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Abstract

The phyllosphere epiphytic microbiome is composed of microorganisms that colonize the

external aerial portions of plants. Relationships of plant responses to specific microorgan-

isms–both pathogenic and beneficial–have been examined, but the phyllosphere micro-

biome functional and metabolic profile responses are not well described. Changing crop

growth conditions, such as increased drought, can have profound impacts on crop produc-

tivity. Also, epiphytic microbial communities provide a new target for crop yield optimization.

We compared Zea mays leaf microbiomes collected under drought and well-watered condi-

tions by examining functional gene annotation patterns across three physically disparate

locations each with and without drought treatment, through the application of short read

metagenomic sequencing. Drought samples exhibited different functional sequence compo-

sitions at each of the three field sites. Maize phyllosphere functional profiles revealed a wide

variety of metabolic and regulatory processes that differed in drought and normal water con-

ditions and provide key baseline information for future selective breeding.

Introduction

Plants form a wide variety of intimate associations with a diversity of microorganisms in the

phyllosphere, the above-ground plant surface [1, 2]. Microorganisms can exist as endophytes

within the plant, as epiphytes on plant surfaces (which together compose the phyllosphere)

and in the soil surrounding and in the roots [3–5]. The ubiquity and intricacy of these plant-

microbe associations support the model of the plant as a”meta-organism” or”holobiont” con-

sisting of the host and its microbiome (the collection of microorganisms and their gene con-

tent) which maintain a relationship over the lifetime of the plant [3, 6, 7]. The plant-associated

microbiome, the phytobiome, is a complex and dynamic system existing as both an agonist
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and antagonist of plant fitness and adaptability [8, 9]. Therefore, elucidating the nature and

extent of these interactions offers significant opportunities for improving plant health, for

example, through alterations in nutrient cycling, neutralizing toxic compounds, discouraging

pathogens, and promoting resistance to abiotic stresses that have the potential for generating

significant impact on plant productivity [10–14]. Optimization of selective breeding for epi-

phytes presents new challenges in ensuring that microbe colonization occurs as needed, while

presenting new potential effective indirect genetic selection [14–16] for crop improvement.

Ultimately, engineering microbial and plant genotypes for optimal function and resilience will

also require causal, mechanistic analyses of gene and pathway level processes; one first step in

such mechanistic analysis for the microbial components of the phyllosphere is construction of

controlled synthetic communities of microbes or assembly of specific sets of microbial func-

tional genes [17].

In contrast to the rhizosphere, the region of soil that is directly influenced by root secre-

tions, the phyllosphere is both a relatively understudied and transitory microbial environment

[2, 18]. Microbial epiphytes of the phyllosphere experience an environment subject to different

influences than those found in the rhizosphere and from host endophytes. Those in the phyllo-

sphere experience atmospheric influences including direct sunlight exposure during diurnal

cycles, and barriers such as waxy cuticle resulting in an oligotrophic environment [19, 20].

More labile associations between epiphytic microbes and host leaves do present an opportu-

nity for interventions. For example, inoculation of beneficials or application of probiotics [21]

could be done rapidly, during crop growth, since above-ground leaves and stems are easy to

access. Longer term interventions such as selection of host genotypes that support specific

desired microbial functions on external leaf surfaces at key points during growth or in

response to biotic or abiotic stress could also be attempted [22, 23].

Corn, Zea mays L., is a widely grown and economically important annual crop. Drought is

an abiotic stress that can negatively affect plant productivity [24]. Hence, understanding the

role that the phyllosphere may play in association with maize undergoing abiotic stress is a pri-

ority. Epiphytic microbes are a unique target for drought tolerance. Targeting such microbes

has potential advantages in the speed of alterations relative to plant breeding. It also provides

the potential for temporal targeting through inoculation only during the adverse conditions

[14]. Supporting this potential, seed microbial inoculation for crop drought tolerance is

already in commercial use (for example, https://www.indigoag.com/).

Only a small fraction of microbial diversity is culturable in vitro [25, 26]. This has led to the

use of culture independent methods for study of microbial community structure and function.

For approximately the past two decades, microbial and fungal diversity has been described via

the sequencing of amplicons representing biomarkers, such as the 16S rRNA gene (bacteria)

and internally transcribed spacer (ITS) regions (fungi) [27, 28].More recently, techniques in

microbial community research have shifted to investigate community structure and function

at a systems-wide level. One such systems method, metagenomics, involves sequencing and

analyzing genes derived from whole communities as opposed to individual genomes. Examin-

ing microbiomes at this level has shown that microbes ultimately function within communities

rather than as individual species [9]. The traditional use of taxa to investigate microbiomes

does not fully account for metabolic interactions between species. Typically functional genes

exhibit different patterns than taxa, and functional genes are often better predictors of niche

[29–31]. In addition, functional gene content can be more heritable (i.e., more driven by host

genetic interactions) [32]. Functional gene analyses also provide key information needed for

community-level metabolic engineering [14, 22].

To address our questions about functional differences between microbial communities, we

selected a factorial design with use of multiple field sites to increase generality. We know that
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plant breeding requires consideration of environmental contributions. By prioritizing multiple

field sites in our initial investigations, our results provide critical information for future experi-

mental designs for breeding and extension of the experiments found here.

Seed stocks

Zea mays L. inbred B73 seed was supplied by the Maize Stock Center, http://maizecoop.cropsci.

uiuc.edu/, and seed was increased at the Central Crops Agricultural Research Station, Clayton,

NC using standard maize nursery procedures. Genotype of the seed lots used for these experi-

ments was verified by SSR genotyping using eleven markers and comparison of fragment sizes

to the sizes listed in the MaizeGDB database [33], http://www.maizegdb.org/ssr.php.

Experimental design and field sampling

Research field sites were generously provided by collaborators with ongoing scientific and

extension projects; no additional permits or permissions were required. For this experiment we

used a hierarchical design, with the treatment plots nested in each field site. There were three

randomly arranged plots within each treatment level at each field site, surrounded by additional

plant plots. Replicated field plots were planted in Albany, CA at the USDA University of Cali-

fornia-Berkeley field site (abbreviated as CA), 37 degrees 53 min 12.8 sec N 122 degrees 17 min

59.8 sec W, on June 6, 2012. The field site had uniform soil and subsurface irrigation and fertili-

zation supplied according to normal agronomic practice for this growing area. The southern

section had normal irrigation throughout the season. However, the northern section had nor-

mal irrigation until vegetative growth stage V5 when all watering was stopped for two weeks;

after sampling of leaves irrigation was resumed to allow plant growth to maturity. Seeds were

planted at two sites in Texas, Dumas Etter field (abbreviated as DE) 35.998744 degrees N

101.988583 degrees W on May 8, 2013, and Halfway, TX field (abbreviated as HF), 34.184136

degrees N 101.943636 degrees W on April 26, 2012. The sites had center-pivot irrigation and

standard maize field management. Drought treatment blocks were watered at 75% of the nor-

mal rate at DE and at 50% of the normal rate at the HF field site. The DE field site had one repli-

cate plot that experienced additional rain late in the season (after phyllosphere sample

collection). The HF field site had no unmanaged precipitation between July 9 and harvest. Late-

season (post-phyllosphere sampling) field trait measurement methods and data files for each

field site are provided in Supplemental Plant Traits files 1–7 in doi: 10.5061/dryad.7m0cfxprs.

Field trait measurement

At the Texas field sites (DE and HF) plant and ear heights were measured once per plot when

growth was complete after tasseling. Ears were harvested and shipped to UNCW for measure-

ment. For each ear, cob diameter at the base was measured with digital calipers, and twenty

seeds were removed from the middle of each cob, placed in envelopes, and weighed. For the

CA site, individual plant heights were measured and cobs were collected at the end of the sea-

son, October 1–3, 2012. Seed development was not complete, so only cob traits were measured.

Cob diameter at base was measured with digital calipers; cob length was measured with a

ruler. Plant data for each location and trait are included in doi: 10.5061/dryad.7m0cfxprs as

plant trait files 1 to 6, with metadata about the column headers in file 7.

Leaf sampling and DNA extraction

Samples were collected from DE on June 26, 2012 and from HF on June 27, 2012, at developmen-

tal stage V8. The CA phyllosphere samples were taken August 7 and 8, 2012, at developmental
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stage V8. Six fully expanded leaves from the top quarter of the plants in each plot were placed

into sterile bags (Whirl-Pak, Nasco, Fort Atkinson, WI) prefilled with 300 mL sterile water and 3

microliters Silwet L-77 (EMCO, North Chicago, IL). Bags were moved to nearby shelters, soni-

cated for one minute to loosen epiphytic microbes, and the 300 mL of wash solution was filtered

through sterile Pall microfunnel 0.2 micron filter cups (VWR, Radner, PA) to collect microbial

cells on the filter surface. The filter was removed from the cup with sterile tweezers and dropped

into small sterile Whirl-Pak bags then stored frozen until DNA extraction. DNA was extracted

from each filter with a PowerSoil Mega kit (MoBio, Carlsbad, CA). Samples were concentrated

with filter-sterilized sodium chloride and absolute ethanol according to the manufacturer’s

instructions and shipped frozen to JCVI for sequencing. Supplemental methods video links are

available in the supplemental files repository at Data Dryad doi: 10.5061/dryad.7m0cfxprs, to pro-

vide additional details on the protocol used for leaf washes and filtering. Mock and soil samples

were sampled using the leaf-wash protocol, to allow detection of any sequences likely to have

entered the samples from soil particles or air and from our sampling equipment.

Library construction and sequencing

All library construction and sequencing were completed using Illumina reagents and proto-

cols. Samples PHYLLO09 and PLYLLO10 were sequenced with Illumina HiSeq and all other

samples were sequencing using the MiSeq platform. Two nucleic acid negative control filters

were also processed through DNA extraction and library construction and sequencing to test

for the presence of any significant contamination of experimental samples by exogenous

DNA. One sample from HF drought was lost during processing. The raw data and processed

reads are accessible from the NCBI Short Read Archive under Bioproject PRJNA297239.

Because of the nature of the sampling collection and nucleic acid procedures, plant host

genomic DNA was inevitably included in the nucleic acid samples used for library construc-

tion. Therefore, a screening process was implemented to remove both sequencing artifacts and

reads most likely to be of maize origin. Adaptor sequences were removed from the SRA

sequencing reads using Trim Galore version 0.4.3 <https://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/>. The reads were subsequently filtered to remove maize sequences

by alignment using bowtie2 version 2.2.9 [34] to v4 of the B73 Zea mays reference, Zm-

B73-REFERENCE-GRAMENE-4.0<ftp://ftp.ensemblgenomes.org/pub/plants/release-37/

fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz> [35]. Quality control at each pro-

cessing step: initial reads, after adapter trimming, and after host filtering, was verified by

FastQC v0.11.7. Read pairs that could be joined were joined with vsearch, v1.10.2 linux x86 64,

<https://github.com/torognes/vsearch> [36] and all resulting single-end reads: those that

joined and those that did not, were retained for further analysis. UniProt50 protein annotation

was performed using HUMAnN2 v0.9.1, <https://github.com/leylabmpi/humann2>, [37]

resulting in estimates of gene family count, path abundance, and path coverage together with

estimates of taxonomic profile at the species level generated by MetaPhlAn2 [38]. Gene family

HUMAnN2 output was explicitly normalized to counts per megabase to adjust for different

input library sizes. HUMAnN2 is a reference-based method, so we focus on comparisons

between drought and control conditions within the experiments (as all reference-based meth-

ods rely on existing data). Full details of parameters, software packages, and scripts used to

manage analyses are available in Data Dryad repository doi: 10.5061/dryad.7m0cfxprs.

Count data analysis

Analysis of the number of reads for each UniProt annotation in each sample was performed

with ENNB [39]. The parameters and full R scripts for analyzing the data (along with an R

PLOS ONE Zea mays phyllosphere metagenomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0237493 September 18, 2020 4 / 16

https://doi.org/10.5061/dryad.7m0cfxprs
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz
https://github.com/torognes/vsearch
https://github.com/leylabmpi/humann2
https://doi.org/10.5061/dryad.7m0cfxprs
https://doi.org/10.1371/journal.pone.0237493


notebook explaining the process) are available in Data Dryad at doi: 10.5061/dryad.7m0cfxprs.

ENNB is a two-stage process with an elastic net for feature selection then negative binomial fit

to identify significant annotations, though it is only possible to fit one factor (nested or full fac-

torials for multiple experimental factors are not possible to fit using this two-stage multivariate

method). The package was downloaded from the An web page (http://cals.arizona.edu/anling/

software.htm) and scripts written to run both method 1, the trimmed mean (TMM) from the

EdgeR package, and method 2, DE-Seq-type count overdispersion. Statistical analysis of anno-

tations different in drought and well-watered conditions were carried out for each field site.

The simulations that were created as described in the Simulation Construction section below

were used to set the P-value threshold for the analysis of the samples. Imputation of samples

was used to calculate the lambda value for cross-validation in ENNB, as specified in the ENNB

documentation. The multiple imputation function within ENNB was used to create a third HF

drought data column, as ENNB required three samples. After analysis, the annotation data sets

were cleaned to remove any rows with annotation IDs that were present in the soil or mock-

collected sequenced samples. All input files, R code, an R notebook explaining the analysis,

and output files are available at doi: 10.5061/dryad.7m0cfxprs.

Visualization of significant annotations

Uniprot lists were converted to Gene Ontology lists (not a 1 to 1 mapping) using the conver-

sion web tool at EBI, with lists available in the supplemental data in doi: 10.5061/dryad.

7m0cfxprs, then the lists of GO Process and GO Function annotations that were significantly

different upon output from ENNB were visualized using REVIGO [40], http://revigo.irb.hr/,

with the Simrel and medium list defaults selected. The REVIGO cytoscape-format xgmml net-

work files were color-coded and the network layout redrawn using Cytoscape v3.2.1 [41].

Venn diagrams for comparison of lists were created with http://www.webgestalt.org/GOView/

[42].

Simulation construction for analysis validation

In order to measure the precision and accuracy of our analysis pipeline, we constructed simu-

lated files of sequences and processed these through our analysis pipeline to generate simulated

counts. Then, we analyzed the simulated counts with ENNB and functions to tabulate true and

false positives. We modified and updated FunctionSim (https://cals.arizona.edu/ anling/soft-

ware/FunctionSIM.htm) to generate sequences with signal and noise that were made indepen-

dently of our real data. The full set of scripts and parameters is available in Data Dryad at doi:

10.5061/dryad.7m0cfxprs. We tested multiple ENNB thresholds for declaring significant anno-

tations to select suitable cutoff and analysis options with the lowest possible false positive rate.

The goal for the simulations to determine if ENNB was a viable method for detecting gene

counts between groups. We used a threshold alpha of 0.001. The lowest FDR (0.088) calculated

using simulation-group comparisons was used to determine that ENNB would be an accept-

able tool to run against the real data, provided the sequence match value to declare similarity

was set to a suitably high level. The confusion matrices (true and false positives and negatives)

for a range of parameter and sequence similarities are available in the Dryad repository; the

notebook is genefamilies_simulations.Rmd.

Statistical analysis of plant traits

Plant traits (seed weight, plant height, and cob diameter) were analyzed with linear regression

models using JMP11 Pro (SAS, Cary, NC) with an adjusted alpha of 0.05. Models were fit with

water treatment (as a nominal factor) for each trait. For HF and DE cob diameter traits, plot
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numbers were used to identify the group of plants within the larger field and those plot IDs

were included in the model to account for the blocks. The number of replicates for each com-

parison is provided in the box plot figure legend.

Availability of data and materials

Metagenomic sequences are available in the SRA repository, identifier BIOPROJECT

PRJNA297239. All data analysis scripts, simulations, intermediate files and metadata files are

available from Data Dryad doi: 10.5061/dryad.7m0cfxprs. A preliminary version of this work

is available in bioRxiv under bioRxiv 104331 doi https://doi.org/10.1101/104331.

Results

To examine the microbial metabolic and regulatory functions important for leaf epiphytic

community differences between drought and well-watered field plots, we developed a nested

experimental design and a per-field-site analysis using factorial multivariate approaches suit-

able for our zero-inflated annotation read count data. We prioritized comparisons within mul-

tiple geographically diverse field sites. Genotype–environment interaction is a key logistic and

experimental constraint for future host plant breeding for improved varieties that would sup-

port optimal microbial communities.

We saw little relationship between depth of microbial sequence and annotation quality

(Table 1).; for example, in comparison of samples 11 and 12 where sequence depth was not

correlated to signal level. Both of the soil samples and one mock sample had no sequence signal

(Table 1). The second mock sample contained some sequences that were not classified as con-

taminants. All annotation rows present in the mock sample were removed from all sample

rows before statistical analysis.

Annotations differing between drought and watered treatments

To robustly determine the ENNB parameters with the fewest false positives we created simula-

tions using an independent sequence database. Then, we processed the simulations through

our sequence read and statistical analysis code and measured the number of true and false

detections. For count analysis, use of the trimmed mean adjustment (Tmm1) and a threshold

of 0.001 for negative binomial fitting gave fewer false positives and we report results using

those thresholds. Our analyses may be re-run using the scripts and setting information pro-

vided in the Dryad repository supplemental files if different P-value thresholds are desired.

Drought and watered plots at each site had significant differences in read counts for regula-

tory and metabolic functions. The ENNB analysis with normalization by TMM generated a list

of significant GO Process and GO Function annotations in watered as compared to drought-

treated phyllosphere samples for each field site, with groups of related GO terms from

REVIGO analysis indicated by edges between GO node terms. Larger nodes indicate the fre-

quency of the annotation in the GO database, so smaller nodes with no edges such as bacterio-

cin immunity (Fig 1A) are the most unique. The significant GO Process terms identified as

semantically distinct in the drought treatment for the Albany, CA field (abbreviated as CA)

site (Fig 1A) include biochemical pathways involved in basic cellular responses, such as tran-

scription and DNA replication, and specific metabolic remodeling pathways, such as isoleu-

cine biosynthesis. Pathways we observed that are likely to be important for microbial

community interactions include bacteriocin immunity and amino acid transport [43]. Func-

tional annotations (Fig 1B) for the CA field site are similar to process annotations, with the

addition of a cluster of energy-metabolism related binding functions, such as NADP binding

(Fig 1B).
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Functional annotations that were significant from the Dumas-Etter, TX field site (abbrevi-

ated as DE) include a range of metabolic and regulatory terms, with a large cluster of amino

acid, nucleic acid, and sugar metabolic enzymes (center of Fig 2A) and a second large cluster

of regulatory and response categories (top of Fig 2A), such as quorum sensing. Topics related

to response to oxidative stress form a smaller cluster. Unusual categories with single small

nodes include protein refolding and reactive oxygen species metabolism. The term ‘transcrip-

tional regulation’ was shared with the CA term list (circled in Figs 1 and 2). The function term

network (Fig 2B) also has a cluster for metal ion binding (visible at the top left of Fig 2B). After

quality control, the DE site retained all six samples (Table 1) and this site had the largest num-

ber of significant annotations (Figs 2 and S1 via https://doi.org/10.5061/dryad.7m0cfxprs).

Significant annotations from the Halfway, TX field site (abbreviated as HF) include a group

of biosynthetic enzymes for amino and fatty acid synthesis (Fig 3A top left), and amino acid

biosynthesis enzymes (Fig 3A top right). The process annotation ‘translation’ was shared with

the DE site (indicated by the dashed square around the node and annotation label), and amino

acid transport was shared with the CA field site (indicated by a dashed diamond). In the pro-

cess listing, an example unusual pathway found only in HF is self proteolysis. Functional anno-

tations include a set of regulatory activities (e.g., kinases) and several ion binding activities.

The zinc ion binding activity was shared with the DE annotation list. One unusual annotation

found only in HF function was cob(I)yrinic acid a,c-diamide adenosyltransferase, which is

part of the vitamin B12 cofactor pathway.

Table 1. Sample characteristics.

Sample ID Field Site1 Treatment Type Sequence Amount2 Sequence Comment

PHYLLO9 HF watered deep

PHYLLO10 DE watered deep

PHYLLO11 CA watered small all contaminant

PHYLLO12 CA drought large low proportion of signal

PHYLLO13 CA watered large

PHYLLO14 CA drought moderate

PHYLLO15 DE watered moderate

PHYLLO16 DE drought small

PHYLLO17 CA soil watered small soil sample below watered plot plants, all contaminant

PHYLLO18 CA soil drought small soil sample below drought plot plants, all contaminant

PHYLLO19 mockDE none small

PHYLLO20 mockCA none small low proportion of signal

PHYLLO21 CA watered large

PHYLLO22 CA drought large

PHYLLO23 DE watered large

PHYLLO24 DE drought small

PHYLLO25 DE drought moderate

PHYLLO26 HF watered deep

PHYLLO27 HF watered deep

PHYLLO28 HF drought deep

PHYLLO29 HF drought deep

1 Full field information for these two-letter abbreviations is available in the Methods section.
2 Small indicated that the sample contained less than 233k reads, moderate indicates 233-500k reads, large indicates 500k-1.6m reads, deep indicates greater than 1.7m

reads.

https://doi.org/10.1371/journal.pone.0237493.t001
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Plant traits

To confirm that drought treatment plots were relevant for host plant performance, we ana-

lyzed plant growth measurements. All plant measurements at all sites showed significantly less

growth in the treatment with less water (Fig 4). Plot effects were examined for each trait and

no significant interaction between plot and replicate was found (results not shown). Mid-sea-

son plant heights were significantly less (P<0.0001) in the drought condition for the CA site.

The drought-treated plants were 20% shorter, with an estimated difference between normal

Fig 1. Network visualization of Gene Ontology process and function annotation differences between normal water and

drought treatments at the CA site. Significant Gene Ontology (GO) annotations from ENNB analysis were grouped by semantic

similarity into a network. The size of each node is proportional to the frequency of annotation relative to the GO database. Similar

terms are linked with edges. Circles and boxes indicate terms shared between field sites. a) CA field site GO Process annotations

that were significantly different between fully watered and drought microbial phyllosphere samples. b) CA field site GO function

annotations that were significantly different between fully watered and drought microbial phyllosphere samples.

https://doi.org/10.1371/journal.pone.0237493.g001
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water and drought of 0.158 meters. The DE field site with plot 101 excluded exhibited signifi-

cant (P = 0.0139) effects of drought on end-of-season seed weight (Fig 4B), with the seed

weights in drought reduced by about 25% (estimated difference of 0.468 grams less in drought

samples). Plot 101 from the 75% site had a late-season rain event after microbiome sampling

but before seed harvest that necessitated its exclusion. Drought reduced seed weight by 50% at

the HF field site (Fig 4C), with P<0.0001 and an effect difference of 1.206 g less in drought

seed samples. Cob diameters were also significantly smaller in the drought-treated plants (Fig

4D, 4E and 4F) with the effect size differences ranking the drought intensity of DE (1.66 mm

less in drought) less than CA (2.52 mm less in drought), with the most severe cob diameter

drought effects at the HF site (3.24 mm less in drought).

Discussion

We qualitatively compared functional genes across all three sites (S1 Fig, Data Dryad reposi-

tory doi: 10.5061/dryad.7m0cfxprs), though we did not fit a statistical model for comparisons

of drought effects across field sites, as the field sites differed in multiple ways. There were more

shared drought-treatment-relevant functional categories in comparisons of the CA and DE

field sites than in comparisons with the HF site (S1 Fig). This suggests that drought severity

could play a role in functional gene importance despite differences in soil and other aspects of

each field environment, because the CA and DE plots did share milder drought conditions

despite differences in delivery of irrigation. We would expect differences across field sites

Fig 2. Network visualization of Gene Ontology process and function annotation differences between normal water and drought treatments at the DE site.

Significant Gene Ontology (GO) annotations from ENNB analysis were grouped by semantic similarity into a network. The size of each node is proportional to the

frequency of annotation relative to the GO database. Similar terms are linked with edges. Circles and boxes indicate terms shared between field sites. a) DE field site GO

Process annotations that were significantly different between fully watered and drought microbial phyllosphere samples. b) DE field site GO function annotations that

were significantly different between fully watered and drought microbial phyllosphere samples.

https://doi.org/10.1371/journal.pone.0237493.g002
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based on plant physiology and known differences in maize growth across field sites [44]. How-

ever, field site is confounded with the field-specific drought treatments in our study and we

thus cannot quantitatively compare the field site annotation networks. Shared annotations

across field sites often were not consistently increased or decreased in read count levels. For

example, amino acid transport process read counts were higher in watered samples at the HF

site and higher in drought samples at the CA site. However, the extent of drought-treatment

significant annotation term sharing (without consideration of read count levels, as shown in

S1 Fig) is consistent with the extent of plant growth effect, with HF sharing fewer terms and

having more severe drought.

Lists of phyllosphere ribotypes from prior field studies [45–48] were used to generate a list

of expected species. Expected phyllosphere species that were also present in our samples

include Methylobacterium spp., Dietzia spp., and Pseudomonas spp., (Supplemental file

metaphlan2.tsv in Data Dryad repository doi: 10.5061/dryad.7m0cfxprs). We carried out a

detailed comparison of the annotations from the rice phyllosphere proteome [49] to our list.

Six rice GO process were in the metaproteome pfam list [49], and three of the six were shared

with our process lists. Recent literature on functional genes suggests that functions are more

predictive than ribotype profiles [30, 31]. Therefore, in future experiments, testing of the

effects of synthetic communities with similar ribosomal but different functional composition

would be of broad interest. Our functional gene information is a step toward designing a

future synthetic community test of functional annotation predictive ability.

In a maize leaf microbe association genetics experiment, predicted metabolic functions

were more heritable than ribotypes, which also suggests that function is key [32]. Selection

for specific microbial functional genes or generic markers for pathways could easily be

incorporated into newer DNA-based crop genomic selection processes that are sequencing

based [50–52]. The importance of incorporating microbial sequence predictors lends sup-

port to the movement toward sequencing to collect all DNA data, not just filtered SNP sets

or SNPs with prior data on causality. Microbial sequences are not in linkage disequilibrium

like chromosomal SNPs, so it would not be possible take advantage of tag SNPs. Because the

cost of complete sequencing is decreasing, we advocate for modeling and tests of full-

sequence predictors that include both host chromosomal and epiphyte functional DNA

information.

We suggest that a key next step in understanding use of leaf microbial annotations for crop

improvement would be to measure microbial community annotations in selected and unse-

lected breeding program lines across multiple test sites. This would allow the estimation of the

genotype and environment breeding values for functional gene annotation. That information

would determine future breeding strategy and would be efficient, because collection of func-

tional gene information could be an add-on to host breeding experiments such as g2f for

maize (https://www.genomes2fields.org/) and terraRef for sorghum (http://terraref.org/).

There are few publicly available field sites for drought experiments–we know of only five

within the continental USA–so public-private partnerships and use of large-scale field experi-

mental networks are logical next steps for better understanding of microbial community devel-

opment for crop improvement.

Fig 3. Network visualization of Gene Ontology process and function annotation differences between normal water and drought treatments at

the HF site. Significant Gene Ontology (GO) annotations from ENNB analysis were grouped by semantic similarity into a network. The size of each

node is proportional to the frequency of annotation relative to the GO database. Similar terms are linked with edges. Circles and boxes indicate terms

shared between field sites. a) HF field site GO Process annotations that were significantly different between fully watered and drought microbial

phyllosphere samples. b) HF field site GO function annotations that were significantly different between fully watered and drought microbial

phyllosphere samples.

https://doi.org/10.1371/journal.pone.0237493.g003

PLOS ONE Zea mays phyllosphere metagenomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0237493 September 18, 2020 11 / 16

https://doi.org/10.5061/dryad.7m0cfxprs
https://www.genomes2fields.org/
http://terraref.org/
https://doi.org/10.1371/journal.pone.0237493.g003
https://doi.org/10.1371/journal.pone.0237493


Fig 4. Drought effects on plant growth. Error bars are standard error and colors are grouped within a field site. a) Comparison of plant

heights in drought and well-watered plots from the California-Albany (CA) field site; bar heights indicate average height in meters.

Drought (less drip irrigation) n = 40, well-watered regular drip irrigation n = 40. b) Comparison of seed weights from mild drought
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Leaf epiphytes have short and long term intervention possibilities. Indirect selection for

host effects is likely to be more cost-effective than inoculation, but that takes much longer to

implement through the required multiple breeding cycles. Leaf microbes are typically not in

seeds and thus not consumed. Thus, these microbes are logical targets for improved forage

quality, energy extraction from biomass, or optimization of soil fertility for the next season as

well as for plant host benefit.

We advocate for future experiments that build on the functional genes we identified and

combining synthetic community development approaches with breeding experiments to gen-

erate knowledge that would be needed for future holobiont breeding system development.

Our results allow prioritization of specific gene function pathways in choosing culturable

microbe mixtures for future experiments on design of drought tolerant epiphytic

communities.

Conclusion

We identified a range of biosynthetic and regulatory microbial functional and process annota-

tions that differed between drought and well-watered maize leaf epiphytic communities at

three different field sites. These functions now provide a target for selection of beneficial

microbes and for design of synthetic community casual tests of community interactions.

Supporting information
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