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Abstract

Bacillus anthracis, the bacteria that causes anthrax, a disease that primarily affects herbivo-

rous animals, is a soil borne endospore-forming microbe. Environmental distribution of via-

ble spores determines risky landscapes for herbivore exposure and subsequent anthrax

outbreaks. Spore survival and longevity depends on suitable conditions in its environment.

Anthrax is endemic in Queen Elizabeth Protected Area in western Uganda. Periodic histori-

cal outbreaks with significant wildlife losses date to 1950s, but B. anthracis ecological niche

in the ecosystem is poorly understood. This study used the Maximum Entropy modeling

algorithm method to predict suitable niche and environmental conditions that may support

anthrax distribution and spore survival. Model inputs comprised 471 presence-only anthrax

occurrence data from park management records of 1956–2010, and 11 predictor variables

derived from the World Climatic and Africa Soil Grids online resources, selected considering

the ecology of anthrax. The findings revealed predicted suitable niche favoring survival and

distribution of anthrax spores as a narrow-restricted corridor within the study area, defined

by hot-dry climatic conditions with alkaline soils rich in potassium and calcium. A mean test

AUC of 0.94 and predicted probability of 0.93 for anthrax presence were registered. The five

most important predictor variables that accounted for 93.8% of model variability were annual

precipitation (70.1%), exchangeable potassium (12.6%), annual mean temperature (4.3%),

soil pH (3.7%) and calcium (3.1%). The predicted suitable soil properties likely originate

from existing sedimentary calcareous gypsum rocks. This has implications for long-term

presence of B. anthracis spores and might explain the long history of anthrax experienced in

the area. However, occurrence of suitable niche as a restricted hot zone offers opportunities
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for targeted anthrax surveillance, response and establishment of monitoring strategies in

QEPA.

Introduction

Bacillus anthracis, the bacteria that causes anthrax, a disease that primarily affects herbivorous

animals, is a soil borne endospore-forming microbe [1–3]. B. anthracis infectious cycles com-

prise: - 1) an infective vegetative form that circulates inside a susceptible host in which the bac-

teria elicits the formation of toxic complexes that cause host death; and 2) a dormant spore

form that circulates in the soil, but sporulates from vegetative bacteria shed in haemorrhagic

exudates upon host death [2–4]. Soils contaminated with terminally haemorrhaged blood and

other body exudates after the death of an infected host are seeded with high levels of B. anthra-
cis spores [5], that have the potential, upon ingestion to establish an animal-soil-animal cycle

[3] that forms a risky interface for susceptible herbivores [6–8]. Distribution of viable B.

anthracis spores in the environment determines exposure risks for grazing herbivores and sub-

sequent anthrax outbreaks [2, 9]. In its sporulated form, B. anthracis spores become dormant

and very resistant to harsh environmental conditions such as heat, dehydration, pH, desicca-

tion, chemicals, irradiation, and this state plays a central role in maintenance of anthrax in the

ecosystem [1, 10, 11]. Viability and longevity of spores in the soil is reported to be influenced

by levels of soil calcium, moisture, and alkalinity; hot-dry weather, mean annual temperatures,

annual precipitation; elevation, and vegetation types [3, 9, 12]. In particular, calcium (Ca2+)

forms an integral component of the core region of bacterial spores where it plays an important

role in stabilizing spores during periods of dormancy and maintains viability of spores in the

soil for extended lengths of time [4]. A common soil-dwelling amoeba, Acanthamoeba castella-
nii, has also been shown to contribute to persistence of B. anthracis spores in natural environ-

ments by enhancing spore germination, multiplication and amplification processes [13].

Globally, it is estimated that 1.1 billion livestock and 1.83 billion people live at a high-risk

interphase with anthrax spores [6]. This risk is higher for grazing herbivores exposed on con-

taminated pasture, soil and water than it is for humans [2, 3, 8, 14].

Knowledge of exposure risks to infectious agents, pathways for their transmission and path-

ogenesis are fundamentals for disease control and prevention [2, 15–17], ecosystem health

management and species conservation in wildlife populations. Anthrax has a long-standing

history in Queen Elizabeth Protected Area (QEPA) in Western Uganda, with a well-established

animal-soil-animal cycle, resulting in sporadic and large-scale periodic outbreaks [18, 19].

Despite this history, environmental drivers potentiating outbreaks in the ecosystem have not

been assessed, and outbreaks continue to cause severe losses of key wildlife species and poise

challenges for conservation, tourism and public health.

Ecological niche models (ENM) are tools that have greatly improved understanding of suit-

able environments that support species survival for ecological studies [20–23], and have been

extensively used for anthrax ecology studies [6, 9, 24, 25]. This study aimed to estimate the

suitable landscape and environmental predictors that support persistent survival of B. anthra-
cis spores in the study area.

Materials and methods

Study area

This study was conducted in Queen Elizabeth Protected Area (QEPA), a mixed savannah-

woodland-forest wildlife ecosystem in South Western Uganda (S1 Fig in Driciru et al [30]).
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The QEPA reserve lies at the floor of the Great East African Rift Valley system, and is closely

surrounded by agricultural land and cattle corridors. The geological formations and associated

volcanicity of the Rift Valley have resulted in alkaline soils rich in volcanic ash with high levels

of phosphorus, and calcium [26]. Climatic conditions seasonally cycle between warm-wet

(March to May and August to November); and hot-dry months (December to February, and

June to July) [27–29]. These soil, climatic and biological conditions have been hypothesized as

conducive for eliciting anthrax outbreaks and sustaining B. anthracis spores in soils of the

study area [30], and influenced selection of predictor variables.

The study extent for modeling encompassed QEPA and the surrounding ecosystem and

was created using the layer features for polygon shapefiles tool in QGIS (Free Software Foun-

dation, Inc., 51 Franklin Street, Boston, USA). Rasterized layers of predictor variables and bias

layer used were projected to a common coordinate system (WGS84), the layers were masked,

clipped to the study area extent using the raster clipper tool and saved in ASCII (.asc) format

for modeling.

Data collection

Response variables. A dataset of 471 geo-referenced presence-only anthrax occurrence

records from both clinical and laboratory confirmed outbreak cases were used. Of these, 188

records were from 13 historical outbreaks that occurred in QEPA, between 1956 to 1979

involving, 601 wildlife mortalities, from hippopotamus (90.1%), Cape buffalo (7.5%); and

Uganda kob, waterbuck, elephant, warthog, and lion (2.4%). The remaining 383 records were

from two recent epidemics that occurred in QEPA between 2004 and 2010 involving 536 wild-

life mortalities, with similar species distribution patterns: hippos (82.8%), cape buffalo (13.8%)

and others (3.8%) [18, 30]. The referenced historical data records were mined from archives

(S1 Fig) of: - 1) telegram communications; 2) diary and journal books of the then wildlife man-

agers/wardens; 3) field epidemiologist’s disease incidence reporting, diagnosis and outbreak

investigation reports; 4) park management quarterly and annual reports; and 5) annual reports

of the Animal Health Research Centre (AHRC), Department of Veterinary Services and Ani-

mal Industry, Entebbe, Uganda [31]. As a standard practice during disease outbreak investiga-

tions, diagnostic samples are often taken from a few affected animals to confirm disease

etiology. Based on the clinical or pathological signs in confirmed or related cases, a case defini-

tion is developed and signs common to all affected animals is then used for enumerating cases

used for epidemic analysis [15, 16]. In this study, historical mortality records considered as

confirmed cases were from outbreaks for which laboratory diagnostic records were available

(S1 Fig), and suspected cases were those that described pathognomonic clinical sign(s) based

on the standard clinical case definition for anthrax in animals [2, 32], such as bloating and ooz-

ing of un-clotted dark coloured blood from natural body orifices. The referenced diagnostic

records used bacteriological staining techniques (S1 Fig) [31] and PCR for more recent out-

breaks [18]. Included case records also contained information on geographic location, animal

species affected and case numbers. For cases with missing coordinates, GPS waypoints were

marked during the study by tracing back location information provided in the original record.

Predictor variables. A total of 44 environmental and bioclimatic predictor variables com-

monly used in ecological and species distribution modeling [25, 33] were considered for pre-

diction of the suitable niche for anthrax in the study area (Table 1). Selection criteria

considered variable properties that influence sporulation, survival, germination, or dissemina-

tion of B. anthracis spores in the soil [2–4, 12]. Bioclimatic variables used were derived from

monthly temperature and rainfall values from the World Climate data (http://worldclim.org/

version2) [20]. This data set contains 19 variables, comprised of 11 temperature (Bio1 –Bio11)
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and 8 precipitation covariates (Bio 12 –Bio 19), (Table 1). Data used are averages for the period

1970–2000 (30 years), and values are measured at a 1 km2 (30 seconds) spatial resolution.

Soil variables were derived from the Africa SoilGrids online resources (ISRIC), predicted

using two point datasets for Africa soil profile datasets and Africa Soil Information Services

(AfSIS) Sentinel Site database (https://www.isric.org/projects/soil-property-maps-africa-

250-m-resolution). Fifteen soil variables selected (Table 2) included soil type, pH, exchange-

able calcium (Ca2+), potassium (K+), sodium (Na+), magnesium (Mg2+); extractable and total

phosphorous (P), nitrogen, and soil organic carbon (SOC) [34]. These data were selected at

soil depths of 0–20 cm and 20–50 cm, where the nutrients are considered available for uptake

by plants and soil micro-organisms; and the data layers used were at a spatial resolution of 250

m. Variables like calcium and pH are known to maintain spore viability in the soil and influ-

ence germination processes [4, 12]. Other variables used included Digital Elevation Model

(DEM), slope, aspect, drainage (distance to small and seasonal rivers), lithology, cloud cover,

landcover types and frequency of fires. A 90-m DEM was obtained from the United States

Geological survey [35]. Drainage was derived by calculating Euclidian distance from rivers;

slope and aspect were derived from the DEM using spatial analysis tools in ArcGIS. The

Lithology layer represents the key geological parent materials [36]. Cloud cover layers used

were derived from MODIS Surface reflectance data computed by Guy Picton Phillips [37].

Land cover and fire frequency layers were provided by Wildlife Conservation Society, Uganda

program and mapped from Lands at imagery [38].

Table 1. Bioclimatic predictor variables used for modeling suitable environmental conditions influencing anthrax

distribution in QEPA.

S/N Variable Variable definition

Temperature variables
1. Bio1 Annual Mean Temperature

2. Bio2 Annual Mean Diurnal Range (Mean of monthly (max temp—min temp)

3. Bio3 Isothermality (BIO2/BIO7) (� 100)

4. Bio4 Temperature Seasonality (standard deviation �100)

5. Bio5 Max Temperature of Warmest Month

6. Bio6 Min Temperature of Coldest Month

7. Bio7 Temperature Annual Range (BIO5-BIO6)

8. Bio8 Mean Temperature of Wettest Quarter

9. Bio9 Mean Temperature of Driest Quarter

10. Bio10 Mean Temperature of Warmest Quarter

11. Bio11 Mean Temperature of Coldest Quarter

Rainfall variables
12. Bio12 Annual Precipitation

13. Bio13 Precipitation of Wettest Month

14. Bio14 Precipitation of Driest Month

15. Bio15 Precipitation Seasonality (Coefficient of Variation)

16. Bio16 Precipitation of Wettest Quarter

17. Bio17 Precipitation of Driest Quarter

18. Bio18 Precipitation of Warmest Quarter

19. Bio19 Precipitation of Coldest Quarter

Source: The bioclimatic data series provides GIS continuous raster surfaces that represent multiple temporal and

spatial resolutions. Climate normal are 30-year monthly averaged temperature and precipitation data between 1971

and 2000 (30 years inclusive); maximum and minimum temperatures for monthly data reflect the monthly means of

daily maximum temperatures and monthly means of daily minimum temperatures [33].

https://doi.org/10.1371/journal.pone.0237223.t001
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Model development

Collinearity is a concern in regression models, as highly correlated predictor variables cannot

independently predict the value of the dependent variable, since they will be explaining the

same variance in the dependent variable, which in turn reduces their statistical significance.

To minimize the effect of multi-collinearity and model over fitting, highly correlated predictor

variables (n = 44) were discriminated using the pair wise Pearson correlation statistics in

ENMTOOLs [24, 39, 40] at cut off (r� 0.75) (S1 Table). At r�0.75, variables were selected for

inclusion for modelling, otherwise dropped (r� 0.75) and only one of the pair included. The

resulting non correlated variables (n = 23) were further discriminated using Maxent model

jackknifing procedures that ranks variables according to their percent contribution towards

model development. A total of 11 predictor variables (Table 3), and 122 anthrax occurrence

localities from all recorded species randomly selected by the model from a total of 471 from all

representative grid cells were used for building the final models. Hippos being the most sus-

ceptible wildlife species that suffer significant mortality due to anthrax at the study area,

contributed > 80% of occurrence localities used for the ENM modelling in this study. To

assess the effect of hippos as a confounding factor in determining suitable anthrax niche, an

independent model was built without hippo, but using 40 occurrence localities from buffalo

only (partitioned 3:1, for model building and calibration).

The proportion of total response records input for Maxent modelling that are modelled

depends on the resolution of predictor variables, in our study, grid cells used had a resolution

Table 2. Soil properties and geo-physical variables used for modeling suitable environmental conditions influencing anthrax distribution in QEPA.

S/N Variable Variable Definition

1. soil_cl Soil types

2. calcium_0_20cm Exchangeable calcium at soil depth of 0_20cm

3. calcium_20_50cm Exchangeable calcium at soil depth of 20_50cm

4. magnesium_0_20cm Exchangeable magnesium at soil depths of 0_20cm

5. nitrogen_0_20cm Total nitrogen measured at soil depth of 0_20cm

6. nitrogen_20_50cm Total nitrogen measured at soil depth of 20_50cm

7. ph_0_5cm Soil pH at depth of 0-5cm

8. ph_5_15cm Soil pH at depth of 5-15cm

9. ph_60_100cm Soil pH at depth of 60-100cm

10. phospho_extract_0_30cm Extractable phosphorus measure at soil depth of 0_30cm

11. phospho_total_0_30cm Total phosphorus measure at soil depth of 0_30cm

12. potasium_0_20cm Exchangeable Potassium measured at soil depth of 0-20cm

13. sodium_0_20cm Exchangeable Sodium measured at soil depth of 0-20cm

14. soil_carbon_0_5cm Soil organic carbon measured at depths of 0_5cm

15. soil_carbon_5_15cm Soil organic carbon measured at depths of 5_15cm

16. Aspect Direction of the slope

17. cloud_max Maximum cloud cover

18. cloud_mean Mean cloud cover

19. DEM Digital Elevation Model (Altitude)

20. dist_rivers_small_seasnl Distance from small and seasonal rivers (joined layer)

21. fires_2004_2017 Fire frequencies per pixel

22. ker_hippo_2006_18 Mean kennel density of hippos (2006–2018)

23. Landcvr Land cover

24. Slope Slope

25. Lithology Parental rock material

https://doi.org/10.1371/journal.pone.0237223.t002
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of one km and 26% of response variables input were used. Maxent assigns all records found in

the same grid cell one value as it requires only one location to infer suitable conditions per cell,

hence the rest of the records are considered duplicates and automatically removed. This is

aimed at minimizing model over fitting due to sampling biases likely to be encountered during

data collection [22], but can potentially underrepresent areas experiencing high disease inci-

dence. We used a bias layer rasterized from spatial records comprising of all occurrence points

to essentially represent areas with comparatively higher incidences.

Occurrence records used were partitioned into a ratio of 3:1, a percentage of 75% (n = 92)

were used for building and calibrating the model, and 25% (n = 30) for testing the predictive

power of the models following Pearson’s guidelines [21, 23, 41].

The maximum entropy (Maxent version 3.4.1) ecological niche modeling algorithm

method was used to predict suitable niche that supports the survival and geographic distribu-

tion of B. anthracis in the study area following guidelines of Phillips et al [21, 22]. Maxent

ENM tools have a tuning method that uses presence-only data and this was appropriate for the

study data type, but other modelling tools like the Logistic Regression model require binary

data containing species presence-absence records as dependent variables [22]. Default auto

features recommended as optimal values by model developers were mostly used to run the

model, but with a beta multiplier of 8, hinge product linear threshold quadratic feature types

and logistic output format. Model fitting was assessed using 100 replicate model runs (boot-

straps), at a default maximum number of 1,000 iterations. A total of 6,795 background and

presence points randomly generated from the covariate space were used to determine the Max-

ent distribution. Maxent utilizes associations between environmental variables and known

species occurrence localities to predict potentially suitable environmental conditions within

which a species can survive [23]. True species distribution is presented as a probability distri-

bution over a set of pixelated sampled sites of the 1.0 km2 grid cells in the study area. The

model output value returns a predicted habitat suitability reported as a logistic score (0–1)

which is dependent on the feature or environmental predictor variables at the site [22, 39].

During each iteration, every variable is omitted in turn or used in isolation or in combination

with all others and a model is built for the corresponding variable. Variable contribution

towards model development was assessed using the percent relative increase in the regularized

training gain, and the importance of every variable towards the predictive power of the model

assessed using Jackknife statistical techniques. Response curves built during the modeling pro-

cess were used to evaluate how varying levels of each environmental variable affected the

Table 3. Final predictor variables used in modeling suitable environmental conditions supporting anthrax distri-

bution and spore survival in QEPA.

S/N Variable Unit of measurement

1. Annual precipitation Millimeters (mm)

2. Precipitation of Coldest Quarter Millimeters (mm)

3. Annual Mean Temperature 0C

4. Exchangeable potassium (0_20cm) cmolc/kg

5. Exchangeable calcium (20_50cm) cmolc/kg

6. Exchangeable Sodium (0_20cm) cmolc/kg

7. Soil pH (5_15cm) NA

8. Soil Organic carbon (5_15cm) g/kg

9. Soil types NA

10. Land cover NA

11. Fire frequencies/burn scars NA

https://doi.org/10.1371/journal.pone.0237223.t003
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ability of the model to predict suitable areas for survival of B. anthracis in the study environ-

ment by measuring the change in the predictive logistic scores.

Model evaluation

Model accuracy and predictive performance was assessed using a threshold-independent eval-

uation technique, derived using the Area Under the Receiver Operating Characteristic Curve

(AUC) statistics and a logistic output format [23, 42]. For presence-only modeling using Max-

ent, the AUC measures the probability that a randomly chosen presence site will be ranked

higher than a randomly chosen background site [22], and this in essence implies a better dis-

criminative power between presence versus absence sites [43]. AUC values range from 0.5 for

models that are no better than random chance to 1.0 for models with perfect predictive ability.

AUC values of 0.6–0.7 are classified as poor, 0.7–0.8 as average, 0.8–0.9 good, and 0.9–1.0 as

excellent [23, 25]. This implies that for AUC values� 0.80, the model has a higher than ran-

dom chance that a randomly selected presence site would contain a higher predictive value

than a randomly selected background site [43].

Ethical statements for the research project

This study forms the second component of a bigger research project on ecology of anthrax at

the study site. Research approvals for the bigger project, as outlined in [30], were obtained

from Uganda National Council for Science and Technology (UNCST) (Ref: NS 418); and

Uganda Wildlife Authority (UWA) (Ref: UWA/TDO/33/02) for research in Protected Areas

involving wildlife. Ethical approvals, research protocols, tools and bio-safety considerations

that have been used for other components of the research project were reviewed and approved

by two Institutional Review Boards (IRB) and Research Ethics Committees from College of

Health Sciences, School of Medicine (#REC REF 2013–084); and College of Veterinary Medi-

cine, Animal Resources and Biosecurity (COVAB), School of Veterinary Medicine (VAB/

BRC/14/101) of Makerere University, Kampala, Uganda.

Results

Model performance

Eleven (n = 11) environmental predictor variables screened from a total of 44 (Table 3) were

determined to be non-correlated (r� 0.75) and of good fit, these were used to develop the

final Maxent species survival and distribution model for B. anthracis in QEPA. The mean test

AUC score was 0.936±0.015 (95% Confidence Interval—CI), and training AUC was 0.94

±0.008 for the 100 replicate models run (Fig 1). A mean test omission rate of 5.2% and training

omission rate of 8.9% were achieved, implying that 94.8% of test points used for validating the

model were correctly predicted. The AUC values were significantly (p< 0.0001) higher than

Maxent’s random prediction baseline value of 0.5 for models that are no better than random

and therefore demonstrate good model accuracy. This implies performance of the model on

validation (test) data (n = 30) for accurately predicting presence locations was excellent.

Variable contribution. Of the 11 environmental predictor variables modeled, five con-

tributed most towards building the B. anthracis species survival model for QEPA. Of these,

annual precipitation (bio12_cl) made the greatest relative percent contribution (70.1%) fol-

lowed by exchangeable potassium ions measured at soil depth of 0-20cm (12.6%), annual

mean temperature (bio1_cl), 4.3%, soil pH at 5-15cm (3.7%), and exchangeable calcium at 20-

50cm (3.1%) (Table 4).
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Jackknife tests helped to assess which particular variables were most important in the

model, and results show that omitting each of the above five variables in turn or using each in

isolation during model development and validation significantly affected the regularized train-

ing gain, AUC and test gain of the model (Figs 2–4). Annual precipitation was the most impor-

tant variable (AUC 0.93) for the B. anthracis species survival model built for QEPA (Table 4).

When used in isolation, this variable significantly increased both the test and regularized train-

ing gains for the model and omitting it significantly decreased the gain (Figs 2–4). This sug-

gests that the variable contained the most useful information which was not present in the

other variables. The second important variable that registered a good jackknife of test AUC

score was soil pH (0.81), followed by calcium (0.79), annual mean temperature (0.78) and

potassium (0.76).

Fig 1. Mean AUC for 100 model replicate runs for predicting occurrence of B. anthracis at QEPA. AUC stands for

“Area under the Receiver Operating Characteristic (ROC) Curve”. Specificity is defined using predicted area, rather

than commission.

https://doi.org/10.1371/journal.pone.0237223.g001

Table 4. Values measuring importance of variables in contributing to development and predictive power of the Maxent model for predicting suitable conditions

for B. anthracis survival in QEPA.

S/N Variable ID Variable definition Percent (%)

contribution

Permutation

importance

Jacknife AUC

Score

Predicted suitability

score

1. Bio12_cl Annual precipitation 70.1 83.1 0.93 0.90

2. Potassium_0_20cm Exchangeable potassium at 0-20cm soil

depth

12.6 1.9 0.76 0.95

3. Bio1_cl Annual Mean Temperature 4.3 11.4 0.78 0.67

4. pH_5_15cm Soil pH at 5-15cm soil depth 3.7 0.2 0.81 0.90

5. Calcium 20_50cm Exchangeable calcium at 20–50cm 3.1 1.0 0.79 0.91

6. Landcvr Land cover 2.0 0.6 0.72 NA

8. Bio19_cl Precipitation of Coldest Quarter 1.3 0.4 0.87 0.61

7. Fires_2004_2017 Fire frequencies/burn scars 1.3 0.4 0.72 0.80

9. Soil_cl Soil types 1.2 0.7 0.76 NA

10. Soil_carbon_5_15cm Organic carbon at 5_15cm depth 0.2 0.3 0.72 0.70

11. sodium_0_20cm Exchangeable Sodium at 0-20cm 0.1 0 0.79 0.60

AUC thresholds of 0.6–0.7 are classified as poor, 0.7–0.8 as average, 0.8–0.9 good, 0.9–1.0 as excellent [23, 25]. The jackknife test AUC and suitability scores assess

individual variable importance to the prediction and are measured for the individual variables in isolation of the others.

https://doi.org/10.1371/journal.pone.0237223.t004
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Predicted habitat suitability for B. anthracis spore survival

The highest overall predicted probability score for anthrax occurrence at the study area was

0.927 (92.7%), range 0.695–0.927 (69.5%– 92.7%), and non-suitable sites had a score below

23.2% (Fig 5). Spatially, the potential suitable habitat for B. anthracis occurrence covered a nar-

row corridor bearing a north-east to south-east ward direction, spanning from just above Lake

George downwards to L. Edward, moving along shorelines of key water bodies and mostly

covering areas within the National park. The open savannah plains of Kasenyi, northwest of

Kazinga channel up to Katwe bay were most suitable for spore survival and anthrax occur-

rence. The southern parts of the study area in Ishasha, the massive volcanic explosion craters

northeast of Katwe, the Immaramagambo forest and areas falling far off the park boundary

were predicted least suitable for survival of anthrax spores (Fig 5).

A model built using buffalo occurrence localities without hippos assessed the confounding

effect of hippos in influencing the suitable area for anthrax distribution at the study area, the

results were not significantly different (S2 Fig) from the main model that was built using

Fig 2. Jacknife test assessing variable importance using regularized training gain for building the B. anthracis species survival model. Variable of greatest

importance for building the model was bio12_cl. When used in isolation, it contributed the highest gain (1.2) and when omitted, decreased the gain the most.

https://doi.org/10.1371/journal.pone.0237223.g002
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occurrence localities inclusive of hippos (Fig 5). The narrow southwest-northeast corridor

spanning from north of L. Edward to north of L. George and the associated shorelines

remained outstanding potential hot zones for persistence of anthrax in the study ecosystem.

Marginal response curves helped to evaluate how the predicted probability (habitat suitabil-

ity) for presence of anthrax changed as each environmental variable was varied, keeping all

other environmental variables at their average sample value.

Changing levels of the 5 most important variables to their optimal values significantly

improved the marginal response and predictive performance of the model to predict presence

of anthrax. Scores for the predicted probability of suitable conditions significantly improved

with increasing levels of potassium (0.83 ± 0.03 Std), calcium (0.74 ± 0.08 Std), and pH

(0.59 ± 0.05 Std) (Figs 6 & 7). Inverse levels of these variables resulted in lower marginal

response and reduced predictive performance for the model. For annual precipitation, the

probability scores were highest (0.85 ±0.03 Std) at the lowest levels of precipitation (� 825

mm) and drastically dropped with increased precipitation levels exceeding 1,000 mm (Fig 6).

Response curves for models built using each corresponding variable in isolation consistently

Fig 3. Jacknife test for assessing variable importance using test gain for validating the B. anthracis species survival model. Variable of greatest importance for

validating the B. anthracis survival model was bio12_cl. When used in isolation, it contributed the highest gain (1.5) when omitted, decreased the gain the most.

https://doi.org/10.1371/journal.pone.0237223.g003
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showed similar trends like those for marginal curves but yielded much higher suitability

scores, ranging from 0.95 for potassium; 0.91 for calcium; 0.90 for pH and precipitation; and

0.67 for mean annual temperature (Table 4 & Fig 6).

Optimal values for variables predicting suitability were: potassium�5.044 cmolc/kg; calcium

�25.9 cmolc/kg; pH� 7.4; rainfall� 852mm; and temperature�23.8˚C respectively (Table 5).

The restricted suitable niche favoring survival of anthrax spores predicted in Fig 5 is defined

by drier parts of QEPA receiving the least amount of annual precipitation; and bearing the

highest levels of exchangeable soil potassium; high annual mean temperatures; alkaline soil pH

rich in exchangeable Calcium ions (S3 & S4 Figs). Levels of predicted suitable calcium ions

were however distributed both within and beyond the restricted range of suitable habitat. Dis-

tribution of suitable levels of potassium was mostly restricted along water shorelines and

matched areas with high occurrence of anthrax cases. Parts of the study area receiving high

precipitation (1,264–1,394mm annual rainfall); and lower levels of temperatures <15.3˚C, pH

<5.0, fell within areas predicted as least suitable niche for anthrax occurrence.

Fig 4. Jacknife test for assessing variable importance using Area under the receiver operating curve (AUC) on test data. Variable bio12_cl by itself registered the

highest test AUC (0.925) for measuring model accuracy. All variables with AUC�0.75 had significant contribution to the model. AUC thresholds of 0.6–0.7 are

classified as poor, 0.7–0.8 as average, 0.8–0.9 good, 0.9–1.0 as excellent [23, 25].

https://doi.org/10.1371/journal.pone.0237223.g004
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Fig 5. Predicted probability map showing habitats with suitable environmental conditions favouring Bacillus anthracis distribution in QEPA ecosystem. Red

colour (0.927) shows areas with the highest probability of suitable conditions for anthrax occurrence, and green (<0.4) indicates areas predicted as least suitable sites.

Predictor variables used for modelling obtained from WorldClim (http://worldclim.org/version2), and ISRIC online resources (https://www.isric.org/projects/soil-

property-maps-africa-20-m-resolution), with kind permission of Dr. Stephen Fick, geo-spatial data scientist and Niels Batjes, Senior Soil Scientist and Coordinator of

the World Data center for soils at ISRIC–World Soil Information.

https://doi.org/10.1371/journal.pone.0237223.g005

PLOS ONE Environmental risk determinants of anthrax in Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0237223 August 18, 2020 12 / 21

http://worldclim.org/version2
https://www.isric.org/projects/soil-property-maps-africa-20-m-resolution
https://www.isric.org/projects/soil-property-maps-africa-20-m-resolution
https://doi.org/10.1371/journal.pone.0237223.g005
https://doi.org/10.1371/journal.pone.0237223


Fig 6. Marginal response curves showing how predicted suitability scores for anthrax presence changed with varying levels of annual

precipitation, exchangeable potassium, soil calcium ions and annual mean temperature. Probability for anthrax spore survival increases

with increasing levels of potassium, soil calcium ions and mean annual temperatures (Bio1_cl2). Probability for anthrax spore survival is

however highest at lowest rainfall (Bio12_cl) amounts and drops drastically as precipitation levels increase. Values for annual mean temperature

covariates are divisible by 10 to derive actual temperature value (http://worldclim.org/version2).

https://doi.org/10.1371/journal.pone.0237223.g006

Fig 7. Marginal response curve showing how the predicted suitability for anthrax presence changed with varying

levels of soil pH. Probability for anthrax spore survival increases with increasing levels of soil pH. Covariate values for

pH are divisible by 10 to derive actual pH value.

https://doi.org/10.1371/journal.pone.0237223.g007
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Discussions

The predicted suitable niche in this study was defined by a narrow-restricted corridor bearing

hot-dry climatic conditions with alkaline soils rich in potassium and calcium ions. Despite the his-

torical presence of anthrax in QEPA, and its associated impacts on wildlife and public health [18,

30, 31], ecological drivers of anthrax in the ecosystem have not been assessed. This study presents

the first estimation of the geographic potential for suitable landscape and environmental condi-

tions that have the potential to support survival and distribution of B. anthracis spores at the study

area. Given the location of QEPA astride the equator, and on the floor of a Rift Valley, the pre-

dicted hot-dry climatic conditions and soil properties would be expected to affect the study area

uniformly, but this was not the case. The high-risk locations were defined by a narrow-restricted

corridor bearing a north-east to south-westward direction spanning from just above Lake George

downwards to L. Edward including shorelines of water bodies (Fig 5).

Hippos are the most susceptible wildlife species that suffer significant mortality due to

anthrax at the study area [30], and contributed over 80% of the occurrence localities used for

the ENM modelling in this study. Being semi-aquatic animals, hippos live in water but graze

on land. They have a heavily grazed but highly restricted grazing range spanning 3–6 km from

water shorelines where they dwel [44], which is where they presumably get exposed to anthrax

spores. However, most return to die in water and their carcasses are found on shorelines of the

inhabited waterbodies [18, 30]. This was thought to be a potential notable limitation for this

study, since it would seem as though the predicted suitable niche along shorelines of waterbo-

dies simply reflects areas where hippo anthrax carcasses occurred rather than hotspots for

anthrax persistence. However, results from an independent model built using buffalo-only

occurrence localities was not significantly different (S2 Fig) from the model built using all

cases including hippos (Fig 5). The predicted suitable anthrax niche featuring a narrow south-

west-northeast corridor spanning from north of L. Edward to north of L. George and the asso-

ciated shorelines remained outstanding potential hot zones for persistence of anthrax in the

study ecosystem. Thus, the potential of hippos in supporting the animal-soil-animal infectious

cycle of B. anthracis [3] remains crucial, as this corridor is co-located with hippo habitat, and

is clearly critical for spore transmission and survival steps. Ultimately, the narrow belt pre-

dicted for anthrax persistence was also defined by the most optimal levels of the five most

important environmental covariates that significantly contributed to the predictive power of

the model. Thus, the belt defined the drier parts of the park receiving the least amount of

annual precipitation (�852mm); and bearing the highest levels of: - 1) exchangeable potassium

(3.84–5.04 cmolc/kg); 2) annual mean temperatures (23.8˚C); 3) soil pH (6.5–7.4); and 4)

exchangeable calcium (20.11–25.97cmolc/kg) (Table 5). This suggests the significance of these

variables in facilitating anthrax persistence at the study environment.

Table 5. Optimal levels of environmental variables that most predicted suitable ecological niche for distribution and survival of anthrax spores at QEPA.

S/N Variable Predicted probability of anthrax occurrence

Low (�0.0001) Medium (0.232–0.464) High (optimal) (0.695–0.927)

1. Annual precipitation (mm) 1690–1970 1331–1411 � 852

2. Exchangeable potassium at 0-20cm soil depth (cmolc/kg) �0.25 1.45–2.64 3.84–5.04

3. Annual Mean Temperature (0C) 6.9–11.1 15.4–19.6 �23.8

4. Soil pH at 5-15cm soil depth 4.7–5.4 6.1–6.6 6.5–7.4

5. Exchangeable calcium at 20–50cm (cmolc/kg) �2.53 8.39–14.25 20.11–25.97

Highest probability (0.695–0.927) cover most optimal values for environmental variables predicting suitable niche that supports survival and distribution of anthrax

spores while low probability (�0.0001) cover less optimal values

https://doi.org/10.1371/journal.pone.0237223.t005

PLOS ONE Environmental risk determinants of anthrax in Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0237223 August 18, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0237223.t005
https://doi.org/10.1371/journal.pone.0237223


However, some authors prefer using only laboratory positive occurrence data for ENM

modelling to increase the power of the model in accurately predicting the suitable ecological

niche [24]. In this study, we used both clinical and laboratory confirmed occurrence data but

addressed this limitation by rigorously screening case data [30] using a standard practice for

epidemiological investigations by defining anthrax outbreak cases based on pathognomonic

clinical, postmortem and or laboratory diagnostic criteria [2, 45]. Given that the predicted suit-

able niche and hot-dry climatic conditions found in this study agree well with historical

anthrax outbreak patterns demonstrated in earlier studies [18, 31], we believe any of these

potential limitations did not significantly affect the study findings.

The predicted low rainfall belt was particularly very distinct (S3 Fig), with a significantly

high suitability score (0.90) for the annual precipitation variable (Table 4), implying this vari-

able was critical in providing predictive power of the model for detecting anthrax presence.

This finding is in agreement with the low rainfall belts defined in the map of Isohyets of QEPA

in 1964–1966 [28]. Isohyets are meteorological lines drawn on a map that connect different

geographical locations receiving similar amounts of rainfall [46]. The suitable niche for

anthrax occurrence in this study area is found within Field’s isohyet lines receiving mean

annual precipitation of<1,000 mm equivalent [28]. The hot-dry climatic conditions found to

predict anthrax risk in this study have long been reported in anthrax outbreaks in other ecore-

gions as factors facilitating spore survival or precipitating anthrax outbreaks [2, 7, 14, 25].

Severe droughts or dry seasons preceded or followed by heavy rains, and severe seasonal varia-

tions in rainfall patterns [2, 47, 48] are typical events reported to elicit outbreaks. For the sus-

ceptible hosts, these climatic conditions also result in nutritional deficiencies that impair host

resistance and increase susceptibility [2, 14]. These findings are also in agreement with pat-

terns of major historical anthrax outbreaks that have been recorded at the study area between

1964–2011 [18, 30, 31], which indicate that outbreaks usually started with the onset of rains

following prolonged dry spells or with the onset of the dry season following rains. First rains

following dry spells are important for the dispersal of spores in runoff water to low lying areas

believed to be spore concentration points. These concentration points then become sources of

primary index case outbreaks under conducive environmental conditions [3, 14, 47].

The observed restricted niche in this study is similar to that reported by Blackburn et al in

ecological niche models and other similar studies for anthrax distribution in the United States

[9, 47]. Their study attributed the range restriction for anthrax persistence to distribution of B.

anthracis spores along cattle movement trails, trade routes and industrial areas for processing

cattle products. In fact, cattle movement corridors are historical routes that have long been

associated with the spread of anthrax [2]. In Uganda, historical livestock anthrax outbreaks

occurred in cattle producing provinces of the country (northern, eastern and western), along

cattle corridors, trade cattle quarantine areas, and within cattle consuming regions of the

country [31]. The accounts of S.G. Wilson in 1947, and J.I. Taylor in 1950 [31] illustrate the

severity of historical livestock outbreaks along cattle trade routes then, and how vaccination of

trade cattle controlled the outbreaks. QEPA falls on the South-western outskirts of the major

national cattle corridor [48] and within a high-density cattle region. Most of the key wildlife

species in the park do not have a specific migratory pattern or corridor that would be expected

to influence anthrax spore distribution. However, the Hippopotamus amphibious has a heavily

grazed restricted terrestrial grazing range spanning 3–6 km from water shorelines where they

dwell [44]. Critically, this range fell within the predicted suitable anthrax niche. Given the high

susceptibility of hippos to anthrax, and the historically high mortalities suffered, their popula-

tion densities, feeding and social behaviors have been hypothesized to enhance spread, propa-

gation, and sustenance of anthrax spores at the study area [30]. The current study confirms
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this risk, given the high overlap between hippo habitat, hippo feeding areas and the identified

high-risk habitat for anthrax survival and exposure.

Haemorrhagic fluids and body exudates from dead infected hosts seed soils with anthrax

spores [5]. This is an important step for establishing the animal-soil-animal infectious cycle for

B. anthracis [3], but propagation of the infection relies on the next herbivorous host ingesting

or inhaling viable, infective spores [2, 7]. The ingestion of viable and infective spores, in turn,

relies on the longevity of spores shed in the soil and their subsequent germination and capacity

for infectivity which is in turn influenced by combinations of environmental conditions which

define the suitable environment for spore survival [4, 12]. The study of Driciru et al [30] ana-

lysed two severe anthrax outbreaks in hippos at the study area and observed that cases occured

as point-source-propagated outbreaks, suggestive of common source areas where primary

cases were exposed to viable, infective spores before propagating the disease. Findings of the

current study suggests that the suitable environment for initiating anthrax propagation from

these common source areas is dependent primarily on soil pH as well as calcium and potas-

sium ion concentrations, favourable rainfall and ambient temperatures.

Calcium and pH are soil properties well known to support survival and germination of B.

anthracis spores [4, 12]. In this study, high levels of soil calcium and pH showed a significantly

high marginal response for the model for prediction of suitable niche for anthrax persistence

(Figs 6 & 7), with suitability scores for these corresponding variables going as high as 0.91 and

0.90 respectively (Table 4). The spatial distribution of suitable pH levels showed an outstand-

ing match to the predicted niche (S3 Fig), as well as that of calcium (S4 Fig) which was more

widely spread. This is expected since location of the study area is within a Rift Valley system

with geological properties rich in gypsum-rich calcareous soils [27, 28], reported to be prone

to anthrax outbreaks [2, 3, 14]. The study findings that identify pH and calcium as suitable var-

iables for predicting anthrax occurrence is comparable to studies of Dragon et al [2, 4, 14, 49,

50] that demostrate the importance of pH and calcium in spore biology. Bacterial spores con-

tain a significant amount of calcium, which plays an essential role in spore preservation, viabil-

ity, and germination [12]. Earlier studies have shown that spores of Bacillus species are

enriched with metallic ions [4]. Uptake of the cations occurs during the sporulation process,

and 95% of calcium ions taken gets deposited in the core region of the spore, where it com-

bines with dipicolinic acid to form a salt lattice that stabilizes the DNA and enzymes in the

core [4, 12]. This process is believed to increase the thermo resistance properties, and resilience

of spores during periods of dormancy [51] and greatly accounts for spore longevity and viabil-

ity in the environment [4, 12]. Absorbed calcium deposited in spore integument plays an

important role in spore germination processes [4, 12], in a manner that is reported to be influ-

enced by soil pH, temperature, water activity and cation levels; relative humidity and seasonal

climatic factors [2, 52].

In this study, exchangeable potassium ions featured as the second most important variable

(suitability score, 0.95) that contributed to the development and predictive power of the model

in determining anthrax presence (Table 4). Increasing levels of potassium, greatly improved

performance of the model in predicting presence of anthrax (Fig 6). Distribution of predicted

optimal levels of potassium ions along shorelines of water bodies was particularly conspicuous

and overlaps areas where most anthrax carcasses were registered and or point source outbreaks

postulated to originate from in an earlier study [30]. Information on the significance of potas-

sium in spore biology, infectious or environmental cycles of anthrax is not widely reported,

but uptake of different types of metal cations by spores during sporulation is reported to be

non-preferential and the metal content of a spore is said to be influenced by the relative con-

centrations of metals in the sporulation environment [12]. However, once formed, the spore

integument reportedly has a definite affinity for certain types of ions [12], and the required
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levels of preferred ions in the spore are then achieved through a cation exchange process

where sodium and magnesium ions for instance eventually get exchanged for the required cal-

cium [12, 53].

Several ecological niche studies conducted at larger spatial resolution identify soil types as

important environmental variables influencing distribution and survival of anthrax spores

[24], but in this study, soil properties and their mineral elements had more significant influ-

ence than soil types per se. This could be attributed to the small study extent and high spatial

resolution (1 km grid cells) used, where all soil types within the predicted niche uniformly fell

within Harrop’s classification of “soils derived from volcanic rocks, types 5 & 6” and “volcanic

and Pre-Cambrian rocks”, mostly comprising black sandy clay loams or clay looms [54, 26].

Conclusion and recommendations

The predicted hot-dry climatic conditions with alkaline soils rich in potassium and calcium

ions found in this study suggest presence of key ecological drivers well known to facilitate sur-

vival of B. anthracis spores and elicit subsequent anthrax outbreaks. The significant associa-

tions identified between soil pH, calcium and potassium ion concentrations; and areas

identified in earlier studies as potential common source areas where primary hippo cases get

exposed to viable, infective spores before propagating the disease, suggests the active role these

variabes may play as environmental determinants that actively support anthrax spore survival

as well as initiation of outbreaks in the study secosystem. Whether or not favourable levels of

these predicted suitable environmental variables experience seasonal variations at the study

area remains a subject for longitudinal studies that can improve understanding of ecological

drivers of anthrax in the ecosystem.

The fact that the predicted soil properties might originate from geological formations of

sedimentary calcareous gypsum rocks has implications for long-term presence of anthrax

spores in the park and may explain the long history of anthrax experienced in the area. Identi-

fication of suitable niche as a restricted hot zone bounded between low rainfall belts is an

important finding that offers opportunities for targeted anthrax surveillance, response and

monitoring systems that can aid control and prevention strategies for protecting susceptible

wildlife species.

Supporting information

S1 Fig. A sample of historical data archives mined for compiling occurrence records infor-

mation. Source: Archives from Queen Elizabeth National Park Management Reports for 1956,

Kasese, Uganda. The report contains time, location, animal species, case number and diagnos-

tic information required. Location identifiers are in subsequent communication trails.

(TIF)

S2 Fig. Suitable niche for anthrax distribution predicted using buffalo cases. This model

aimed at assessing if predicted hotspots were majorly influenced by hippo cases as a confound-

ing factor. The suitability map did not show a significantly different outcome.

(TIF)

S3 Fig. Distribution of varying levels of annual precipitation and soil pH within predicted

suitable ecological niche for B. anthracis occurrence in QEPA. The precipitation map was

built using bioclimatic raster data files obtained from the WorldClim online resources (http://

worldclim.org/version2), and published with the kind permission of Dr. Stephen Fick, geo-

spatial data scientist [20]. Green colour represents the lowest precipitation level, but most suit-

able environment for anthrax spore survival, and red represents the highest precipitation and
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least suitable areas for anthrax distribution.

(TIF)

S4 Fig. Distribution of varying levels of exchangeable soil calcium and potassium within

predicted suitable ecological niche for B. anthracis occurrence in QEPA. Maps for soil pH,

exchangeable potassium and calcium were built using raster data files obtained from ISRIC

online database for Africa SoilGrids resources (https://www.isric.org/projects/soil-property-

maps-africa-20-m-resolution), and published with the kind permission of Niels Batjes, Senior

Soil Scientist and Coordinator of the World Data center for soils at ISRIC–World Soil Infor-

mation.

(TIF)

S1 Table. Table containing correlation data used for screening predictor variables and

response variable data used for modeling.

(XLSX)
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