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Abstract

In the present study, a new class of heavy tailed distributions using the T-X family approach

is introduced. The proposed family is called type-I heavy tailed family. A special model of

the proposed class, named Type-I Heavy Tailed Weibull (TI-HTW) model is studied in detail.

We adopt the approach of maximum likelihood estimation for estimating its parameters, and

assess the maximum likelihood performance based on biases and mean squared errors via

a Monte Carlo simulation framework. Actuarial quantities such as value at risk and tail value

at risk are derived. A simulation study for these actuarial measures is conducted, proving

that the proposed TI-HTW is a heavy-tailed model. Finally, we provide a comparative study

to illustrate the proposed method by analyzing three real data sets from different disciplines

such as reliability engineering, bio-medical and financial sciences. The analytical results of

the new TI-HTW model are compared with the Weibull and some other non-nested distribu-

tions. The Baysesian analysis is discussed to measure the model complexity based on the

deviance information criterion.

Introduction

In many practical situations, such as financial sciences, reliability engineering and bio-medial

sciences, data are usually positive, and their distribution is unimodal hump shaped and

extreme values yielding heavier tails than the classical models. For example, in health science

research, (a) the medical expenditures that exceed a given treshould [1] and (b) the lenght of

stay in hospitals [2, 3], present highly skewed, heavy tailed data, for which the standard classi-

cal distributions and simple variable transformation are insufficient to provide an adequate fit

to such data. In reliability engineering, the interest most often lies in the occurrence of rather

exceptional events which are associated with the tail part of a statistical distribution. For exam-

ple, the earthquakes, tsunamis, hurricanes, electrical or power massive failures etc., are some

examples of such type of rare and extreme events [4]. All aforementioned events and the rate

at which they happens, are associated with the heaviness of the tail and shape of distributions.

In financial and risk management problems, one of the important tasks is to predict accurately

the losses that occurs with a high fiscal value. Underestimation of the probability of these losses
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leads to severe operational risk like underestimating the bankruptcy and premium, among

others. In such circumstances, the models with heavy-tailed are the best candidate that pro-

vides plausibly the best fit for the right tail, see [5].

According to [6], a distribution is said to be heavy-tailed, if the right tail probabilities are

heavier than the exponential distribution, that is, its survival function (sf) satisfies

lim
x!1

1 � FðxÞ
e� px

¼ 1;

for all p> 0; see [7]. The right tail of a model is an important issue in a number of contexts,

particularly, pertaining to the insurance problems, where it shows the total impact of insurance

losses, and in risk theory, where it is associated with the extreme value theory.

As we discussed above, on a number of occasions, real data sets show a behavior with

extreme values producing tails which are heavier than those of classical well-known statistical

distributions. In such cases, the utilization of the standard distributions may be not be a good

choice to apply; see [8]. They performed an empirical study of distributions using exploratory

data analysis and other empirical approaches to estimate the risk. They rejected the idea of

using exponential, gamma and Weibull distributions due to their poor results and pointed out

that one would need to use a model that is flexible enough in its structure.

These results motivated the researchers to look for more flexible models providing the best

fit with greater accuracy in modeling data. In this regard, a number of approaches for extend-

ing and generalizing heavy-tailed distributions have been introduced. The new developments

have been made through many different approaches such as (i) transformation of variables,

(ii) composition of two or more models, (iii) compounding of models, and finally (iv) finite

mixture of models.

Recent the study of [9] showed that skewed student t model and skewed-normal model are

the best competitors as the skewed distributions adjust right-skewness and high kurtosis; for

further detail see [10]. Financial risks and the insurance losses take positive values on the real

line and consequently these skew models may not be suitable choice. In such situations, the

transformation of variables, particularly the exponential transformation, has proven to be sub-

stantial because these distributions are defined on R. Furthermore, [11] showed that the trans-

formation approach is simple to use but most often the inference as well as derivation of the

other statistical properties become complicated.

Another promising approach for obtaining new flexible heavy-tailed families of distribu-

tions, which might provides reasonably the best fit for heavy-tailed losses, is the composition

approach; see [12]. However, it must be noted, the new distributions obtained via the composi-

tion approach usually involve three or more parameters causing difficulties in the estimation

and computational processes.

Another prominent approach is compounding of distributions to cater data modeling with

unimodality, right-skewness and heavy tails [13]. However, the density function obtained via

this approach may not always have a closed form expression which makes the estimation more

complicated as shown in [14].

Finite mixture models represent a further approach to define very flexible distributions

which are also able to capture, for instance, multimodality of the underlying distribution [15].

The price to pay for this greater flexibility is a more complicated and computationally chal-

lenging inference.

We carry on this branch of distribution theory, and propose a new family of heavy-tailed

distributions via T-X family technique. The proposed class is very flexible and provides the

best fit for the considered heavy-tailed insurance data.

PLOS ONE Type-I heavy tailed family

PLOS ONE | https://doi.org/10.1371/journal.pone.0237462 August 27, 2020 2 / 24

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0237462


The rest of work done in study is arranged in the following sections: the proposed family is

discussed in Section 2. A sub-case of the proposed class is introduced and the shapes of its den-

sity and hazard rate functions are sketched in Section 3. Statistical properties of the new family

are obtained in Section 4. The expressions for the maximum likelihood estimators are derived

in Section 5. In the same section, a Monte Carlo simulation study is presented. The actuarial

measures are derived in Section 6. In the same section, a simulation study based on these mea-

sures is also provided. Practical applications are discussed in Section 7. Finally, the article is

concluded in Section 8.

Proposed method

This section offers the genesis of the proposed method. Recently, [16] proposed the T-X family

method that is specified by the cumulative distribution function (cdf)

GðxÞ ¼
Z K½Fðx;xÞ�

a1

vðtÞ dt; x 2 R; ð1Þ

where K[F(x; ξ)] fulfills certain conditions; see [16]. The probability density function (pdf) cor-

responding to Eq (1) is

g xð Þ ¼
@

@x
K Fðx; xÞ½ �

� �

vK½Fðx; xÞ�g ; x 2 R:

Deploying the T-X approach, a good deal of new families of statistical models have been pro-

posed in the literature; see [17–20] and [21]. Let T� exp(1), then its cdf is given by

VðtÞ ¼ 1 � e� t; t � 0: ð2Þ

Corresponding to expression (), the density function is

vðtÞ ¼ e� t; t > 0: ð3Þ

If v(t) follows Eq (3) and setting K F x; xð Þ½ � ¼ � log
�

1� Fðx;xÞ
1� ð1� yÞFðx;xÞ

�y
in Eq (1), the cdf of the type-

I heavy-tailed (TI-HT) family follows as

G x; y; xð Þ ¼ 1 �
� 1 � Fðx; xÞ

1 � ð1 � yÞFðx; xÞ

�y
; y > 0; x 2 R; ð4Þ

where F(x; ξ) is the baseline distribution function which may depend on x 2 R: Form Eq (4),

we can see that G(x; θ, ξ) = F(x; ξ) for θ = 1.

Some key motivations of the proposed TI-HT method are the following: (i) An easy and

convenient approach to modify the existing models, (ii) to improve the flexibility of the avail-

able models in the literature, (iii) to introduce a generalized form of existing models with

closed expression for their distribution functions, (iv) to avail the best fit to real-world data as

compared to other models with fewer parameters, same number of parameters and higher

number of parameters and, (v) to provide an adequate fit to the heavy-tailed data in applied

fields such as reliability engineering, medical and financial sciences and, other related fields.

The pdf associated to Eq (4) is

g x; y; xð Þ ¼
y

2f ðx; xÞf1 � Fðx; xÞgy� 1

f1 � ð1 � yÞFðx; xÞgyþ1
; x 2 R: ð5Þ

We concentrate our focus to a special sub-case of the new family, called type-I heavy-tailed
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Weibull (TI-HTW) distribution. Finally, we direct our attention to the results related to the

TI-HTW model with real life data in three different disciplines. The first data set is taken from

bio-medical field and the results of the TI-HTW model is compared to five other competitor

distributions including (a) two-parameter Weibull distribution and (b) three-parameter mod-

els such as alpha power transformed Weibull (APTW), Marshall-Olkin Weibull (MOW),

transmuted Weibull (TW) and modified Weibull (MW) distributions. The second data set is

taken from reliability engineering and the comparison of the new model is made with three

other well-known distributions such as (a) the three-parameter extended alpha power trans-

formed Weibull (Ex-APTW) and (b) four-parameter Kumaraswamy Weibull (Ku-W) and

beta Weibull (BW) distributions. The third data set is taken from financial sciences and the

results of the proposed model is compared with Weibull and other heavy-tailed models includ-

ing Lomax and Burr-XII distributions.

Sub-model description

In the following section, we introduce the genesis of the TI-HTW distribution and discuss its

special cases.

Type-I heavy tailed Weibull distributionxs

Consider the cdf Fðx; xÞ ¼ 1 � e� gxa ; x � 0, and pdf f ðx; xÞ ¼ agxa� 1e� gxa , where ξ = (α, γ),

of the two-parameter Weibull distribution with shape parameter α> 0 and scale parameter

γ> 0. Then, cdf of the TI-HTW model is defined by

G x; y; xð Þ ¼ 1 �

�
e� gxa

1 � ð1 � yÞð1 � e� gxaÞ

�y

; x > 0; a; y; g > 0: ð6Þ

The pdf of the TI-HTW model is

g x; y; xð Þ ¼
ay

2
gxa� 1e� ygxa

f1 � ð1 � yÞð1 � e� gxaÞgyþ1
; x > 0: ð7Þ

Plots for the pdf of the TI-HTW are sketched in Fig 1, whereas the hrf plots of TI-HTW are

showed in Fig 2.

Special cases of the TI-HTW distribution

Let X follows the TI-HTW model with parameters (α, θ, γ). Then X reduces to

1. Weibull model with parameters α and γ, with θ = 1.

2. One parameter Weibull model with parameter α, with θ = γ = 1.

3. Exponential with parameter γ, with θ = α = 1.

4. Rayleigh distribution with parameter γ, with θ = 1 and α = 2.

5. One parameter TI-HTW distribution with parameters α and θ, with γ = 1. (New)

6. Type-I Heavy Tailed Exponential (TI-HTE) with parameters θ and γ, with α = 1. (New)

7. Type-I Heavy Tailed Rayleigh (TI-HTR) with parameters θ and γ, with α = 2. (New)
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Statistical properties

In the following subsections, we study some statistical properties of the TI-HT distributions

including the quantile function (qf), rth moment and moment generating function.

Fig 1. Pdf plots of the TI-HTW distribution.

https://doi.org/10.1371/journal.pone.0237462.g001

Fig 2. hrf plots of the TI-HTW distribution.

https://doi.org/10.1371/journal.pone.0237462.g002
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Quantile function

The qf of the TI-HT distributions is

x ¼ QðuÞ ¼ G� 1ðuÞ ¼ F� 1 ð1� uÞ
1=y � 1

ð1� yÞð1� uÞ
1=y � 1

n o
; ð8Þ

where u 2 (0, 1). From expression Eq (8), we can see that the proposed model has closed form

solution of the qf which makes it easier to generate random numbers for any sub-case of the

TI-HT family.

Moments

This sub-section deals with the derivation of rth moment of the TI-HT distributions. The rth
moment of the TI-HT distributions is derived as

m0r ¼

Z 1

� 1

xrgðx; y; xÞdx: ð9Þ

Using Eq (5) in Eq (9), we have

m0r ¼

Z 1

� 1

xr
y

2f ðx; xÞf1 � Fðx; xÞgy� 1

f1 � ð1 � yÞFðx; xÞgyþ1
dx: ð10Þ

Using the expansion (https://math.stackexchange.com/questions/1624974/series-expansion-1-

1-xn)

1

ð1 � xÞn
¼
X1

i¼0

iþ n � 1

n � 1

 !

xi: ð11Þ

Using x = (1 − θ)F(x; ξ) and n = θ + 1 in Eq (11), we get

1

ð1 � ð1 � yÞFðx; xÞÞyþ1
¼
X1

i¼0

iþ y

y

 !

ð1 � yÞ
iFðx; xÞi: ð12Þ

Also using the series representation

ð1 � yÞm ¼
Xm

j¼0

ð� 1Þ
j

m

j

 !

xj: ð13Þ

Using y = F(x; ξ) and m = θ − 1 in Eq (13), we get

ð1 � Fðx; xÞÞy� 1
¼
Xy� 1

j¼0

y � 1

j

 !

ð� 1Þ
jFðx; xÞj: ð14Þ

Using Eqs (12) and (14) in Eq (10), we have

m0r ¼ y
2
X1

i¼0

Xy� 1

j¼0

y � 1

j

 ! iþ y

y

 !

ð� 1Þ
j
ð1 � yÞ

i
kr;iþj; ð15Þ

where kr;iþj ¼
R1
� 1

xrf ðx; xÞFðx; xÞiþjdx:
For some pre-defined parameters values, numerical results for the descriptive measures

(mean, variance, skewness and kurtosis of the TI-HTW mode are given in Tables 1 and 2.
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For γ = 1.5 and different values α and θ, plots for the mean, variance, skewness and kurtosis

of the TI-HTW distribution are displayed in Figs 3 and 4.

The moment generating function (mgf) of the TI-HT random variable X, say MX (t), is

derived as

MX tð Þ ¼
X1

r¼0

tr

r!
m0r: ð16Þ

Using Eq (15) in Eq (16), we get the mgf of the TI-HT distributions.

Estimation and simulation study

In the following section, we obtain the maximum likelihood estimators (MLEs) of the parame-

ters of the proposed family. Furthermore, we conduct a Monte Carlo simulation study to assess

the behavior of these estimators.

Maximum likelihood estimation

Numerous approaches for estimating the un-known parameters have been suggested to obtain

the estimates of the parameters. Among them, the maximum likelihood (ML) approach is the

most prominent and frequently used method. The estimators obtained via this approach pos-

sess useful properties and can be utilized for constructing the confidence interval and other

statistical tests. The normal approximation of the MLEs can easily be treated either numeri-

cally or analytically. For more details about maximum likelihood estimation, we refer to [22,

23]. In this sub-section, we adopt the ML approach for estimating the parameters of TI-HT

family. Suppose X1, X2,. . ., Xn form an observed sample taken randomly from the TI-HT

Table 1. Descriptive measures of TI-HTW distribution for α = 0.9, γ = 1 and different values of θ.

θ Mean Variance Skewness Kurtosis

0.9 4.818964 126.9306 4.543845 27.37200

1.3 2.589755 48.53393 6.914864 65.00105

1.7 1.507111 17.71164 9.952248 146.0455

2.1 0.9776169 6.682181 13.02368 286.1895

2.4 0.753041 3.398202 14.67395 416.1977

2.8 0.5675229 1.525924 15.22652 557.1121

https://doi.org/10.1371/journal.pone.0237462.t001

Table 2. Descriptive measures of TI-HTW distribution for θ = 0.5, γ = 1 and different values of α.

α Mean Variance Skewness Kurtosis

0.7 8.682646 308.9903 2.883661 11.42845

1.1 7.7619 232.2335 3.294275 14.82279

1.5 6.040198 150.1885 4.104262 22.65465

2.5 3.181183 40.31138 7.186336 72.47317

4.5 1.924026 7.084400 11.84863 248.0023

4.5 1.664518 3.115981 12.95318 363.5577

https://doi.org/10.1371/journal.pone.0237462.t002
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Fig 3. Plots for the mean, variance, skewness and kurtosis of the TI-HTW distribution.

https://doi.org/10.1371/journal.pone.0237462.g003
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family with pdf (5). The corresponding log-likelihood function to (5) is

‘ðYÞ ¼ 2n log yþ
Pn

i¼1
log f ðxi; xÞ þ ðy � 1Þ

Pn
i¼1

log f1 � Fðxi; xÞg

� ðyþ 1Þ
Pn

i¼1
log f1 � ð1 � yÞFðx; xÞg;

ð17Þ

where Θ = (α, γ, θ)T. The computer software such as ASS (PROC UNMIXED) can be used to

maximize the log-likelihood function directly or via differentiating Eq (17). The partial

Fig 4. Plots for the mean, variance, skewness and kurtosis of the TI-HTW distribution.

https://doi.org/10.1371/journal.pone.0237462.g004
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derivatives of Eq (17) are given by

@‘ðYÞ

@y
¼

2n
y
þ
Xn

i¼1
logf1 � F xi; xð Þg �

Xn

i¼1
logf1 � 1 � yð ÞF xi; xð Þg

� yþ 1ð Þ
Xn

i¼1

Fðxi; xÞ
f1 � ð1 � yÞFðxi; xÞg

ð18Þ

and

@‘ðYÞ

@x
¼
Xn

i¼1

@f ðxi; xÞ=@x
@f ðxi; xÞ

� y � 1ð Þ
Xn

i¼1

@Fðxi; xÞ=@x
f1 � Fðxi; xÞg

þ yþ 1ð Þ
Xn

i¼1

ð1 � yÞ@Fðxi; xÞ=@x
f1 � ð1 � yÞFðxi; xÞg

:

ð19Þ

Equating the nonlinear system of equations
@‘ðYÞ

@y
and

@‘ðYÞ

@x
to zero, and simultaneously solving

these expressions, yields the MLEs ŷ and x̂, respectively.

Monte Carlo simulation study

In this sub-section, we investigate the performance of the MLEs. For the simulation purposes,

the special sub-model TI-HTW distribution is considered. The simulation process is con-

ducted based on the following steps:

• N = 1000 samples of size n = 25, 50, 75, . . ., 1000 are generated from TI-HTW model with

parameters α, γ and θ. The inversion procedure of generating random number is used.

• Compute MLEs of (α, γ, θ).

• Compute biases and mean square error (MSE) of the model parameters.

• Coverage probabilities (CPs) are calculated at the 95% confidence interval (C.I).

• Steps (i)-(iii) are repeated for n.

The simulation results are provided in Tables 3 and 4. The results in these tables indicate

that the behavior of the estimates of the TI-HTW parameters are good, showing small bias and

creditable MSEs in all studied cases; that is, these estimates are quite reliable and very close to

the actual values. Further, the biases are approaching to 0 as the sample size increases, proving

that the estimates are behaved asymptotically unbiased estimators. Moreover, the MSEs

decrease as the sample size increases, showing that these estimators are consistent for the

TI-HTW parameters.

Actuarial measures

In actuarial sciences and management institutions, one of the key tasks of the actuaries is to

evaluate the exposure of market risk in a portfolio of instruments. In this section, we calculate

some important risk measures including value at risk (VaR) and tail value at risk (TVaR) for

the TI-HTW, which play a crucial role in portfolio optimization under uncertainty.

PLOS ONE Type-I heavy tailed family

PLOS ONE | https://doi.org/10.1371/journal.pone.0237462 August 27, 2020 10 / 24

https://doi.org/10.1371/journal.pone.0237462


Table 3. Simulation results for different combination of the parameters of TI-HTW distribution.

Set 1: α = 0.8, θ = 0.5, γ = 1,

n Par MLE Biases MSE C.I CPs

25 α 0.9058 0.1058 0.0464 (0.4925 1.3190) 0.961

θ 0.7020 0.2020 0.2934 (-1.2089 2.6131) 0.847

γ 1.3591 0.3591 2.4261 (-2.9500 5.6683) 0.979

100 α 0.8440 0.0440 0.0154 (0.6061 1.0818) 0.902

θ 0.6534 0.1534 0.2310 (-0.4883 1.7952) 0.866

γ 1.2041 0.2041 1.1954 (-1.1441 3.5524) 0.957

300 α 0.8229 0.0229 0.0079 (0.6612 0.9846) 0.859

θ 0.5894 0.0894 0.1275 (-0.0456 1.2244) 0.882

γ 1.1141 0.1141 0.5440 (-0.1608 2.3891) 0.944

600 α 0.8211 0.0211 0.0056 (0.7001 0.9420) 0.872

θ 0.5732 0.0732 0.0658 (0.1417 1.0047) 0.912

γ 1.0071 0.0071 0.2362 (0.1502 1.8641) 0.957

900 α 0.8123 0.0123 0.0037 (0.7083 0.9163) 0.885

θ 0.5465 0.0465 0.0438 (0.2002 0.8929) 0.881

γ 1.0165 0.0165 0.1641 (0.2694 1.7636) 0.958

1000 α 0.8172 0.0172 0.0043 (0.7142 0.9201) 0.897

θ 0.5364 0.0664 0.0528 (0.2069 0.9259) 0.892

γ 0.9938 -0.0161 0.1706 (0.2754 1.6922) 0.940

https://doi.org/10.1371/journal.pone.0237462.t003

Table 4. Simulation results for different combination of the parameters of TI-HTW distribution.

Set 1: α = 1.4, θ = 0.9, γ = 1,

n Par MLE Biases MSE C.I CPs

25 α 1.5213 0.1213 0.0912 (0.8441 2.1986) 0.961

θ 1.1296 0.3296 0.6663 (-2.1895 4.4488) 0.921

γ 1.1683 0.1683 1.3508 (2.2242 4.5610) 0.915

100 α 1.4384 0.0384 0.0378 (1.0422 1.8347) 0.896

θ 1.0504 0.2504 0.5678 (1.0994 3.2004) 0.905

γ 1.1733 0.1733 1.0224 (-1.0550 3.4017) 0.907

300 α 1.4253 0.0253 0.0214 (1.1451 1.7054) 0.849

θ 0.9819 0.1819 0.3795 (-0.3003 2.2641) 0.894

γ 1.0921 0.0921 0.5835 (-0.3796 2.5639) 0.890

600 α 1.4115 0.0115 0.0137 (1.1836 1.6393) 0.856

θ 0.9607 0.0907 0.1747 (0.1257 1.6557) 0.903

γ 1.0877 0.0877 0.3805 (-0.0901 2.2657) 0.915

900 α 1.4011 0.0011 0.0116 (1.2065 1.5957) 0.854

θ 0.8458 0.0458 0.1028 (0.2963 1.3953) 0.883

γ 1.1093 0.0843 0.3304 (0.0925 2.1262) 0.916

1000 α 1.4063 0.0006 0.0103 (1.2203 1.5923) 0.851

θ 0.8771 0.0421 0.0870 (0.3210 1.3931) 0.896

γ 1.0746 0.0746 0.2966 (0.12839 2.0208) 0.906

https://doi.org/10.1371/journal.pone.0237462.t004
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VaR measure

Let X follow the TI-HTW model with pdf (7), then the VaR of X denoted by VaRq (q is a speci-

fied level of significance) is given by

VaRq ¼ xq ¼ �
1

g
log 1 �

ð1 � qÞ
1=y � 1

ð1 � yÞð1 � qÞ
1=y � 1

 !( ) !1=a

: ð20Þ

TVaR measure

The TVaR is one of the most important risk measures that quantifies the expected loss pro-

vided that an event outside a specified level of probability has occurred. Let X has the TI-HTW

model, then the TVaR of X is computed as

TVaRðXÞ ¼
Z 1

VaRq

xgðx; y; xÞdx;

TVaR Xð Þ ¼
y

2

1 � q

Z1

VaRq

x
f ðx; xÞf1 � Fðx; xÞgy� 1

f1 � ð1 � yÞFðx; xÞgyþ1
dx: ð21Þ

Inserting (12) and (14) in (21), we get

TVaR Xð Þ ¼
Ai;j;y

1 � q

Z1

VaRq

xf ðx; xÞðFðx; xÞÞiþjdx; ð22Þ

where Ai;j;y ¼ y
2
P1

i¼0

Py� 1

j¼0

y � 1

j

 !
iþ y

y

 !

ð� 1Þ
j
ð1 � yÞ

i
:

On solving we get

TVaR Xð Þ ¼ Bi;j;k;yG
1

a
þ 1; g kþ 1ð ÞðVaRqÞ

a

� �

; ð23Þ

where Bi;j;k;y ¼ y
2
P1

i¼0

Py� 1

j¼0

Piþj

k¼0

ð� 1Þ
jþk
ð1 � yÞ

i y � 1

j

 !
iþ y

y

 !
iþ j

k

 !

:

Numerical study of the risk measures

In the current sub-section, we conduct numerical study of the VaR and TVaR measures for

the TI-HTW distribution. The VaR and TVaR of the TI-HTW distribution are compared with

the Weibull distribution as a nested model and the exponentiated Weibull (EW) distribution

[24] as a non-nested model, which is one the most prominent generalization of the Weibull

model. The numerical results are obtained as follows.

1. We generated a sample of size n = 100 from the Weibull, EW and TI-HTW distributions

and their parameters have been estimated via ML method.

2. 1000 repetitions are made to calculate the VaR and TVaR for these distributions.

3. The numerical results of the risk measures are provided in Tables 5 and 6. Further, these

results are displayed graphically in Figs 5 and 6, respectively.
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The simulation is performed for the Weibull, EW and proposed models for selected values

of their parameters. A model with higher values for VaR and TVaR is said to have a heavier

tail. The simulated results provided in Tables 5 and 6 shows that the proposed TI-HTW model

has higher values of the risk measures than the Weibull and EW distributions. Figs 5 and 6

also show that the proposed model has a heavier tail than the Weibull and EW distributions.

Comparative study

This section, we consider three heavy-tailed data from applied areas such as medical, engineer-

ing and financial sciences to study the flexibility of the proposed family. The key motivations

of considering the heavy-tailed distributions are that they adequately provide the best fit to

the heavy-tailed data. For each data set, the TI-HTW distribution is compared with different

well-known distributions and we observed that the proposed distribution outclass other

competitors.

To decide about the goodness of fit among the applied distributions, we consider certain

analytical measures. In this regard, we consider two discrimination measures such as the

Akaike information criterion (AIC) and Bayesian information criterion (BIC); see [25].

In addition to the discrimination measures, other goodness of fit measures such as Cramer-

Von-Mises (CM) test statistic, Anderson Darling (AD) test statistic and Kolmogorov–Smirnov

(KS) test along with its p-values are also considered. The formulae for these measures can be

found in [26].

Table 5. Simulation results for VaR and TVaR of the Weibull, EW and TI-HLW distributions.

Dist. Parameters Level of significance VaR TVaR

Weibull 0.700 1.5601 2.5514

0.750 1.7546 2.7307

â ¼ 1:2 0.800 1.9870 2.9467

ĝ ¼ 0:7 0.850 2.2788 3.2200

0.900 2.6780 3.5971

0.950 3.3346 4.2231

0.975 3.9662 4.8302

0.999 6.6897 7.4798

EW 0.700 1.8921 3.3055

0.750 2.1533 3.5628

â ¼ 1:2 0.800 2.4710 3.8769

ŷ ¼ 0:9 0.850 2.8784 4.2809

ĝ ¼ 0:7 0.900 3.4496 4.8488

0.950 4.4214 5.8174

0.975 5.3900 6.7845

0.999 9.8769 11.2700

TI-HTW 0.700 2.9383 5.0410

0.750 3.3356 5.4229

0.800 3.8153 5.8869

â ¼ 1:2 0.850 4.4255 6.4804

ŷ ¼ 0:9 0.900 5.2735 7.3096

ĝ ¼ 0:7 0.950 6.7000 8.7122

0.975 8.1061 10.1003

0.999 14.4855 16.4291

https://doi.org/10.1371/journal.pone.0237462.t005
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A distribution with lower values of these analytical measures is considered to be a good can-

didate model among the applied distributions for the underlying data sets. By considering

these statistical tools, we observed that the TI-HTW model is the best competitor compared to

other models because the values of all selected criteria are significantly small for it.

A real life application from bio-medical sciences

The first data set is reported in [27], and it refers to the remission times of bladder cancer

patients. For the first data set, the TI-HTW distribution is compared with the Weibull, MOW

[28], MW [29], TW [30] and APTW [31] distributions. A number of authors have been used

these distributions to model bio-medical data sets. For example, [32] used the Weibull and

MOW distributions to model the survival times of the cancer patients. These data were ana-

lyzed by [33] and [34].

The maximum likelihood estimates of the models for cancer data are presented in Table 7.

The analytical measures of the competitive models are provided in Table 8. Form Table 8, it is

clear that the proposed distribution has lower values of these measures than the other models.

The fitted cdf and Kaplan-Meier survival plots of the proposed model for cancer data are plot-

ted in Fig 7. The PP plot of the TI-HTW model and box plot of the cancer data are sketched in

Fig 8. From Fig 7, we can see that the proposed model fits the estimated cdf and Kaplan Meier

survival plots very closely. From Fig 8, we can easily detect that the data set is skewed to the

right (see box plot) and proposed model is closely followed the PP-plot.

Table 6. Simulation results for VaR and TVaR of the fWeibull, EW and TI-HLW distributions.

Dist. Parameters Level of significance VaR TVaR

Weibull 0.700 0.9927 1.6235

0.750 1.1165 1.7377

â ¼ 0:9 0.800 1.2644 1.8751

ĝ ¼ 1:2 0.850 1.4501 2.0490

0.900 1.7041 2.2889

0.950 2.1219 2.6873

0.975 2.5238 3.0736

0.999 4.2569 4.7597

EW 0.700 0.9062 1.7096

0.750 1.0514 1.8562

â ¼ 0:9 0.800 1.2297 2.0359

ŷ ¼ 1:5 0.850 1.4605 2.2681

ĝ ¼ 1:2 0.900 1.7870 2.5958

0.950 2.3469 3.1569

0.975 2.9080 3.7186

0.999 5.5179 6.3291

TI-HTW 0.700 1.1235 2.1527

0.750 1.3052 2.3409

0.800 1.5298 2.5728

â ¼ 0:9 0.850 1.8223 2.8742

ŷ ¼ 1:5 0.900 2.2398 3.3030

ĝ ¼ 1:2 0.950 2.9657 4.0460

0.975 3.7049 4.8001

0.999 7.2677 8.4141

https://doi.org/10.1371/journal.pone.0237462.t006
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A real life application from reliability engineering

Here, we investigate the TI-HTW distribution via analyzing a heavy-tailed reliability engineer-

ing data which are reported in [35], and they refer to failure time of coating machine. To show

Fig 5. Graphical display of the results provided in Table 5.

https://doi.org/10.1371/journal.pone.0237462.g005

Fig 6. Graphical display of the results provided in Table 6.

https://doi.org/10.1371/journal.pone.0237462.g006
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the potentiality of the proposed method, the TI-HTW distribution is applied in comparison

with the Ex-APTW, Ku-W and BW distributions. The Ku-W [36]and Ex-APTW [37] have

been used to model failure times data. Al-Malki [38] showed that the BW distribution is one of

the most prominent extensions of the Weibull distribution that can be used quite effectively in

failure rate time data.

Table 7. Estimated values with standard error (in parenthesis) of the competitive models for data 1.

Dist. α γ σ λ α1 θ

TI-HTW 1.4273 (0.1774) 0.028 (0.0112) 2.0711 (0.9573)

Weibull 1.047 (0.0675) 0.093 (0.0190)

APTW 0.014 (0.0865) 0.016 (0.0064) 0.014 (0.0216)

MOW 1.268 (0.1308) 0.877 (0.5205) 11.829 (11.2869)

TW 1.133 (0.0753) 0.047 (0.0113) 0.744 (0.2021)

MW 1.007 (0.0313) 0.951 (4.2501) 0.863 (4.2551)

https://doi.org/10.1371/journal.pone.0237462.t007

Table 8. Discrimination and goodness of fit measures of the TI-HTW and other competitive models for data 1.

Dist. AIC BIC CM AD KS p-value

TI-HTW 825.479 834.035 0.019 0.130 0.035 0.997

Weibull 832.173 837.877 0.131 0.786 0.069 0.558

APTW 826.378 836.934 0.042 0.255 0.045 0.949

MOW 834.988 843.544 0.150 0.884 0.075 0.451

TW 829.916 838.472 0.086 0.516 0.058 0.768

MW 833.969 842.525 0.133 0.797 0.073 0.494

https://doi.org/10.1371/journal.pone.0237462.t008

Fig 7. Estimated cdf and Kaplan Meier survival plots of the TI-HTW distribution for data 1.

https://doi.org/10.1371/journal.pone.0237462.g007
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Corresponding to data set 2, the values of the model parameters are reported in Table 9.

The analytical measures of the proposed and other competitive models are provided in

Table 10. The estimated cdf and Kaplan-Meier survival plots are sketched in Fig 9, which show

that proposed distribution fits the estimated cdf and Kaplan-Meier survival plots very closely.

The PP and box plots are sketched in Fig 10.

A real life application from insurance sciences

The third data set from the insurance sciences and represents the vehicle insurance losses

which are available at: http://www.businessandeconomics.mq.edu.au. For the third data, the

TI-HTW distribution is compared with the Weibull, Lomax and Burr-XII distributions which

Fig 8. PP plot of the TI-HTW distribution and the box plot for data 1.

https://doi.org/10.1371/journal.pone.0237462.g008

Table 9. Estimated values of the model parameters with standard error (in parenthesis) of the fitted models for data 2.

Dist. α γ θ α1 a b

TI-HTW 0.525 (0.0746) 0.843 (0.5898) 0.149 (0.1097)

Ex-APTW 0.510 (0.5094) 0.172 (0.6258) 5.425 (7.0766)

Ku-W 0.620 (0.3093) 0.501 (1.0970) 0.702 (3.2715) 0.118 (2.0964)

BW 0.478 (0.2696) 0.502 (0.5522) 2.797 (3.1595) 0.344 (0.6646)

https://doi.org/10.1371/journal.pone.0237462.t009

Table 10. Analytical measures of of the TI-HTW and competitive models for data 2.

Dist. AIC BIC CM AD KS p-value

TI-HTW 333.949 337.050 0.060 0.336 0.124 0.756

Ex-APTW 335.071 339.172 0.093 0.491 0.142 0.598

Ku-W 337.750 343.220 0.091 0.546 0.146 0.488

BW 335.457 340.926 NaN NaN 0.144 0.603

https://doi.org/10.1371/journal.pone.0237462.t010
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are widely used in modeling financial and financial risk management problems. The Weibull

distribution is one of the best competitors for modeling actuarial data up to a specified thresh-

old; see [39]. Further, the Lomax [40] and Burr [41] distributions have been widely used in

data modeling with tail beyond the threshold.

Fig 9. Estimated cdf and Kaplan Meier survival plots of the TI-HTW distribution for data 2.

https://doi.org/10.1371/journal.pone.0237462.g009

Fig 10. PP plot of the TI-HTW distribution and the box plot for data 2.

https://doi.org/10.1371/journal.pone.0237462.g010
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The parameter values are reported in Table 11 for the insurance data, and the analytical

measures are presented in Table 12. The estimated cdf and Kaplan-Meier survival plots are

sketched in Fig 11. The PP and box plots are sketched in Fig 12. From Figs 11 and 12, it is clear

that the proposed model fits the estimated cdf, Kaplan-Meier survival and PP plots very well.

Baysesian analysis

We adopt a Bayesian formulation for our proposed model and drive posterior inference using

Markov chain Monte Carlo (MCMC) algorithm. To generate MCMC samples from posterior

Table 11. Maximum likelihood estimates of the fitted models with standard error (in parenthesis) for data 3.

Dist. â ĝ ŷ ĉ k̂

TI-HTW 0.955 (0.1304) 0.012 (0.0145) 0.483 (0.2849)

Weibull 1.019 (0.9445) 0.003 (1.6540)

Lomax 0.495 (0.4334) 30.008 (9.6185)

Burr 0.049 (0.1134) 4.427 (2.2671)

https://doi.org/10.1371/journal.pone.0237462.t011

Table 12. Analytical measures of the TI-HTW and other competing models for data 3.

Dist. AIC BIC CM AD KS p-value

TI-HTW 429.743 434.140 0.021 0.131 0.086 0.951

Weibull 432.353 439.256 0.054 0.447 0.185 0.597

Lomax 460.191 463.021 0.083 0.520 0.207 0.108

Burr 503.477 506.383 0.228 1.362 0.416 0.208

https://doi.org/10.1371/journal.pone.0237462.t012

Fig 11. Estimated cdf and Kaplan Meier survival plots of the TI-HTW distribution for data 3.

https://doi.org/10.1371/journal.pone.0237462.g011
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distribution of the parameters of our joint model for Bayesian inference, we have used Win-

BUGS software [42]. Note that to specify a likelihood contribution for a distribution that is not

listed in WinBUGS, we have used the “zeros trick” [43]. In particular, a Poisson (λ) observa-

tion of zero has likelihood exp(−λ), so if our observed data is set of 0’s, and λ[i] is set to

−log(L[i]), we obtain the correct likelihood contribution. Since, λ[i] should always be>0 as

it is a Poisson mean, we may need to add suitable constant to ensure that is positive. This is

equivalent to multiplying each likelihood term by e−c. This process does not influence the like-

lihood since it is equivalent to multiplying the resulting posterior distribution by a constant

term equal to e−nc. Thus, the likelihood takes the form

f ðtjyÞ ¼
Yn

i¼1

e� ð� ‘iþCÞð� ‘i þ CÞ0

0!
¼
Yn

i¼1

fpð0; � li þ CÞ: ð24Þ

The choice of a good prior distribution plays a key role in Bayesian inference. In practice, no

information is precise enough to lead to the exact determination of the prior distribution.

However, non-informative prior that allows the data to dominate to determine the posterior

distribution are suggested for the Bayes-MCMC methods. We consider standard distribution

for priors, such as gamma priors for α, γ and θ, as these are positive-valued random variables.

Note that gamma priors are widely used in Bayesian literature for positive-valued random vari-

ables. For assessing convergence, a simple (informal) method of assessing chain convergence

is to look at some graphical diagnostics such as trace plot, autocorrelation plot and density

plots to determine the mixing of chains. If the chains show a reasonable degree of randomness

between iterations, it signifies that the Markov chain has found an area of high likelihood and

is integrating over the target density and hence indicating that it has converged. Moreover, we

also use the Gelman-Rubin statistic R, another popular technique for diagnosing convergence.

It is based on comparison of with in chain and between chain variances. Values of R substan-

tially above 1 indicate lack of convergence. However, some authors suggests that R<1.2 is

Fig 12. PP plot of the TI-HTW distribution and the box plot for data 3.

https://doi.org/10.1371/journal.pone.0237462.g012
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acceptable. To examine the empirical performance of the proposed methodology for model

adequacy, deviance information criterion (DIC) is the most widely used criterion for model

comparison in Bayesian analysis [44] and [45]. It is derived based on two principles: (i) good-

ness of fit measured via the deviance statistic, and (ii) model complexity measured by an esti-

mate of the effective number of parameters, denoted by pD. When comparing two or more

models, it is suggested that DICM − DICmin> 10 or if the difference lies between 5 and 10, then

there is considerably less support for Model M compared to the model with minimum DIC.

However, DICM − DICmin< 5 shows that no support for a model with the lowest DIC and may

lead to misleading inference.

A real life application to AIDS data

[46] described a study involving 467 human immunodeficiency virus (HIV) infected patients

who had failed or were intolerant to zidovudine therapy (ZT). The main objective was to com-

pare two antiretroviral drugs to prevent the progression of HIV infections: didanosine (ddI)

and zalcitabine (ddC). To analyze the data, We construct two Morkov chains each of 100,000

iteration to approximate posterior density, each following a 10,000 iteration as a burn-in

period. we consider here only the TI-HTW and Weibull distributions to model the time-to-

event process. For sake of simplicity, we summarize only DIC values and distributional param-

eters values in Table 13.

DIC values of the TI-HTW distribution and Weibull fits are 7314.9 and 7328.83, respec-

tively, suggesting that the TI-HTW distribution has a superior fit over the Weibull distribution.

Conclusions

The importance of the extended distributions first realized in financial sciences and later in

other applied fields such as engineering and medical sciences. To cater data in those fields, a

number of methods have been introduced. In this context, we have studied a versatile three

parameters heavy-tailed model, called type-1 heavy tailed Weibull distribution as a special case

of a new approach allowing closed form expressions for some basic mathematical and other

related properties. The proposed class is called type-I heavy-tailed family. The usefulness of the

proposed family of heavy-tailed distributions has been proved via three data sets from medical,

engineering and financial sciences and the model performs reasonably good than the well-

known competing heavy-tailed distributions. The developed family in this work is a promising

method for modeling data in the distribution theory, may be useful for the researchers who

deal with such data sets. Thus, the new model can be served as a good competitor alternative

to other existing models.

Future work includes (i) bivariate extension of the actuarial measures and the Monte Carlo

simulation study of these measures, (ii) modeling heavy-tailed data with bivariate extension,

(iii) regression problems with covariates and (iv) parameter reduction.

Table 13. Bayesian analysis of the TI-HTW and Weibull models.

Parameter TI-HTW PH (DIC = 7314.9) Weibull PH (DIC = 7314.9)

Posterior Median Standard Deviation 95% Credible Interval Posterior Median Standard Deviation 95% Credible Interval

α 0.003 0.004 0.002, 0.007 0.002 0.001 0.003, 0.005

γ 1.158 0.143 1.116, 1.655 1.492 0.099 1.305, 1.694

θ 1.902 0.399 0.774, 2.484

https://doi.org/10.1371/journal.pone.0237462.t013
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