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Abstract

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has

highlighted the need for performing accurate inference with limited data. Fundamental to the

design of rapid state responses is the ability to perform epidemiological model parameter

inference for localised trajectory predictions. In this work, we perform Bayesian parameter

inference using Markov Chain Monte Carlo (MCMC) methods on the Susceptible-Infected-

Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological

models with time-varying spreading rates for South Africa. The results find two change

points in the spreading rate of COVID-19 in South Africa as inferred from the confirmed

cases. The first change point coincides with state enactment of a travel ban and the resul-

tant containment of imported infections. The second change point coincides with the start of

a state-led mass screening and testing programme which has highlighted community-level

disease spread that was not well represented in the initial largely traveller based and private

laboratory dominated testing data. The results further suggest that due to the likely effect of

the national lockdown, community level transmissions are slower than the original imported

case driven spread of the disease.

Introduction

The first reported case of the novel coronavirus (SARS-CoV-2) in South Africa was announced

on 5 March 2020, following the initial manifestation of the virus in Wuhan China in December

2019 [1–3]. Due to its further spread and the severity of its associated clinical outcomes, the

disease was subsequently declared a pandemic by the World Health Organisation (WHO) on

11 March 2020 [1, 2]. In South Africa, by 26 April 2020, 4546 people had been confirmed to

have been infected by the coronavirus with 87 fatalities [4].

Numerous states have attempted to minimise the growth in number of COVID-19 infec-

tions [1, 5, 6]. These attempts are largely based on non-pharmaceutical interventions (NPIs)

aimed at separating the infectious population from the susceptible population [1].

These initiatives aim to strategically reduce the increase in infections to a level where their

healthcare systems stand a chance of minimising the number of fatalities [1]. Some of the criti-

cal indicators for policymaker response planning include projections of the infected population,
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estimates of health care service demand and whether current containment measures are effec-

tive [1].

As the pandemic develops in a rapid and varied manner in most countries, calibration of

epidemiological models based on available data can prove to be [7]. This difficulty is further

escalated by the high number of asymptomatic cases and the limited testing capacity [1, 2].

A fundamental issue when calibrating localised models is inferring parameters of compart-

mental models such as susceptible-infectious-recovered (SIR) and the susceptible-exposed-

infectious-recovered (SEIR) that are widely used in infectious disease projections. In the view

of public health policymakers, a critical aspect of projecting infections is the inference of

parameters that align with the underlying trajectories in their jurisdictions. The spreading rate

is a parameter of particular interest which is subject to changes due to voluntary social distanc-

ing measures and government-imposed contact bans.

The uncertainty in utilising these models is compounded by the limited data in the initial

phases and the rapidly changing dynamics due to rapid public policy changes.

To address these complexities, we utilise the Bayesian Framework for the inference of epi-

demiological model parameters in South Africa. The Bayesian framework allows for both

incorporation of prior knowledge and principled embedding of uncertainty in parameter

estimation.

In this work we combine Bayesian inference with the compartmental SEIR and SIR models

to infer time varying spreading rates that allow for quantification of the impact of government

interventions in South Africa.

Methods

Epidemiological modelling

Compartmental models are a class of models that is widely used in epidemiology to model

transitions between various stages of disease [1, 8, 9]. We now introduce the Susceptible-

Exposed-Infectious-Recovered (SEIR) and the related Susceptible-Infectious-Recovered

(SIR) compartmental models that have been dominant in COVID-19 modelling literature

[1, 5, 6, 10].

The Susceptible-Exposed-Infectious-Recovered Model. The SEIR is an established epi-

demiological model for the projection of infectious diseases. The SEIR models the transition of

individuals between four stages of a condition, namely:

• being susceptible to the condition,

• being infected and in incubation

• having the condition and being infectious to others and

• having recovered and built immunity for the disease.

The SEIR can be interpreted as a four-state Markov chain which is illustrated diagrammati-

cally in Fig 1. The SEIR relies on solving the system of ordinary differential equations below

Fig 1. An Illustration of the underlying states of the Susceptible-Exposed-Infectious-Recovered Model(SEIR).

https://doi.org/10.1371/journal.pone.0237126.g001
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representing the analytic trajectory of the infectious disease [1].

dS
dt
¼ �

lSI
N

ð1Þ

dE
dt
¼
lSI
N
� sE ð2Þ

dI
dt
¼ sE � mI ð3Þ

dR
dt
¼ mI ð4Þ

Where S is the susceptible population, I is the infected population, R is the recovered popula-

tion and N is the total population where N = S + E + I + R. λ is the transmission rate, σ is the

rate at which individuals in incubation become infectious, and μ is the recovery rate. 1/σ and

1/μ therefore, become the incubation period and contagious period respectively.

We also consider the Susceptible-Infectious-Recovered (SIR) model which is a subclass

of the SEIR model that assumes direct transition from the susceptible compartment to the

infected (and infectious) compartment. The SIR is represented by three coupled ordinary dif-

ferential equations rather than the four in the SEIR. Fig 2 depicts the three states of the SIR

model.

The basic reproductive number R0. The basic reproductive number (R0) represents the

mean number of additional infections created by one infectious individual in a susceptible

population. According to the latest available literature, without accounting for any social dis-

tancing policies the R0 for COVID-19 is between 2 and 3.5 [2, 6, 10, 11]. R0 can be expressed in

terms of λ and μ as:

R0 ¼
l

m
ð5Þ

Extensions to the SEIR and SIR models. We use an extended version of the SEIR and

SIR models of [6] that incorporates some of the observed phenomena relating to COVID-19.

First we include a delay D in becoming infected (Inew) and being reported in the confirmed

case statistics, such that the confirmed reported cases CRt at some time t are in the form [6]:

CRt ¼ Inewt� D ð6Þ

We further assume that the spreading rate λ is time-varying rather than constant with

change points that are affected by government interventions and voluntary social distancing

measures.

Fig 2. An Illustration of the underlying states of the Susceptible-Infectious-Recovered Model(SIR).

https://doi.org/10.1371/journal.pone.0237126.g002
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Bayesian parameter inference

We follow the framework of [6] to perform Bayesian inference for model parameters on the

South African COVID-19 data. The Bayesian framework allows for the posterior inference of

parameters which updates prior beliefs based on a data-driven likelihood. The posterior infer-

ence is governed by Bayes theorem as follows:

PðWjD;MÞ ¼
PðDjW;MÞPðWÞ

PðDÞ
ð7Þ

Where P(W|D, M) is the posterior distribution of a vector of model parameters (W) given

the model(M) and observed data(D), P(D|W, M) is the data likelihood and P(D) is the

evidence.

The likelihood. The Likelihood indicates the probability of observing the reported case

data given the assumed model. In our study, we adopt the Student-T distribution as the Likeli-

hood as suggested by [6]. Similar to a Gaussian likelihood, the Student-T likelihood allows for

parameter updates that minimise discrepancies between the predicted and observed reported

cases.

Priors. Parameter prior distributions encode some prior subject matter knowledge into

parameter estimation. In the case of epidemiological model parameters, priors incorporate lit-

erature based expected values of parameters such as recovery rate(μ), spreading rate(λ), change

points based on policy interventions etc.

The prior settings for the model parameters are listed in Table 1. We follow [6] by selecting

LogNormal distributions for λ and σ such that the initial mean basic reproductive number is

3.2 which is consistent with literature [2, 5, 6, 10, 12]. We set a LogNormal prior for the σ such

that the mean incubation period is five days. We use the history of government interventions

to set priors on change points in the spreading rate. The priors on change-points include 19/

03/2020 when a travel ban and school closures were announced, and 28/03/2020 when a

national lockdown was enforced. We keep the priors for the Lognormal distributions of the

spreading rates after the change points weakly-informative by setting the same mean as λ0 and

higher variances across all change points. This has the effect of placing greater weight on the

data driven likelihood. Similar to [6] we adopt weakly-informative Half-Cauchy priors for the

initial conditions for the infected and exposed populations.

Markov Chain Monte Carlo (MCMC). Given that the closed-form inference of the poste-

rior distributions on the parameters listed in Table 1 is infeasible, we make use of Markov

Chain Monte Carlo to sample from the posterior. Monte Carlo methods approximate solutions

Table 1. Prior distribution settings for SEIR and SIR model parameters.

Parameter Prior Distribution

Spreading rate λ0 LogNormal(log(0.4),0.5)

Spreading rate λ1 LogNormal(log(0.4),0.7)

Spreading rate λ2 LogNormal(log(0.4),0.7)

Incubation to infectious rate σ LogNormal(log(1/5),0.5)

Recovery rate μ LogNormal(log(1/8),0.2)

Reporting Delay D LogNormal(log(8),0.2)

Initial Infectious I0 Half-Cauchy(20)

Initial Exposed E0 Half-Cauchy(20)

Change Point t1 Normal(2020/03/18,1)

Change Point t2 Normal(2020/03/28,1)

https://doi.org/10.1371/journal.pone.0237126.t001
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to complex numerical problems by simulating a random process. MCMC uses a Markov

Chain to sample from the posterior distribution, where a Markov Chain is a sequence of ran-

dom variables Wt such that:

PðWtþ1jW1; :::;WtÞ ¼ PðWtþ1jWtÞ

MCMC techniques have been widely used in COVID-19 parameter inference [6, 10]. In

this work, we explore inference using Metropolis-Hastings (MH), Slice Sampling and No-

U-Turn Sampler (NUTS).

Metropolis Hastings (MH). MH is one of the simplest algorithms for generating a Mar-

kov Chain which converges to the correct stationary distribution. The MH generates proposed

samples using a proposal distribution. A new parameter state Wt� is accepted or rejected prob-

abilistically based on the posterior likelihood ratio:

P accept Wt�ð Þð Þ ¼ min 1;
PðWt�jD;MÞ
PðWt� 1jD;MÞ

� �

ð8Þ

A common proposal distribution is a symmetric random walk obtained by adding Gaussian

noise to a previously accepted parameter state. Random walk behaviour of such a proposal typ-

ically results in low sample acceptance rates.

Slice sampling. Slice sampling facilitates sampling from the posterior distribution P(W|D,

M) by adding an auxiliary variable u such that the joint posterior distribution becomes:

PðW; ujD;MÞ ¼

( 1

Z 0 � U � PðWjD;MÞ

0 Otherwise
ð9Þ

Where Z =
R
P(W|D, M)dW which is a normalisation constant. Marginal samples for the

parameters W can then be obtained by ignoring u samples from the joint samples. This process

corresponds to sampling above the slice of the posterior density function around a predefined

window. Fig 3 shows an illustration of slice sampling.

While sample acceptance is guaranteed with slice sampling, a large slice window can lead to

computationally inefficient sampling while a small window can lead to poor mixing.

Hybrid Monte Carlo (HMC) and the No-U-Turn Sampler (NUTS). Metropolis-Has-

tings (MH) and slice sampling tend to exhibit excessive random walk behaviour—where the

next state of the Markov Chain is randomly proposed from a proposal distribution [13–15].

This results in low proposal acceptance rates and small effective sample sizes.

HMC proposed by [16] reduces random walk behaviour by adding auxiliary momentum

variables to the parameter space [15]. HMC creates a vector field around the current state

using gradient information, which assigns the current state a trajectory towards a high proba-

bility next state [15]. The dynamical system formed by the model parameters W and the auxil-

iary momentum variables p is represented by the Hamiltonian H(W, p) written as follows [15,

16]:

HðW; pÞ ¼ MðWÞ þ KðpÞ ð10Þ

Where M(W) is the negative log-likelihood of the posterior distribution in Eq 7, also

referred to as the potential energy. K(p) is the kinetic energy defined by the kernel of a
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Gaussian with a covariance matrix M [17]:

KðpÞ ¼
pTM� 1p

2
: ð11Þ

The trajectory vector field is defined by considering the parameter space as a physical sys-

tem that follows Hamiltonian Dynamics [15]. The dynamical equations governing the trajec-

tory of the chain are then defined by Hamiltonian equations at a fictitious time t as follows

[16]:

@wi

@t
¼
@H
@pi

ð12Þ

@pi
@t
¼ �

@H
@wi

ð13Þ

In practical terms, the dynamical trajectory is discretised using the leapfrog integrator. In

the leapfrog integrator to reach the next point in the path, we take half a step in the momentum

direction, followed by a full step in the direction of the model parameters—then ending with

another half step in the momentum direction.

Due to the discretising errors arising from leapfrog integration a Metropolis acceptance

step is then performed in order to accept or reject the new sample proposed by the trajectory

[15, 18]. In the Metropolis step the parameters proposed by the HMC trajectory w� are

Fig 3. An illustration of slice sampling, moving from a parameter sample w(i) to w(i + 1) via auxiliary variable sample u(i + 1).

https://doi.org/10.1371/journal.pone.0237126.g003
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accepted with the probability [16]:

PðacceptÞ ¼ min 1;
Pðw�jD; a;b;HÞ
PðwjD; a;b;HÞ

� �

ð14Þ

Algorithm 1 shows the pseudo-code for the HMC where � is a discretisation stepsize. The

leapfrog steps are repeated until the maximum trajectory length L is reached.

Algorithm 1: Hybrid Monte Carlo Algorithm
Data: Confirmed Cases dataset {C(t)}
Result: N Samples of model parameters W
for n  1 to N do
w0  winit
sample the auxiliary momentum variables p
p � N ð0;MÞ
Use leapfrog steps to generate proposals for w
for t  1 to L do

pðt þ �=2Þ  pðtÞ þ ð�=2Þ
@H
@w

w tð Þð Þ

wðt þ �Þ  wðtÞ þ �
pðt þ �=2Þ

M

pðt þ �Þ  pðt þ �=2Þ þ ð�=2Þ
@H
@w

w t þ �ð Þð Þ

end
Metropolis Update step:
(p, w)n  (p(L), w(L)) with probability:

min 1;
Pðwt�jD;MÞ
PðwjD;MÞ

� �

end
The HMC algorithm has multiple parameters that require tuning for efficient sampling,

such as the step size and the trajectory length. In terms of trajectory length, a trajectory length

that is too short leads to random walk behaviour similar to MH. While a trajectory length that

is too long results in a trajectory that inefficiently traces back.

The stepsize is also a critical parameter for sampling, small stepsizes are computationally

inefficient leading to correlated samples and poor mixing while large stepsizes compound dis-

cretisation errors leading to low acceptance rates. Tuning these parameters requires multiple

time consuming trial runs.

NUTS automates the tuning of the leapfrog stepsize and trajectory length. In NUTS the

stepsize is tuned during an initial burn-in phase by targeting particular levels of sample accep-

tance. The trajectory length is tuned by iteratively adding steps until either the chain starts to

trace back (U-turn) or the Hamiltonian explodes (becomes infinite).
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We use the samplers described above to calibrate the SEIR and SIR models on daily new

cases and cumulative cases data for South Africa up to and including 20 April 2020 provided

by Johns Hopkins University’s Center for Systems Science and Engineering(CSSE) [3].

Results

SIR and SEIR model parameter inference was performed using confirmed cases data up to and

including 20 April 2020 and MCMC samplers described in the methodology section. Each of the

samplers are run such that 5000 samples are drawn with 1000 burn-in and tuning steps. We use

leave-one-out(LOO) cross-validation error of [19] to evaluate the goodness of fit of each model.

Table 2 shows the LOO validation errors of the various models. It can be seen that the SIR

model with two change points as the best model fit with the lowest mean LOO of 448.00. The

Table 2. Leave-one out (LOO) statistics comparing SEIR and SIR models with different number of change points.

Model Change Points LOO Effective Parameters

SIR 2 448.00 10.27

SEIR 1 457.77 11.60

SEIR 2 459.94 12.00

SIR 1 463.03 8.51

SEIR 0 464.69 16.14

SIR 0 517.72 4.72

https://doi.org/10.1371/journal.pone.0237126.t002

Fig 4. Posterior parameter distributions for the SIR model with two change points.

https://doi.org/10.1371/journal.pone.0237126.g004
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SEIR model with two change points showed a mean LOO of 459.94. We note that [6] similarly

finds that the SIR model displayed superior goodness of fit to the SEIR on German data.

We now further present detailed results of the SIR and SEIR models with inference using

NUTS, the trace plots from these models indicating stationarity in the sampling chains are

provided in S2 and S5 Figs. The trace plots for the SIR and SEIR models using MH are pro-

vided in S3 and S6 Figs, while similar trace plots for slice sampling are provided in S4 and

S7 Figs. The trace plots largely indicate that the NUTS sampler displays greater agreement

between parallel chains thus lower rhat values.

Fig 5. Predictions and actual data(until 20 April 2020) based on SIR models with various change points. The top plot indicates the actual and

projected new cases while the bottom plot shows the actual and projected cumulative cases.

https://doi.org/10.1371/journal.pone.0237126.g005
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Posterior parameter distributions

Fig 4 shows the posterior distributions of the SIR model parameters. The parameter estimates

are λ0� 0.495 (CI[0.41, 0.564]), λ1� 0.099 (CI[0.065, 0.145]), λ2� 0.197 (CI[0.134, 0.264]),

μ� 0.151 (CI[0.09, 0.205]) and reporting delay (D)� 6.848 (CI[5.178, 8.165]). This corre-

sponds to R0 values of 3.278 (CI[2.715, 3.73]), 0.655 (CI[0.430, 0.960]) and 1.304 (CI[0.887,

1.7748]) at the respective change points. S1 Fig further shows the joint posterior distributions

of λt and μ at each of the change points.

Fig 6. Predictions and actual data(until 20 April 2020) based on SEIR models with various change points. The top plot indicates the actual and

projected new cases while the bottom plot shows the actual and projected cumulative cases.

https://doi.org/10.1371/journal.pone.0237126.g006
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Time-varying spread rates allow for inference of the impact of various state and societal

interventions on the spreading rate. Fig 5 shows the fit and projections based on SIR models

with zero, one and two change points. As can be seen from the plot the two change point

model best captures the trajectory in the development of new cases relative to the zero and one

change point models. The superior goodness of fit of the two change point model is also illus-

trated in Table 2. The fit and projections showing similar behaviour on the SEIR model with

various change points are shown in Fig 6.

Reporting delays, incubation and infectious period

The mean reporting delay time in days was found to be 6.848 (CI[5.178, 8.165]), literature sug-

gests this delay includes both the incubation period and the test reporting lags. The posterior

distribution incubation period from the SEIR model in Fig 7 yields a median incubation

period of 4.537 days (CI[2.499, 6.787]). Thus suggesting a mean laboratory reporting delay of

approximately 2.311 days. A mean recovery rate μ� 0.151 implies mean infectious period of

6.620 days which is in line with related literature [2, 6, 10].

Timing and impact of interventions

Fig 8 depicts the posterior distributions of the spreading rates and times corresponding to

each change point. We observe that the first change point is on a mean date of 18 March 2020

(CI:[16/03/2020, 20/03/2020]). This date is consistent with the travel ban, school closures and

social distancing recommendations. This change point resulted in a substantial decrease in the

spreading rate (80%) primarily due to the reduction in imported infections.

The second change point is observed on 28 March 2020 (CI:[26/03/2020, 30/03/2020]).

This time point coincides with the announcement of mass screening and testing by the

Fig 7. Posterior parameter distributions under SEIR model with two change points.

https://doi.org/10.1371/journal.pone.0237126.g007
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government on 30 March 2020. The resulting mean R0 of 1.304 implies a 60% decrease from

the initial value.

The inference of parameters is dependent on the underlying testing processes that generate

the confirmed case data. The effect of the mass screening and testing campaign was to change

the underlying confirmed case data generating process by widening the criteria of those

Fig 8. Posterior distributions of the spreading rates(λt) and the corresponding distributions of the time points.

https://doi.org/10.1371/journal.pone.0237126.g008
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eligible for testing. While initial testing focused on individuals that either had exposure to

known cases or travelled to known COVID-19 affected countries, mass screening and testing

further introduced detection of community level transmissions which may contain undocu-

mented contact and exposure to COVID-19 positive individuals.

Discussion

We have performed Bayesian parameter inference of the SIR and SEIR models using MCMC

and publicly available data as at 20 April 2020. The resulting parameter estimates fall in-line

with the existing literature in-terms of mean baseline R0 (before government action), mean

incubation time and mean infectious period [2, 5, 6, 10].

We find that initial government action that mainly included a travel ban, school closures

and stay-home orders resulted in a mean decline of 80% in the spreading rate. Further govern-

ment action through mass screening and testing campaigns resulted in a second trajectory

change point. This latter change point is mainly driven by the widening of the population eligi-

ble for testing, from travellers (and their known contacts) to include the generalised commu-

nity who would have probably not afforded private lab testing which dominated the initial

data. This resulted in an increase of R0 to 1.304. The effect of mass screening and testing can

also be seen in Fig 9 indicating a mean increase in daily tests preformed from 1639 to 4374.

The second change point illustrates the possible existence of multiple pandemics, as sug-

gested by [20]. Thus testing after 28 March is more indicative of community-level transmis-

sions that were possibly not as well documented in-terms of contact tracing and isolation

Fig 9. Daily COVID-19 tests performed in South Africa. The orange line indicates the segmented mean number of tests per day before and after the

28 March 2020 change point.

https://doi.org/10.1371/journal.pone.0237126.g009
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relative to the initial imported infection driven pandemic. This is also supported by the docu-

mented increase in public laboratory testing (relative to private) past this change point, sug-

gesting health care access might also play a role in the detection of community-level infections

[21].

Conclusion

We have utilised a Bayesian inference framework to infer time-varying spreading rates of

COVID-19 in South Africa. The time-varying spreading rates allow us to estimate the effects

of government actions on the dynamics of the pandemic.

The results indicate a decrease in the mean spreading rate of 60%, which mainly coincides

with the containment of imported infections, school closures and stay at home orders.

The results also indicate the emergence of community-level infections which are increas-

ingly being highlighted by the mass screening and testing campaign. The development of the

community level transmissions (R0� 1.3041 (CI[0.887, 1.7748])) of the pandemic at the time

of publication appears to be slower than that of the initial traveller based pandemic (R0�

3.278 (CI[2.715, 3.73])).

A future improvement to this work could include extensions to regional and provincial

studies as current data suggests varied spreading rates both regionally and provincially. As

more government interventions come to play priors on more change points might also be

necessary.
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S1 Fig. Two dimensional heat maps of the joint posterior distributions of the spreading

rate(λ) and the recovery rate(μ) at various change points of the SIR model. The high joint

density areas (in yellow) indicate likely values of R0. The baseline mean R0 estimate in S1 Fig
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S2 Fig. Shows diagnostic trace plots for the SIR model inferred using NUTS.
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S3 Fig. Shows diagnostic trace plots for the SIR model inferred using MH.

(TIFF)

S4 Fig. Shows diagnostic trace plots for the SIR model inferred using slice sampling.
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S5 Fig. Shows diagnostic trace plots for the SEIR model inferred using NUTS.
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S6 Fig. Shows diagnostic trace plots for the SEIR model inferred using MH.
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S7 Fig. Shows diagnostic trace plots for the SEIR model inferred using slice sampling.
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