s), FL(s)) is an ordered Lorenz curve. When the percentage of losses equals

the percentage of premiums, the curve results in a 45-degree line known as “the line of equal-

ity”. The Gini index is defined as twice the area between the Lorenz curve and the line of equal-

ity. Then, the empirical Gini index can be computed by

Gini ¼ 1 �
Xy� 1

i¼0

ðFPðRðxiþ1ÞÞ � FPðRðxiÞÞÞðFLðRðxiþ1ÞÞ þ FLðRðxiÞÞÞ; ð44Þ

where FP(R(x0)) = FL(R(x0)) = 0. A larger Gini index represents more profits for an insurer.

Table 7 reports Gini indices calculated by using the prediction from each model as the base

premium and using predictions from the remaining models as alternative premiums. Follow-

ing Frees, Meyers, and Cummings [37] and Yang, Qian, and Zou [33], we use a “minimax”

strategy to find the best model. For each base premium, we calculate the maximum Gini index

over all alternative premiums. Then, we choose the base premium model that is least vulnera-

ble to alternative premium models, i.e., we select the base premium model that has the smallest

maximum Gini index. We find that the maximum Gini index is 0.9432 when using GLM

as the base premium model, -0.1300 when using D-GLM, 0.0198 when using GAM, 0.0737

when using D-GAM, 0.0233 when using FSBoost, -0.2855 when using D-FSBoost. Thus, the

D-FSBoost model represents the best choice.

Model interpretation

In this subsection, we use variable importance measures and partial dependence plots to inter-

pret the D-FSBoost model. Variable importance measures show the importance of each pre-

dictor in predicting the frequency (severity). Partial dependence plots visualize the effect of the

predictor on the frequency (severity).

Variable importance. For a single K−terminal node tree Ti, Breiman, Friedman, Olshen,

and Stone [38] introduce the following importance measure for the predictor xj,

IxjðTiÞ ¼
XK� 1

k¼1

rk1ukðxjÞ; ð45Þ

Table 7. Gini indices.

Base premium Alternative premium

GLM D-GLM GAM D-GAM FSBoost D-FSBoost

GLM - 0.0861 0.9432 -0.2309 -0.9472 -0.2004

D-GLM -0.9999 - -0.9998 -0.2126 -0.9995 -0.1300

GAM -0.9939 -0.0996 - 0.0198 -0.9912 0.0101

D-GAM -0.9999 -0.2779 -0.9998 - -0.9995 0.0737

FSBoost -0.9999 -0.1052 -0.9989 0.0233 - 0.0202

D-FSBoost -0.9999 -0.3552 -0.9998 -0.2855 -0.9997 -

https://doi.org/10.1371/journal.pone.0238000.t007
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where the sum is taken over all K−1 internal nodes, υk is the splitting variable in the node

k, 1ukðxjÞ is an indicator function that equals one when the splitting variable υk is xj, and ρk
denotes the decrease in squared error by splitting the region associated with the node k into

two subregions. Friedman [27] generalizes the variable importance measure to the gradient

boosting model by taking the average over all trees {T1, . . ., TM},

Î xj ¼
1

M

XM

m¼1

IxjðTmÞ: ð46Þ

The variable importance measure is biased since an independent predictor xj can be selected as

a splitting variable and hence Î xj can not be zero. See Sandri and Zuccolotto [39, 40] for a bias

correction.

In Fig 8, we show variable importance measures for the D-FSBoost model. We can find that

VehBrand and BonusMalus are two most important variables in predicting the frequency. The

VehBrand dominates the prediction. In predicting the severity, the variables DrivAge, Fre-

quency/Exposure, BonusMalus and LogDensity are most influential. The DrivAge and Fre-

quency/Exposure exert the leading effects. This result also provides further evidence on the

dependence between the frequency and severity.

Partial dependence plots. Let zk be the subset of variables x and z−k be the complement

subset of zk such that

zk [ z� k ¼ x: ð47Þ

The partial dependence of FN(x; α) on zk can be calculated by

F̂ðzkÞ ¼
1

y

Xy

i¼1

FNðzk; zi;� k;αÞ; ð48Þ

where zi,−k is the ith observation of z−k. Then, the partial dependence plot of the frequency part

is obtained by plotting the function F̂ðzkÞ against zk. The partial dependence plot of the sever-

ity part can be obtained in the same manner.

In Fig 9, we show the partial dependence plots for the D-FSBoost model, indicating the

effects of two most important variables on the claim frequency and severity. From the top two

panels, we can find that the car with brands B7-B9 causes much more accidents. The frequency

is positively associated with the bonus-malus level. In France, the bonus-malus level less than

100 and larger than 100 means bonus and malus, respectively. The change from bonus to

Fig 8. Variable importance measures.

https://doi.org/10.1371/journal.pone.0238000.g008
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malus represents that at least an accident occurs. This explains the sudden change in the fre-

quency at the bonus-malus level 100. The bonus-malus level 60 is the least bonus level to

encourage policyholders to drive more carefully, which explains the sudden increase in occur-

rence of accidents when the bonus-malus level is near to 60. The bottom two panels show that

young drivers induce more serious accidents. The severity increases dramatically when the

claim frequency is small. This result is consistent with the observation in the distribution of

the claim frequency and average claim severity.

Conclusion

This paper develops a stochastic gradient boosting frequency-severity model by using the sto-

chastic gradient boosting algorithm and profile likelihood approach. We demonstrate that the

model can flexibly capture the nonlinear relation between the claim frequency (severity) and

predictors and complex interactions among predictors, and can also fully capture the nonlin-

ear dependence between the claim frequency and severity. The model is superior to other

state-of-the-art models in the sense that it provides more accurate predictions in the claim fre-

quency and severity distributions and pure premium.

In this paper, we illustrate the model with a Poisson distribution for the claim frequency

and with a gamma distribution for the average claim severity. In fact, there are more flexible

distribution choices. For example, we can use the negative binomial distribution for the claim

frequency and the generalized gamma distribution for the average claim severity as in Shi,

Fig 9. Partial dependence plots.

https://doi.org/10.1371/journal.pone.0238000.g009
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Feng, and Ivantsova [18]. The model can also be extended to capture different features of the

claim data. For example, our model can combine with the hurdle and zero-inflated modeling

framework to accommodate the overdispersion and zero inflation in the claim frequency.

We can generalize our model to a random parameters version. We can also assume that the

dispersion parameter depends on predictors and model the dispersion parameter with another

ensemble of regression trees. These works are left for future research.
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