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Abstract

The ongoing COVID-19 epidemics poses a particular challenge to low and middle income

countries, making some of them consider the strategy of “vertical confinement”. In this strat-

egy, contact is reduced only to specific groups (e.g. age groups) that are at increased risk of

severe disease following SARS-CoV-2 infection. We aim to assess the feasibility of this sce-

nario as an exit strategy for the current lockdown in terms of its ability to keep the number of

cases under the health care system capacity. We developed a modified SEIR model, includ-

ing confinement, asymptomatic transmission, quarantine and hospitalization. The popula-

tion is subdivided into 9 age groups, resulting in a system of 72 coupled nonlinear differential

equations. The rate of transmission is dynamic and derived from the observed delayed fatal-

ity rate; the parameters of the epidemics are derived with a Markov chain Monte Carlo algo-

rithm. We used Brazil as an example of middle income country, but the results are easily

generalizable to other countries considering a similar strategy. We find that starting from

60% horizontal confinement, an exit strategy on May 1st of confinement of individuals older

than 60 years old and full release of the younger population results in 400 000 hospitaliza-

tions, 50 000 ICU cases, and 120 000 deaths in the 50-60 years old age group alone. Sensi-

tivity analysis shows the 95% confidence interval brackets a order of magnitude in cases or

three weeks in time. The health care system avoids collapse if the 50-60 years old are also

confined, but our model assumes an idealized lockdown where the confined are perfectly

insulated from contamination, so our numbers are a conservative lower bound. Our results

discourage confinement by age as an exit strategy.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has been ongo-

ing for 5 months now [1]. Since it was first reported in Dec 2019 in China [2], the virus rapidly

made its way to other parts of the world taking pandemic proportions [3]. The number of

cases and deaths exponentially increased reaching a total of 1.5 million confirmed cases and 88

thousand deaths in early April 2020. Recent disease outbreaks that spilled over from animals

such as Ebola [4, 5] or avian influenza [6] have been described as specific to developing coun-

tries. COVID-19 has been breaking this myth as the virus has been particularly exceptional at

breaching in inside developed countries and challenging their health system. In Europe, Italy

has been particularly affected. With 140 thousand cases, the Italian national health system has

been struggling to effectively respond to the exponentially increasing flow of patients in need

of intensive care [7]. The United States recently surpassed China in total number of cases (420

thousand), becoming a particular hot bed in this phase of the pandemics [8]. By the time this

article is published, there will likely not be a place on Earth where the virus did not cause any

damage. West African countries such as Sierra Leone just reported their first cases [9] and cat-

astrophic scenario similar to the 2016 Ebola outbreak is possible.

The threat of COVID-19 on countries that started to count cases prompted us to develop a

model to describe the evolution of the epidemic and its effects on the health care system. Mathe-

matical models are a powerful tool that proved important in previous epidemiological disasters

such as the Ebola virus [10, 11], smallpox [12], or influenza [13], contributing to the understand-

ing of the dynamics of disease and providing useful predictions about the potential transmission

of a disease and the effectiveness of possible control measures, which can provide valuable infor-

mation for public health policy makers [14]. SIR-type models, also known as Kermack-McKen-

drick model [15], consists of a set of differential equations and has been applied to a variety of

infectious diseases. Although containing simplifying assumptions, SIR models have been of great

help on stopping epidemics in the past by e.g. informing effective vaccination protocols [16].

Here we develop a SEIR type compartmental model for COVID-19 including both symp-

tomatic and asymptomatic, quarantined, and hospitalized while taking into consideration dif-

ferences by age groups. We also analysed the effect of confinement during a specific period of

time. Contrary to similar epidemiological models, the proposed SEIR model is initiated by the

first confirmed COVID-19 death. Numerical simulations of the deterministic models are com-

pared with real numbers of the ongoing outbreak in different countries. Moreover, the deter-

ministic framework in which we operate greatly simplifies model analysis and allows a more

thorough comparison of the various intervention strategies.

In this work we focus on the case of Brazil, where the pandemics counts 16 000 confirmed

cases and 800 fatalities (April 9th, 2020). The country has 35 682 ICU beds according to gov-

ernment data of Feb 2020 [17]. The first official SARS-CoV-2 case in Brazil was confirmed in

São Paulo on February 26th and the first official COVID-19 death was reported on March

19th. Shortly after, a lockdown was enacted first in Rio de Janeiro on March 22nd, then on

other regional urban centers. There is no reliable measurement of the percentage of the popu-

lation that is currently in confinement; however, the number is estimated to be around 56%

according to satellite data.

Given the socio-economic consequences of a lockdown, particularly on a middle income

country, decision-makers are considering a vertical confinement as an exit strategy to the regu-

lar lockdown. Vertical confinement is understood as reducing contact to a specific age group

that is more at risk of contracting and developing SARS-CoV-2 [18], as opposed to horizontal
(or general) confinement that does not discriminate between age groups. In the next section

we will present the model, followed by validation. We then apply the model to the specific
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SARS-CoV-2 scenario in Brazil, and run a sensitivity analysis. Finally, we test the effect of both

general and vertical confinement on the epidemic curve.

The model

We used a modified version of a SEIR-type deterministic compartmental model to trace

COVID-19 epidemic evolution in an isolated population of N individuals. We assumed that a

population could be subdivided into the following compartments:

• Susceptible (S): COVID-19 naive individuals,

• Confined (C): subset of susceptibles removed from the epidemics (by e.g. social distancing).

• Exposed (E): Susceptible that have been exposed to infective individuals,

• Asymptomatic (A): Infected and infective but showing mild or no symptoms

• Symptomatic (I): Infected and infective but showing symptoms described in the literature,

• Quarantined (Q): Symptomatic that are not infective,

• Hospitalized (H) Symptomatic, not infective, who are being treated,

• Removed (R) People removed from the epidemic dynamics by recovering or passing away.

We split the population in subcategories by age (range, 0-10, 10-20, 20-30, 30-40, 40-50, 50-

60, 60-70, 70-80, and 80+ years old) and we consider that some flow rates between compart-

ments should vary with age [18].

Taking into consideration the 8 compartments and the 9 age groups, the model is described

by a set of 72 coupled non-linear equations:

dSi
dt
¼ � lðtÞSi � ciðtÞSi þ �iðtÞCi; ð1Þ

dCi

dt
¼ ciðtÞSi � �iðtÞCi; ð2Þ

dEi

dt
¼ lðtÞSi � sEi; ð3Þ

dAi

dt
¼ ð1 � pÞsEi � yAi; ð4Þ

dIi
dt
¼ psEi � gIi þ ð1 � wÞyA; ð5Þ

dQi

dt
¼ gIi � xQi; ð6Þ

dHi

dt
¼ qixQi � ZHi; ð7Þ

dRi

dt
¼ wyAi þ ð1 � qiÞxQi þ ZHi: ð8Þ
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For each compartment X the age sub-bins add up to X� ∑i Xi and compartments are such

that S + C + E + A + I + Q + H + R = N, with N� ∑i Ni being the total population; Ni is the pop-

ulation in each age bin. The software is written in python 3.7, and is made public at https://

github.com/wlyra/covid19.

Eqs (1)–(8) describe a compartmentalization of the population and the flow between the

compartments. Contact with infected individuals removes a fraction of the susceptible (S) pop-

ulation at a rate given by λ, referred to as infection force, making them exposed (E) to SARS-

CoV-2. The exposed (E) become infectious at the rate σ; a fraction p of them becoming symp-

tomatic (I) and a fraction (1 − p) becoming asymptomatic (A). The symptomatic (I) are

removed from the infective force and become quarantined (Q) at a rate γ. The asymptomatic

(A) are removed at a rate θ, a fraction w of them going in remission and a fraction (1 − w)

becoming symptomatic. A fraction qi of the quarantined (Q) are hospitalized at a rate ξ. The

hospitalized (H) are removed at a rate η. The average fatality rate is μi.
The timescales corresponding to σ, γ, θ, ξ, and η are the latent period tσ� σ−1 the infectious

interval tγ� γ−1, the remission time tθ� θ−1, the time to hospitalization tξ� ξ−1, and the aver-

age length of hospital stay tη� η−1.

The infection force is driven by the infected, both symptomatic (I) and asymptomatic (A)

lðtÞ � bðtÞI ; ð9Þ

where we use the shorthand notation

I �
X

i

ðIi þ AiÞ

Ni
; ð10Þ

and β is the infection rate, related to the reproduction number RðtÞ via

RðtÞ �
bðtÞ
g
: ð11Þ

Lock-down consists of having a fraction of the susceptible population removed from the

epidemic dynamic by moving them from Si to Ci at a rate ψi. Similarly, lifting the lock-down is

done by placing Ci into Si at the rate ϕi. We consider these functions to be Dirac deltas

ci � ai dðt � tlockÞ ð12Þ

�i � bi dðt � tliftÞ ð13Þ

where tlock and tlift are the time (in days) of lock-down and of lifting of the lock-down, respec-

tively. To allow for partial demographic lock-downs, ai and bi are allowed to vary by age (e.g.,

80% of the 40’s age group population are confined). The flow chart between compartments is

shown in Fig 1.

Other diagnostic quantities are the numbers Ui of people in need of an intensive care unit

(ICU) bed

Ui � ziHi ð14Þ

where zi is the fraction of hospitalized patients that need critical care. Both zi and the hospitali-

zation fraction qi are age-stratified.
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For integration, we use a standard Runge-Kutta algorithm, with timesteps

Dt ¼
1

2
½maxðb; g; y;s; x; ZÞ�� 1

: ð15Þ

Model validation

In this section we present details on how we validated the model and how to determine the

characteristic timescales and other parameters.

Model fit to the 2020 COVID-19 epidemic

We consider the susceptible population (S) as the total population of a country since at the

onset of outbreak no one is immune to the virus yet. Model parameters, shown in Table 1,

were based on previous knowledge of Coronaviruses, as well as early reports and research on

COVID-19 [19]. The age-dependent parameters (fatality rate μi, fraction of infectious that are

hospitalized qi, and fraction of hospitalized that need critical care zi) are shown in Table 2.

Fig 1. Schematic flow chart between compartments.

https://doi.org/10.1371/journal.pone.0237627.g001

Table 1. Priors of timescales and ratios for the MCMC modeling.

Parameter Symbol Value Reference

Latent period σ−1 5.2 days [19]

Infectious interval γ−1 2.9 days [19]

Symptomatic fraction p 0.6 [18]

Remission time θ−1 14 days

Remission fraction of asymptomatic w 0.8

Time to hospitalization ξ−1 5 days [18]

Time at hospital η−1 10 days [18]

We use p = 0.6 while [18] uses p = 2/3. Remission time and fraction were assumed due to lack of data at the time of

the study.

https://doi.org/10.1371/journal.pone.0237627.t001
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Because all these timescales are much smaller than a human lifetime, aging of the popula-

tion is ignored and no upward flow between the age sub-compartments (i! i + 1) is consid-

ered. Population pyramids are taken from UN data (https://www.populationpyramid.net), and

split into the pre-defined age bins.

We derive RðtÞ from the available statistics since knowledge of the real number of infected

is not clear. The most reliable indicator in this situation is the number of deaths. Given a fatal-

ity rate μ and an average time τ between exposure and death, the number of dead at a time t +

τ will equal the fatality rate times the number of people that got exposed at time t. Assuming

that confinement dynamics do not play a role (although it is trivial to include it), the equation

is the following:

DDiðt þ tÞ ¼ � miDSiðtÞ: ð16Þ

Taking the continuous limit and substituting Eq (1)

d
dt
DiðtrÞ ¼ milðtÞSi ð17Þ

where we also write tr� t + τ for the retarded time. Summing over all age bins D� ∑i Di we

have the cumulative death rate on the LHS, which is an observable

d
dt
DðtrÞ ¼ lðtÞhmSi ð18Þ

and hμSi�∑i μi Si. We can then substitute Eq (9) and solve for RðtÞ as a function of time

RðtÞ ¼
1

gIhmSi
d
dt
DðtrÞ: ð19Þ

Since death occurs an average of τ days after infection, we start the integration τ days before

the first reported COVID-19 death, i.e., t = 0 means tr = τ. The initial conditions are fully spec-

ified when the initial number of exposed individuals is defined. This should be

E0ðt0Þ ¼ �m � 1D0ðt0 þ tÞ ð20Þ

where t0 is the time of the first death and �m � N � 1
P

imini is the age-weighted fatality rate.

According to current knowledge of the epidemics, τ� 14 days [18].

Table 2. Age-dependent parameters.

Age bins μi (×100) qi (×100) zi (×100)

0-10 0.002 0.1 5

10-20 0.006 0.3 5

20-30 0.03 1.2 5

30-40 0.08 3.2 5

40-50 0.15 4.9 6.3

50-60 0.60 10.2 12.2

60-70 2.2 16.6 27.4

70-80 5.1 24.3 43.2

80+ 9.3 27.3 70.9

Values taken from [18].

https://doi.org/10.1371/journal.pone.0237627.t002
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We compared our model predictions with official data on cases and deaths for multiple

countries, as tracked by the Center for Systems Science and Engineering (CSSE) at Johns Hop-

kins University (https://systems.jhu.edu/research/public-health/ncov). We plot in the left

panel of Fig 2 the fatality rate for a number of countries, which corresponds to the left hand

side of Eq (18). We apply Eq (19) to convert this data into RðtÞ, feeding this value into Eqs

(1)–(8) to start the SEIR evolution. The populations I(t) and S(t) that enter in Eq (19) are then

calculated to update RðtÞ. The resulting values are plotted in the right-hand-side of Fig 2.

The timescales σ, γ, θ, and ξ, as well as the fractions p and w, are found by Markov chain

Monte Carlo (MCMC) fitting, with the priors given in Table 1 and explained in the Supporting

Information (Markov Chain Monte Carlo).

Finally, we compare the cumulative number of hospitalizations calculated from our model

with the number of confirmed COVID-19 cases. For a country that is not doing massive test-

ing and only reporting COVID-19 as acute cases reach the hospital, these curves should match

reasonably well.

Results and discussion

Brazil epidemic scenario

Fig 3 represents the modeled epidemic scenario in Brazil up to mid-June. Parameters

determined by the MCMC modeling are shown in Fig 4, being p ¼ 0:62þ
0:11

� 0:13, w ¼ 0:670:11

� 0:14
,

Tinc ¼ 5:421:95

1:85
, Tinf ¼ 4:692:74

2:32
, Tremission ¼ 13:874:19

� 5:66
, and Thosp ¼ 8:262:68

� 3:02
. RðtÞ at present is

hovering around 2.

Fig 3a shows the evolution of the compartments of exposed (E), asymptomatic (A), symp-

tomatic (I), and hospitalized (H), in linear scale. Fig 3b shows the same curve of H but also the

fraction of hospitalizations needing ICU (U), in log scale. The epidemic is starting at March

1st and the number of symptomatic is predicted to end at July 1st. The peak of symptomatics

is predicted for May 17th with 20 million symptomatics. Consequently, there is a predicted

rise in the number of hospitalized, reaching saturation on May 3rd and peaking on May 22nd

with 106 hospitalized. ICU beds will reach saturation on May 3rd, when the� 35 thousand

ICU beds in Brazil are occupied (since the estimate assumes that all ICU beds should be occu-

pied with coronavirus patients, which is not realistic, the collapse should in fact happen

Fig 2. Left: The time series of fatalities for a number of countries. Right: the time derivative of the curve of fatalities is converted into RðtÞ according to

Eq (19).

https://doi.org/10.1371/journal.pone.0237627.g002
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Fig 3. a) Evolution of the compartments of exposed (E), asymptomatic (A), symptomatic (I) and hospitalized (H). b) The same curve of H,

and the fraction of hospitalizations needing ICU (U). The green dashed curve shows the total number of ICU beds in the country. At the

current rate, the epidemics should peak in mid-May and collapse of the health care system should happen around May 1st. c) Cumulative

number of reported cases and fatalities as orange and black dots, respectively. The number of hospitalizations closely matches the number

of confirmed cases.

https://doi.org/10.1371/journal.pone.0237627.g003
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sooner). Demand for ICU will get higher until reaching a peak on May 22nd with 300 000

patients. The cumulative number of deaths on June 1st is 106.

Fig 3c contrasts the predicted cumulative numbers of infected persons (orange line), hospi-

talized persons (blue line), and deaths (black line). The figure also shows the cumulative num-

ber of confirmed cases (yellow dots) and actual deaths (black dots). The cumulative number of

hospitalized is very close to the actual confirmed cases. This is expected as Brazil is not doing

testing on a massive scale.

We perform a sensitivity analysis, shown in Fig 5, by varying the parameters of the models

by -2, 0, and 2 standard deviations as given by the results of the MCMC analysis (Fig 4). Given

7 parameters, we run 37 = 2187 simulations. The fiducial model, with zero standard in all

parameters, is shown as the thick line; all other models are shown as thin lines. The 95% confi-

dence interval brackets about an order of magnitude above or below the fiducial model, or

about three weeks left or right of it.

Horizontal lockdown. In Fig 6 we check the effect of horizontal confinement, defined as

equal percentage of the population confined at any age bin. There is a change in the epidemic

dynamic when horizontal confinement is applied in different rates. The plots show (a) the

number of hospitalizations, (b) the number of ICU cases, and (c) the number of fatalities, as a

function of the degree of social distancing. Confinement was implemented at time t = 0 corre-

sponding to March 22 when the first measurement of social distancing was implemented. To

not overwhelm the health care system capacity (� 4 × 104) ICU beds, the level of social distanc-

ing should be over 70%. As mentioned in the introduction, estimates are that Brazil is main-

taining 56% (with state-by-state variation from a maximum of 64.7% to a minimum of 53.7%).

At this low level of distancing, capacity should be reached in less than 50 days, which is in

agreement with the dynamical RðtÞmodel in Fig 3.

Vertical lockdown. We vary now the degree of confinement by age bin, characterizing

the vertical confinement. Fig 7 shows the number of hospitalizations in a model where con-

finement was implemented, broken down by age bins. The upper plots show horizontal con-

finement with different proportions of the population (same as Fig 6 but broken down by age

and in logarithmic scale). Confinement was implemented at the same time as in Fig 6. The

other rows explore vertical confinement. In the second column 60% of the population under

40 is confined, but the population older than 40 is confined to a higher degree, at 90% (solid

blue line) and 99% (dashed blue line). The cyan line marks the same model as the upper plots,

where 60% of the population is confined, irrespective of age. The 3rd, 4th, and 5th rows of

plots show the same analysis but confining 60% of the population up 50, 60, and 70 years old,

respectively. As seen in the cyan line, the number of hospitalized rises from 30 to 60 years old

and falls for 70 years old onwards. That is because even though 70+ are more likely to be hospi-

talized, the number of 30-60 is much higher in the population.

Fig 8 shows the same results for the fraction of hospitalized that needs ICU. Fig 9 shows

results from the same suite of models but for the number of fatalities. For the number of ICU

cases, there is no significant difference past age 60, with only a minor uptick at the 70-80 age

range. Collapse of the health care system can be avoided if vertical confinement is instored on

people who are 60 or older, but at the expense of a significant number of extra ICU cases for

the 50-60 age bin. At 60% confinement, hundreds of thousands of deaths are seen in the 60-70,

70-80, and 80+ age bins. The number drops to 50 000 in the 90% confinement. As noted

before, vertical confinement for 60 years old and older leads to a significant number of deaths

for the 50-60 age bin (over 50 000). Vertical confinement at 50 years old leads to a much lower

death rate for this age segment.

Finally, we look at vertical confinement as an exit strategy. In Fig 10 we model a release

from lockdown on May 1st, according to two scenarios: full release for the population under
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50 (dashed line) and full release for the population under 60 (solid line). The population past

this age is kept at 90% confinement. The upper plots show the susceptible (S) and confined

compartments (C), normalized by the number of individuals in the respective age bin. The sec-

ond row from top to bottom shows the number of hospitalizations, the third row the number

of ICU cases, and the last row the cumulative number of fatalities. As the population is released

from the general confinement, the number of H/U/D peaks at 400 000/50 000/120 000 in the

50-60 age bin alone, that bears the lion’s share of morbidity. Keeping the 50-60 age population

in 90% confinement lowers the statistics significantly, with the health care system at capacity,

Fig 4. Posterior probabilities for the epidemic parameters determined by the MCMC modeling.

https://doi.org/10.1371/journal.pone.0237627.g004
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and the number of deaths per age bin about 25 000, with 60+ years olds having the same fatali-

ties as the 40-50 age group.

Limitations

As in any setting, the outbreak response strategy plays a crucial role on the quality of the out-

puts the models can give. Since the identification of the first case, the response strategy in Bra-

zil has been changing over time. At first, only international travelers admitted to hospitals had

access to SARS-CoV-2 testing. Now there are diagnostic clinics and universities involved in

COVID-19 testing, but there is no national massive testing strategy in place. Besides, each Bra-

zilian state has the authority to put in place their own strategy to address the epidemic. The

states of São Paulo and Rio de Janeiro, containing the largest metropoles in the country,

Fig 5. The result of 2187 simulations, where the parameters used in Fig 3 are varied by -2, 0, and 2 standard

deviations, as given by the MCMC analysis of Fig 4. The model of Fig 3 (zero standard deviation on all parameters) is

shown as the thick line. The 95% confidence interval brackets about an order of magnitude above or below, or about

three weeks left or right of this fiducial model.

https://doi.org/10.1371/journal.pone.0237627.g005

Fig 6. a) Number of hospitalizations. b) ICU cases. c) Fatalities. The three curves are shown as function of the degree of horizontal confinement. To not

overwhelm the health care system capacity (� 3 × 104) ICU beds, the level of social distancing should be over 70%. Brazil is managing 56%.

https://doi.org/10.1371/journal.pone.0237627.g006

PLOS ONE SEIR modeling of vertical confinement

PLOS ONE | https://doi.org/10.1371/journal.pone.0237627 September 2, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0237627.g005
https://doi.org/10.1371/journal.pone.0237627.g006
https://doi.org/10.1371/journal.pone.0237627


adopted larger strategies of isolation with schools and stores closed early on while similar strat-

egies had not yet been adopted in other states. Bottom line, the resulting morbidity and mor-

tality rates can change significantly, resulting in dramatically different output numbers as the

number of infected people or the number of hospital beds needed. It is necessary to have mas-

sive testing strategy in place to have better prediction accuracy of the models.

Our model estimate hundreds of thousands of infected people in Brazil on April 1st. This is

more than the number of expected cases in the country while we write this article, considering

the estimated sub-notification of cases [20] and inaction on controlling the infection. It is pos-

sible that the actual number is lower, although it is also important to notice that Brazil has not

done a real lockdown so far.

The model assumes, in Eq (10) that there is no difference in infectiveness between symp-

tomatic and asymptomatic population. This is an assumption that should be updated as further

knowledge of COVID-19 is unveiled.

Fig 7. Upper: Number of hospitalizations in horizontal confinement with different proportions of the population, broken down by age. 2nd row: 60%

of the population under 40 is confined, the population older than 40 is confined to a higher degree, at 90% (solid blue line) and 99% (dashed blue line).

The 3rd, 4th, and 5th rows of plots show the same analysis but confining 60% of the population up to 50, 60, and 70 years old, respectively.

https://doi.org/10.1371/journal.pone.0237627.g007

Fig 8. Middle: Same as Fig 7, but for fraction of hospitalized that need ICU.

https://doi.org/10.1371/journal.pone.0237627.g008
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We stress also that by using the cummulative hospitalization data as a guide in the MCMC,

we are incurring into the problem raised by [21], of overestimating the confidence interval

precision; fitting raw incidence data instead would enhance the statistical accuracy.

The model also ignores mobility, in the sense that it does not consider travel to and from

the country. Given that Brazil is at the stage of community transmission (as of April 9th,

2020), this limitation should not be of significance to the results.

Conversely, and more importantly, the model assumes that the confined population is

completely safe from infection, whereas in reality a vertical lockdown may not be feasible to

implement as the elderly are not adequately distanced from the younger in their family and/or

social circle, and infection cannot be avoided if the younger are exposed to COVID-19.

Finally, the analysis assumes that the data on fatalities is accurate. Underreported deaths

should lead to an unknown source of error in the present study. Also, the MCMC produces

error bars in the parameters that we did not take into account in the forward modeling.

Conclusion

In this study we examine the strategy of vertical confinement as currently debated in Brazil.

Since the fatality rate of COVID-19 appears to be higher among the elderly population, we

Fig 9. Same as Fig 7, but for the number of fatalities.

https://doi.org/10.1371/journal.pone.0237627.g009

Fig 10. Vertical confinement as exit strategy after a horizontal lockdown of 60% was held, from March 22nd to May 1st. Upper plots: S and C
compartments, normalized by the number of individuals in the respective age bin. 2nd row: number of hospitalizations, 3rd row: number of ICU cases,

lower plots: cumulative number of fatalities. The figure shows full release for the population under 50 (dashed line) and under 60 (solid line). The

population past this age is kept at 90% confinement.

https://doi.org/10.1371/journal.pone.0237627.g010
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studied how confinement by age groups (particularly 60 years old and beyond) affects the

demand for hospital beds and intensive care beds.

Our model suggests that at the current rate of advance of the pandemics, Brazil should face

collapse of the health care system by May 15th, with 300 000 ICU beds needed (10 times more

than the current capacity), and 106 fatalities. A decrease in the rate of confirmed cases is seen

with respect to the rate of fatalities, which is indicative of the effect of the lockdown. A 60%

lockdown reduces the number of deaths to 400 000 due to COVID-19, still not avoiding over-

load of the health care system. An increase in lockdown to 70% is needed to avoid the number

of cases from overcoming the number of available critical care beds. The 95% confidence inter-

val spans two orders of magnitude in cases or a month and a half in time.

An exit strategy of confinement of individuals older than 60 years old by May 1st would see

a second wave disproportionally affect the 50-60 age bin. The ICU cases in this age range alone

would bring the health care system to collapse and result in over 100 000 deaths. Confinement

by age group should consider the population over 50 years old as well. However, the age range

50-60 is also a part of the workforce, and thus defeats the purpose of a confinement by age.

Moreover, we emphasize that our model assumes an idealized lockdown where the confined

are perfectly insulated from contamination, while in reality there would be several practical

barriers to it as the confined elderly would depend on the young for most essential activities,

and a perfect lockdown would not be achieved in a multi-generational household, especially in

close quarters such as those found in the low and even middle income neighborhoods com-

mon in Brazil. Our results therefore discourage confinement by age as the only exit strategy.

We urge Brazilian authorities to take action to prevent virus dissemination in the critical com-

ing weeks.

Appendix

Markov Chain Monte Carlo

To fit the best value to w and p, and to better constrain σ−1, γ−1, θ−1, ξ−1, we use the affine-

invariant ensemble sampler for Markov chain Monte Carlo (MCMC) [22] to sample the

parameter space around the solutions and evaluation of the parameter uncertainties. For the

priors input, we use the values taken from [18]. To search for the minimization of cumulative

hospitalization Hc, we generated a cumulative error Cerr on the reported confirmed cases Cc.

As the JHU-CSSE reports on the confirmed cases are given daily with some fluctuations,

we need to take this into account while weighing all solutions by adding a 1-day error matrix

together with the confirmed cases (being conservative). In an ideal scenario, the cumulative

number of hospitalization would be the same as the number of confirmed cases. In real life,

not all confirmed cases are hospitalized so we do not expect to fit the Hc with Cc. Rather, we

weigh the Cc array with the Hc array using:

wt ¼

P
Cc � Hc

n
ð21Þ

H0c ¼ Hc þ wt ð22Þ

H0c is the weighed cumulative hospitalizations and n is the length of the data. Following we

get the residual between Cc and H0c, and we used the negative binomial distribution to calculate

each likelihood [23]:

Res ¼ Cc � H0c ð23Þ
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Z ¼

P
Res
C2
errP
1

C2
err

ð24Þ

P ¼
P ðRes � ZÞ2

C2
err

ð25Þ

P0 ¼ � 0:5P ð26Þ

Eqs 21 to 26 are implemented in the likelihood function on the code. If in each run it

returns a finite number, the algorithm parses the result, if not it returns a large number (1020)

to discard as a bad fit.

We limit each parameter using a range cutoff in when feeding the probability function to

restrict parameter space. That way, we do not run models with unrealistic physical parameters

(e.g. symptomatic going to the hospital in −2 days), and also constrain the known range for the

other parameters. The MCMC function feeds on 6 free parameters, 4 fixed parameters and 2

predetermined arrays as presented in Table 3.
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gov.br/dissemin/publicos/cnes/200508_/dados/LT.

18. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceu-

tical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. Published Online.

2020; p. 1–20.

19. Kucharski A, Russell T, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission

and control of COVID-19: a mathematical modelling study. The Lancet Infectious Diseases. 2020.

https://doi.org/10.1016/S1473-3099(20)30144-4

20. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the

rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020. https://doi.org/10.1126/

science.abb3221

21. King A, Domenech de Celles M, Magpantay FM, Rohani P. Avoidable errors in the modeling of out-

breaks of emerging pathogens, with special reference to Ebola. Proceedings Biological sciences / The

Royal Society. 2014; 282.

22. Foreman-Mackey D, Hogg DW, Lang D, Goodman J. emcee: The MCMC Hammer. PASP. 2013; 125

(925):306. https://doi.org/10.1086/670067

23. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2nd ed. Chapman and Hall/CRC;

2004.

PLOS ONE SEIR modeling of vertical confinement

PLOS ONE | https://doi.org/10.1371/journal.pone.0237627 September 2, 2020 17 / 17

https://doi.org/10.1016/S0025-5564(00)00003-1
http://www.ncbi.nlm.nih.gov/pubmed/10748286
ftp://ftp.datasus.gov.br/dissemin/publicos/cnes/200508_/dados/LT
ftp://ftp.datasus.gov.br/dissemin/publicos/cnes/200508_/dados/LT
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1086/670067
https://doi.org/10.1371/journal.pone.0237627

