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Abstract

Ants (Formicidae) present considerable diversity in chromosome numbers, which vary from
n=1to n =60, although this variation is not proportional to that in genome size, for which
estimates range from 0.18 pg to 0.77 pg. Intraspecific variation in the chromosome number
and karyotype structure has been reported among species, although the variation among
populations of the same species has received much less attention, and there are few data
on genome size. Here, we studied the karyotype length and genome size of different popula-
tions of the fungus-farming ants Mycetophylax conformis (Mayr, 1884) and Mycetophylax
morschi (Emery, 1888). We also provide remarks on procedure for the estimation of ant
genome size by Flow Cytometry (FCM) analysis. Chromosome number and morphology did
not vary among the populations of M. conformis or the cytotypes of M. morschi, but karyo-
type length and genome size were significantly distinct among the populations of these ants.
Our results on the variation in karyotype length and genome size among M. morschiand M.
conformis populations reveal considerable diversity that would be largely overlooked by
more traditional descriptions of karyotypes, which were also supported by the estimates of
genome size obtained using flow cytometry. Changes in the amount of DNA reflect variation
in the fine structure of the chromosomes, which may represent the first steps of karyotype
evolution and may occur previously to any changes in the chromosome number.

Introduction

The eukaryote genome is packed inside the nucleus and comprises from one to many DNA
molecules that together correspond to the chromosome set or karyotype of the species. The
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genome size (GS, also known as the DNA content or C-value) of an organism is the total
amount of DNA contained in its haploid chromosome set [1] and is measured in picograms
(pg) or the number of base pairs (bp) [2]. The GS is an important trait because it corresponds
to the bulk amount of DNA, and is a unit of measurement that is considered to be one of the
most fundamental properties of any organism [1, 3].

Ants (Formicidae) present considerable variation in chromosome number, varying from
n = 1 in the Australian bulldog ant, Myrmecia croslandi [4], to n = 60 in the giant Neotropical
ant Dinoponera lucida [5]. Even so, genome sizes appear to be much less variable (three times
less) ranging from 0.18 pg in Dorymyrmex bureni (subfamily Dolichoderinae) and Paratre-
china longicornis (subfamily Formicinae) [6] to 0.77 pg in Solenopsis invicta (subfamily Myrmi-
cinae), the largest estimate obtained up to now [7], although different estimates have been
obtained for S. invicta using alternative methods of evaluation [8].

While chromosome number does not appear to be correlated with genome size (see [9]),
interspecific karyotype variation in the Formicidae appears to be related to the age of the line-
age [10, 11]. In ancient clades, such as the poneromorph subfamilies, major differences in
chromosome number exist between species or even within populations (e.g. [12]). By contrast,
the chromosome number appears to be more stable in “recently split” ant lineages, such as the
leafcutter ants [13]. Similarly, genome size may correlate with the chromosome number when
considering a specific group or taxa [9, 14].

The karyotypes of at least 760 ant species have been analyzed up to now [9, 15], although
most studies are limited to a basic description of chromosome number and morphology. So
far, only a few studies have investigated the chromosomal variation at the population level (e.g.
[11, 16-18]), and even fewer have applied a karyomorphometrical approach [18-20]. Karyo-
morphometry is a technique that has been applied amply in cytogenetic studies of plants, and
is often combined with estimates of genome size, i.e. [21, 22]. The first studies that measured
ant chromosome complements were those of Palomeque et al. [23], Lorite et al. [24], and Lor-
ite et al. [25], although none of these studies evaluated variation at the population level nor
they were combined with estimates of genome size. Analyses of this type are available for para-
sitic wasps, however [26, 27], and these studies have shown that the genome size of the study
species was correlated with karyotype length in the families Aphelinidae and Figitidae. Studies
of this type provide important insights, from both intra- and interspecific perspectives, on the
hidden variation in chromosome structure and karyotypes.

In the present study, we examine the intraspecific and intra-colony variation in genome
size and the chromosomal features of two closely-related species of fungus-farming ants of the
genus Mycetophylax. We used a karyomorphometrical analysis to characterize the karyotypes
of geographically distinct populations of Mycetophylax conformis (Mayr, 1884) and Myceto-
phylax morschi (Emery, 1888). We complemented the chromosomal analyses with estimates of
genome size obtained by flow cytometry (FCM). Here, we document variations in karyotype
length that match the differences in genome size estimated for the different studied popula-
tions. We also provide methodological remarks for the estimation of ant genome size by FCM,
in accordance with the internal standards, the lysis buffers, and the tissues used to obtain the
nuclei suspensions.

Materials and methods
Colony sampling

Colonies of the fungus-farming ants Mycetophylax conformis (Mayr, 1884) and Mycetophylax
morschi (Emery, 1888) were sampled at different localities and analyzed by karyomorphometry
and flow cytometry (FCM). Samples were collected from a total of 36 colonies (Table 1) during

PLOS ONE | https://doi.org/10.1371/journal.pone.0237157  August 6, 2020 2/17


https://doi.org/10.1371/journal.pone.0237157

PLOS ONE

Karyotype length and genome size variation among populations of ants

Table 1. Ant colonies sampled during the field expeditions conducted in the present study in eastern and southern Brazil, estimates of the genome size of the species
analyzed, and the type of buffer used for the extraction of the nuclei.

Ectatoma brunneum GNSP0167 Cabo Frio—R] 0.400 0.40 +0.010 391.2 LBO1
Mpycetophylax conformis MYCO0192 IThéus—BA 0.276 0.28 + 0.005 273.8 Galbraith
MYCO0187 Sargi—BA 0.287
MYCOO0151 Cabo Frio—R] 0.326 0.33+0.013 322.7 Galbraith
MYCOO0154 Per6—R] 0.344
MYCO0149 Arraial do Cabo—R] 0.337
Mycetophylax morschi MYMO0193 Itacaré—BA 0.363 0.35 +0.008 3423 Galbraith
MYMOO0191 Pontal—BA 0.347
MYMOO0148 Cabo Frio—R] 0.374 0.37 £0.013 361.9 Galbraith
MYMOO0158 Cabo Frio—R] 0.355
MYMO0247 Ararangua—SC 0.332 0.33 +£0.001 3227 Galbraith
MYMOO0188 Ararangua—SC 0.332
MYMOO0184 Torres—RS 0.325 0.33 £0.008 322.7 Galbraith
MYMOO0183 Torres—RS 0.333
Mpycetophylax simplex MYSI0182 Ararangua—SC 0.394 0.40 +0.023 391.2 Galbraith
MYSI0146 Ararangua—SC 0.408
MYSI0144 Ararangua—SC 0.392
Neoponera marginata POSP0201 Cachoeira do Campo—MG 0.649 0.65 + 0.005 635.7 LBO1
Pseudomyrmex gracilis POSP0164 Cachoeira do Campo—MG 0.407 0.41 +0.010 401.0 Galbraith
Pseudomyrmex shuppi POSP0202 Cachoeira do Campo—MG 0.376 0.38 £0.016 371.6 Galbraith
Mycetomoellerius holmgreni TRHO0197 Cachoeira do Campo—MG 0.335 0.32+£0.019 313.0 Galbraith
TRSP0098 Cachoeira do Campo—MG 0.294
TRTH0489 Cachoeira do Campo—MG 0.334
TRTH0489 Cachoeira do Campo—MG 0.332
THMC0018 Ararangua—SC 0.302 0.31 +£0.013 303.2 Galbraith
THMC0066 Ararangua—SC 0.317
TRHO0404 Ararangua—SC 0.301
THMC0059 Ararangua—SC 0.335
THMC0064 Ararangua—SC 0.306
THBGO0041 Bal. Gaivota—SC 0.380 0.35+0.017 3423 Galbraith
THBG0044 Bal. Gaivota—SC 0.335
THBG0049 Bal. Gaivota—SC 0.371
THBG0054 Bal. Gaivota—SC 0.337
THBG0052 Bal. Gaivota—SC 0.324
THBG0032 Bal. Gaivota—SC 0.332
THBG0031 Bal. Gaivota—SC 0.343
THTO0023 Torres—RS 0.333 0.35+0.009 342.3 Galbraith
THTO0020 Torres—RS 0.348
THTO0070 Torres—RS 0.361
THTO0071 Torres—RS 0.347

Samples were collected between October 2015 and September 2017. Brazilian states: R] = Rio de Janeiro; BA = Bahia; SC = Santa Catarina; RS = Rio Grande do Sul GS:
Genome Size; pg: picograms; SD: standard deviation; Mpb: Megabase pairs;

*Mean per specimen of the colony;

**Mean per colony.

https://doi.org/10.1371/journal.pone.0237157.t1001
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field expeditions in the Brazilian states of Bahia (BA), Minas Gerais (MG), Rio de Janeiro (R]),
Santa Catarina (SC), and Rio Grande do Sul (RS). The colonies were excavated according to
protocol of [28]. In each case, the whole colony was collected, transported to the laboratory,
and maintained under laboratory conditions. During some field expeditions, specimens of
other species of ant, including fungus-farming ants and species of other formicide subfamilies,
were also collected to evaluate the lysis buffers (see below). These species were Mycetophylax
simplex (Emery, 1888), Mycetomoellerius holmgreni (Wheeler, 1925), Ectatomma brunneum
Smith, 1858, Neoponera marginata (Roger, 1861), Pseudomyrmex gracilis (Fabricius, 1804),
and Pseudomyrmex schuppi (Forel, 1901). The Mycetomoellerius and Mycetophylax species
were identified using the taxonomic keys of Klingenberg and Brandéo [29] and Mayhé-Nunes
and Brandao [30]. In all cases, vouchers of each species were stored in absolute alcohol and
sent to Dr. Rodrigo Feitosa (Universidade Federal do Parana, Brazil) for identification. Esti-
mates of the size of the genomes of the Mycetophylax species were obtained from Cardoso
etal. [14].

Cytogenetic and karyomorphometric analyses of Mycetophylax

Metaphase chromosomes were obtained from Mycetophylax conformis collected in Rio de
Janeiro, and the Mycetophylax morschi cytotypes were defined according to the method pro-
posed by Imai et al. [31]. The analyses were conducted on preparations obtained from 15 indi-
viduals per colony. The preparations were stained with Giemsa diluted in Sérensen buffer at
(4%) for 20 minutes. On average, 10 metaphases were analyzed per slide. The best metaphases
were photographed using an Olympus BX53 microscope equipped with a DP 73 Olympus™
camera. The chromosome morphology was evaluated using the karyomorphometrical
approach described by Cristiano et al. [20]. For this, we used the Image Pro Plus™ software
(Media Cybernetics, Rockville, MD) to measure each individual chromosome from the centro-
mere to the end of the long (L) and short arms (S), as well as the total length (TL) of the chro-
mosome. Chromosome length was averaged for the 10 individuals measured from each
colony. The sum of the lengths of all the individual chromosomes constitutes the karyotype
length (KL). The chromosomes were classified as metacentric (M), submetacentric (SM) or
acrocentric (A) based on the arm ratio of Levan et al. [32] with the nomenclatural adjustments
of Crozier [33].

Genome size analyses
Evaluation of the internal standards and lysis buffers

Two internal standards are commonly used to estimate genome size in hymenopteran species,
in particular in ants and stingless bees. These standards are Drosophila melanogaster and Scap-
totrigona xantotricha (e.g. [6, 14, 34-36]). Scaptotrigona xantotricha was initially described as
the internal standard by Lopes et al. [37]-the mean genome size of the females is 1C = 0.44

pg = 430 Mb. The Drosophila melanogaster wild type (Oregon-R) reared in our laboratory at
the Federal University of Ouro Preto was first tested against S. xantotricha. This analysis con-
firmed that the mean size of the genome of our D. melanogaster strain is 1C = 0.18 pg = 175
Mb (see S1 Fig) [37]. Both these standards were tested so that we could determine the internal
reference standard for estimating the nuclear genome size of the ants collected in the present
study.

We also tested the three most widely used nuclear isolation buffers, two of which (OTTO I/
OTTO II and Galbraith) are most used for the order Hymenoptera. The other buffer, LB01, is
commonly used in plant studies (Table 2) [38, 39]. The selection of the buffers was based
on the findings of Loureiro et al. [39], who determined that these three buffers, due to their
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Table 2. Three nuclear isolation buffers tested in the present study.

Buffer Composition References
Galbraith | 45 mM MgCl,, 30 mM sodium citrate, 20 mM MOPS, 0.1% (v/v) Triton X-100, pH | Galbraith et al.
7.0 [40]
LBO1 15 mM Tris, 2 mM Na,EDTA, 0.5 mM spermine.4HCI, 80 mM KCl, 20 mM NaCl, | Dolezel et al. [41]
0.1% (v/v) Triton X-100, 15 mM S-mercaptoethanol, pH 7.5
OTTO’s OTTO I: 100 mM citric acid monohydrate, 0.5% (v/v) Tween 20 (pH 2-3) Otto [42]
OTTO II: 400 mM Na,P0,.12H,0 (pH 8-9) Dolezel & Gohde
[43]

MOPS = 4-morpholinepropane sulfonate; DTT = dithiothreitol; Tris = tris-(hydroxymethyl)-aminomethane;

EDTA = ethylenediaminetetraacetic acid. (modified from Loureiro et al. [39]).

https://doi.org/10.1371/journal.pone.0237157.1002

different chemical compositions, produced different results, depending on the species being
analyzed. We used the three buffers in our analyses as described originally and optimized by
the respective authors (see Table 2).

Preparation of the tissue and samples, and the flow cytometry (FCM)
analyses

We used the heads of adult workers of the study species to determine the amount of DNA.
Both internal standards and the three buffers described above were tested in each ant
species. The heads were severed with a scalpel blade, placed in a 1.5 mL microtube, and
immersed in 100 pL of the buffer. Some of the experiments were run using ganglia from
pupae with the white compound eyes typical of the study species, in order to verify if there
were differences in the genome size estimates obtained from the ganglion tissue between
adults and pupae. The samples and internal standard were ground with a pestle, with the
microtube was shaken vigorously up and down to detach the cells from the tissue and release
the nuclei. The buffer (600 pL) was then added to the microtubes. In the specific case of the
OTTO bulffer, an additional centrifugation step was applied, followed by cell resuspension
[44]. The nuclei suspension of each sample was filtered through a 40 um nylon mesh and
stained with 6.5uL of propidium iodide (PI) solution at a concentration of 1.0 mg/mL.
Exactly 3.5 pL of RN Ase (10mg/mL) was also added to each sample, and the samples were
then stored in the dark at 4°C for 30 minutes prior to analysis. In the trials of the Galbraith
and LBO1 buffers, the samples were stained for 10 min, whereas in the OTTO trials, they
were stained immediately.

The analysis was run in a FACSCalibur (Becton Dickinson) cytometer at the Federal Uni-
versity of Ouro Preto. This cytometer was equipped with a laser source (488 nm), and the his-
tograms were obtained using the Cell Quest software. A minimum of 10,000 nuclei were
counted from each sample, and the relative intensity of their fluorescence was analyzed with
the cytometer configured to run at low speed. Three independent replicates (three specimens
per colony) were analyzed. The histograms with a coefficient of variation (CV) of over 5%
were rejected and a new trial was run. The histograms were visualized in the Flowing 2.5.1 soft-
ware (http://www.tflowingsoftware.com). The size of the genome of each sample was calculated
using the 1C values for either D. melanogaster (0.18 pg) or the S. xantotricha female (0.44 pg),
and the estimates were obtained according to the equation of Dolezel and Barto$ [38]. The
final value was calculated based on three replicates per species per colony. These values were
then converted to megabase pairs (1 pg = 978 Mbp) [2].
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Statistical analyses

General linear models were constructed to verify the differences between the mean genome
sizes of the sample colonies of Mycetophylax morschi and Mycetophylax conformis. The varia-
tion in the mean genome size among the species and colonies was assessed by an Analysis of
Variance (ANOVA) of the General Linear Model, followed by a contrast analysis with an
alpha of 5%, when the p value of the GLM-ANOV A was significant (p < 0.05). The differences
between the mean genome sizes obtained using the different buffers were also evaluated, as
well as those between the pupae and the adult workers.

To evaluate the efficacy and reliability of the flow cytometry, and validate the genome size
estimates, the coefficient of variation (CV) was calculated between the days of measurement
by using samples from the same colonies as the quality control. Loureiro et al. [39] found vari-
ation between different days of measurement and also between analysts, but as the same ana-
lyst examined all the samples in the present study, only the effect of the day was evaluated here.
This “statistical” CV is different from that generated in the analysis of the histograms, being
calculated by dividing the standard deviation (SD) by the mean genome size of the species ana-
lyzed on each day of measurement. The statistical CV evaluates the degree of variation among
trials. All the colony estimates of the four myrmicine species were included in this analysis.
The differences between the mean statistical CV for each day were assessed by an Analysis of
Variance (ANOVA) of the general linear models (GLMs) followed by a contrast analysis with
an alpha of 5%. All the statistical analyses were run in R v2.15.1 [45] and a residual analysis of
the GLM was undertaken so that the error distribution could be evaluated [46].

Results
Karyotype and genome size

The size of the haploid genome of Mycetophylax conformis ranged from 0.27 pg to 0.35 pg (Fig
1). The colonies from the Brazilian states of Bahia and Rio de Janeiro were compared statisti-
cally, although no significant differences were found between colonies from the same locality
(p > 0.05). However, the mean genome sizes were significantly different (p < 0.01) between
these two states (Fig 2). The mean genome of the Bahia populations was approximately 0.28 pg
(Table 1), with individual values ranging from 0.27 pg to 0.29 pg, whereas the mean of the pop-
ulations from Rio de Janeiro was approximately 0.33 pg (Table 1), with individual values of
between 0.32 pg and 0.35 pg. In Mycetophylax morschi, the haploid genomes ranged from 0.32
pg to 0.37 pg (Fig 1).

The colonies from the Brazilian states of Bahia, Rio de Janeiro, Santa Catarina (Ararangua),
and Rio Grande do Sul (Torres) were compared using an ANOVA, which found significant
variation (p < 0.01) among the states, although no significant variation was found between
colonies from the same locality (p > 0.05). The contrast analysis (Table 1, Fig 2) grouped the
populations from Bahia (mean = 0.35 pg) and Rio de Janeiro (mean = 0.37 pg) together, as
well as the populations from Ararangua, in Santa Catarina (mean = 0.33 pg) and Torres, in Rio
Grande do Sul (mean = 0.33 pg).

The diploid numbers of all M. conformis individuals analyzed here were 2n = 30, whereas
the M. morschi cytotypes ranged from 2n = 26 in the southern populations (RS and SC), to
2n = 28 in the Bahia population (BA), and 2n = 30 in the Rio de Janeiro (R]) population (Fig
3). These findings are consistent with those of previous studies (see [11, 17, 47]). No numerical
or morphological variation was found among the M. conformis populations, whereas the num-
ber of chromosomes and karyotype did vary among the M. morschi population, as expected.
The karyotype length (the sum of each mean chromosome length in a given karyotype) varied
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Fig 1. Histograms of the genome sizes of the Mycetophylax species based on the analysis of the nuclear suspensions

of the adult head tissue stained with propidium iodide (PI). (a) M. morschi from the state of Rio de Janeiro—R]J

(2C = 0.64 pg) and Drosophila melanogaster (internal standard 2C = 0.36 pg). (b) M. morschi from the state of Bahia—BA
(2C =0.72 pg) and D. melanogaster (internal standard 2C = 0.36 pg). (c) M. morschi from the state of Santa Catarina—SC
(2C = 0.64 pg) and D. melanogaster (internal standard 2C = 0.36 pg). (d) M. morschi from the state of Rio Grande do Sul
—RS (2C = 0.64 pg) and D. melanogaster (internal standard 2C = 0.36 pg). (e) M. conformis from the state of Bahia—BA
(2C = 0.56 pg) and D. melanogaster (internal standard 2C = 0.36 pg). (f) M. conformis from the state of Rio de Janeiro—
R]J (2C = 0.64 pg) and D. melanogaster (internal standard 2C = 0.36 pg).

https://doi.o

rg/10.1371/journal.pone.0237157.g001
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Fig 2. The range of genome sizes (GS) estimated for (a) Mycetophylax conformis, and (b) Mycetophylax morschi. The
dots represent the mean, and the bars, the confidence intervals. The x axis corresponds to the locality from which the
colony was obtained, while the y axis shows the 1C values in picograms (pg). Each letter from (a) to (b) represents a
significant group of mean values (p < 0.05) recovered from the contrast analysis between colonies.

https://doi.org/10.1371/journal.pone.0237157.9002

significantly among the populations, and proportionally to the genome size estimated here
(Table 3, S1-S4 Tables).

Internal standards, lysis buffers, and tissue. The appropriate internal standard for the
FCM analysis depends on the sample. Here we evaluated the two internal standards used
widely to estimate genome size in ants and stingless bees. Our analyses indicated that Drosoph-
ila melanogaster is a better internal standard for ants in comparison with the female Scaptotri-
gona xanthotricha (Fig 4). The peak of the histogram of the estimates of the S. xanthotricha
DNA overlaps with those of the majority of the ants analyzed here (see Fig 1e). However, D.
melanogaster (which 1C = 0.18 pg) has a smaller genome, so its peak does not overlap with
those of the other species (Fig 4). The histograms used to infer the genome size (GS) of each
specimen presented peaks corresponding to the Go/G; and G, phase nuclei of the target spe-
cies and the internal standard. All the histograms used to calculate the genome size had a high
resolution, and their coefficients of variation were always less than 5%, which is considered
acceptable for the estimation of GS using FCM [438].

Three buffers commonly used in FCM analyses were tested on all the ants shown in
Table 1. The Galbraith buffer was clearly the most effective, based on the CVs of the histogram
of the analysis of the species of the subfamilies Myrmicinae and Pseudomyrmecinae. This
buffer provided a good resolution, with coefficients of variation invariably lower than 5%, as
can be seen in the histograms of the Mycetophylax species (Figs 1 and 4). The OTTO buffer
(Otto I/Otto II) also worked well, but in the present study, some coefficients of variation were
unacceptably large, i.e., greater than 5%. Given this, the data obtained using the OTTO buffer
were discarded. The LBO1 buffer also worked well for the two ant subfamilies, although the
Galbraith buffer was used preferentially in the experiments. Even so, there was no significant
difference (p > 0.05) in the mean genome sizes obtained using the Galbraith and LBO1 buffers.
However, neither the Galbraith nor the OTTO buffers were adequate for the analyses of the
species of the subfamilies Ponerinae and Ectatomminae, recovering poor histograms that
could not be used to estimate the size of the genome reliably. In these cases, only the LB01
buffer was adequate, providing an excellent resolution with a coefficient of variation of less
than 5%.
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Fig 3. Karyotypes of the Mycetophylax conformis and M. morschi cytotypes, as determined by the karyomorphometric analyses.
https://doi.org/10.1371/journal.pone.0237157.9g003

In the present study, no significant difference was found in the size of the genomes of the
adult workers and pupae of the same ant species (p > 0.05). Given this, the estimates obtained
for the pupae were included in the calculations of mean genome size shown in Table 1. The
“statistical” CV for the genome size of each colony on different measurement days tested the

Table 3. Karyomorphometric parameters of the Mycetophylax conformis and M.morschi populations analyzed in the present study, showing the diploid number,
Karyotype Length (KL), and mean genome size (pg) for each study population.

Mycetophylax conformis-BA 2n =30 90.18 pm 0.28 +0.005
Mycetophylax conformis-R] 2n =30 98.16 um 0.33 +0.013
Mycetophylax morschi-RS/SC 2n =26 72.71 um 0.33 +£0.009
Mycetophylax morschi-BA 2n =28 75.83 um* 0.35 £ 0.008
Mpycetophylax morschi-R] 2n =30 79.80 um 0.37 +£0.013

* From Cardoso et al. [47].

https://doi.org/10.1371/journal.pone.0237157.t003
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propidium iodide. The nuclei suspensions were obtained with the Galbraith buffer. (a) M. simplex; (b) Drosophila melanogaster; (c)
Scaptotrigona xanthotricha female, and M. morschi, M. conformis and M. simplex tested with (d) D. melanogaster and (e) female S.
xanthotricha female as the internal standard. The x axis is an arbitrary scale of fluorescence intensity (which is proportional to the size of

the genome), and the y axis represents the number of nuclei with the specified intensity of fluorescence.

https://doi.org/10.1371/journal.pone.0237157.9004

efficacy of the FCM measurements, which were repeated on different days, and the quality

control. No significant differences were found between days (p > 0.05), however, which con-
firmed the precision and reliability of the cytometer. The CVs for each measurement day are
plotted in S2 Fig.

Discussion

Karyotype and genome size

Chromosomes are the units of inheritance that contain the complete set of information neces-
sary for the development of the organism, and represent the structural organization of the
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genome. The size of the genome, in turn, provides a quantitative measure of the genome that
ultimately expresses the DNA amount of a specimen. Here, we demonstrated once again that
differences in karyotype length can represent the variation in the estimates of genome size in
either the cytotypes or among populations. In a study of geographically distant populations of
the fungus-farming ant Mycetomoellerius holmgreni Cardoso et al. [16] suggested that the cor-
relation between genome size and karyotype length is probably due to changes in the centro-
meric satellite DNA. They also hypothesized that the changes in the karyotypes of the study
populations are molded by a process of centromere drive, which favors the evolution of the
karyotype and acts as a potential barrier to gene flow. Studies of parasitic wasps of the families
Figitidae and Aphelinidae also reported that the variation in the size of the genomes of the
study species was correlated with that in the length of the karyotype [26, 27]. In both cases, the
authors suggest that the variation in genome size is the result of differences in the relative
amount of repetitive DNA sequences, and that only major differences were apparent, probably
due to the variation in genome condensation.

A number of studies have shown that genome size varies considerably among species and
even between closely-related taxa [49], although only a few studies have focused on, and quan-
tified, the extent of the variation in genome size among populations [16, 50]. Some ecological
and physiological traits have been correlated with the size of the genome, e.g., metabolic rate,
genome expression, and cell size [3], and all these traits have a direct effect on the fitness of the
organism, and are thus subject to natural selection [51]. However, it is still unclear which fac-
tors are the drivers of genome enlargement or shrinkage, although the size of the genome is
known to change as a consequence of gene amplification or expression, duplication, and dele-
tion, as well as expansion or contraction of satellite DNA and transposable elements [52]. All
these modifications are thought to be triggered by stressful conditions experienced during the
dispersal and establishment of species in new habitats [53, 54].

The findings of the present study are consistent with the hypothesis that genome size varies
between more ancient lineages and populations founded more recently [53]. Micolino et al.
[17] inferred the ancestral area of occurrence and the putative biogeographical dispersal routes
of Mycethopylax from the southern grasslands of Brazil to the Atlantic coast. In this context,
the Mycetophylax conformis populations from Bahia (northeastern Brazil) had smaller mean
genome sizes than the populations from Rio de Janeiro, southeastern Brazil, apparently estab-
lished more recently. By contrast, the genome size estimates for Mycetophylax morschi from
Rio de Janeiro and Bahia were larger than those from the southern Brazilian populations
(Santa Catarina and Rio Grande do Sul), and formed a sister clade with these southern popula-
tions (see Micolino et al. [17]), which had smaller genomes and karyotype (2n = 26). Similar
variation in chromosome length and number among populations has been observed in two
social wasps of the genus Synoeca within similar area of occurrence on Brazilian Atlantic
coast [55]. This pattern thus appears to be recurrent in the Hymenoptera and deserves further
investigation.

Internal standards, lysis buffers, and tissue

Most of the estimates of genome size available for formicides have been obtained using Dro-
sophila melanogaster as the internal standard [6, 34], although Cardoso et al. [14] also used
females of Scaptotrigona xantotricha to analyze hymenopterans, in particular, stingless bees
[35-37]. In the present study, D. melanogaster proved to be a good internal standard for the
ants analyzed, and was more appropriate than S. xantotricha, due primarily to the small 1C
value of D. melanogaster, which avoids potential overlap between the peaks of the target species
and the internal standard. When this overlap occurs, it hampers the accurate estimation of the
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C value [56]. The genome size of D. melanogaster was first determined by Feulgen densitome-
try, with 1C being estimated to be 0.18 pg [57, 58]. Given the importance of D. melanogaster
and its ample use in studies of genetics, cytology, and developmental biology [59], a number
of subsequent studies were conducted, using different techniques, such as FCM and whole
genome sequencing, although they only confirmed the genome size estimates for this organism
[60-63].

By contrast, only Lopes et al. [37] and Tavares et al. [35, 36] have estimated the genome size
of Scapitotrigona xantotricha, and found a difference in the values recorded for males and
females. This is probably because bees, like ants, have a haplodiploid sex determination system,
with haploid males and diploid females (workers and queens). As ant workers are diploid, it is
necessary to use only the female bees to avoid problems of linearity in the measurements (see
Lopes et al. [37]). Given this, it is essential to sex the individuals (pupae or adults) prior to the
analysis to avoid introducing potential bias. Yet, considering D. melanogaster, keeping and
monitoring the Drosophila strain under laboratory conditions should be sufficient to avoid
this potential bias. The stability of the D. melanogaster genome and the relative convenience of
using this organism, as shown by the studies mentioned above, reinforce the advantages of
using this species as the internal standard for genome size studies in ants. This dipteran also
satisfies the guidelines recommended for the FCM analysis [38].

This study is the first to test the different lysis buffers used to obtain nuclei suspensions in
ants, which are used to measure the size of the genome of these insects. This type of compara-
tive study is common in plants, and this research has shown that there is no optimum buffer,
but rather, that it is necessary to consider the specific characteristics of each study organism
when selecting the buffer, to ensure that histograms generated have the lowest possible coeffi-
cient of variation, with the least possible background noise [38, 39, 56]. Two of the three buft-
ers tested in the present study were clearly more efficient at extracting nuclei from the ants.
These were Galbraith buffer, for the Myrmicinae and Pseudomyrmecinae, and the LB0O1
buffer, for the Ponerinae and Ectatomminae. The Galbraith buffer has previously been used
for ants by Tsutsui et al. [34] and Ardila-Garcia et al. [6], while the OTTO buffers were used by
Cardoso et al. [14]. None of these studies tested alternative buffers, however, and did not dis-
cuss their choice of buffers, exactly because of a lack of any previous testing in ants. Neverthe-
less, the genome size values obtained by Cardoso et al. [14] for Mycetophylax species using
pupae and the OTTO buffer were the same as those obtained in the present study, using the
Galbraith buffer and adult workers collected from colonies from the same study locality.

These findings corroborate Loureiro et al. [39], who demonstrated that each buffer contains
reagents with different properties that need to be taken into account when selecting a buffer
for the analysis of a specific study organism. The LB01 buffer includes mercaptoethanol, which
suppresses the negative effects of phenols and other cytosolic compounds during the isolation
of the nuclei [38]. We noted that the LB01 buffer, which is widely used in plant studies,
achieved good results for the analysis of the ponerine and ectatommine ants. The variation in
the cytosol concentrations found in different ant species, and compounds in the exoskeleton
and glands in the head may influence the isolation and stability of the nuclei. This means that
the careful selection of the buffer is fundamental to ensure obtaining intact nuclei from the
worker ant cells used in the FCM analysis, thus preventing DNA degradation and guaranteeing
stoichiometric staining [38].

The present study also compared the sizes of the genomes of adult worker ants and the
pupae for the first time, and found no significant differences between them. This is a very
important advance in the FCM analysis of ants, given that collecting adult individuals is less
labor-intensive than extracting the entire colony. For previous studies, it was usually necessary
to obtain the brood, which depends on the life cycle of the colony and the time of the year (see
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Cardoso et al. [14]). Further, Dolezel and Bartos [38] demonstrated that one of the difficulties
in the use of FCM to analyze plants was the need to obtain fresh or live tissue, and this was
confirmed here for the FCM analysis of ants. We would recommend obtaining nuclei for FCM
analysis from freshly-sampled or living material, due the superior quality of the isolated nuclei,
in order to guarantee satisfactory results.

Conclusions

The results of the present study on the variation in karyotype length and genome size among M.
morschi and M. conformis populations revealed hidden diversity that has mostly been over-
looked in traditional descriptions of karyotypes. The changes observed in the fine structure of
the chromosomes may represent the first steps in the process of karyotype evolution, as sug-
gested for Mycetomoellerius holmgreni [16]. The genome sizes estimated in the present study
varied among cytotypes and populations. This variation is likely to be related primarily to the
stress experience during the dispersal of the species to new areas. We also provide detailed meth-
odological recommendations for the standardization of the procedure used to quantify the size
of the genome in ants by using the head of adult workers rather than tissue from the larvae or
pupae, and discuss the ideal internal standard reference. We also found that different lysis buft-
ers are more appropriate for the analysis of different ant subfamilies. It is thus necessary to select
the optimal lysis buffer to ensure the adequate suspension of nuclei when using adult workers as
the source of tissue. The FCM also proved, once more, to be an effective method for the quantifi-
cation of DNA, with no significant variation being found among measurement days.
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