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Abstract

This paper provides a general framework for controlling quality characteristics related to

control variables and limited to the intervals (0, 1], [0, 1), or [0, 1]. The proposed control

chart is based on the inflated beta regression model considering a reparametrization of the

inflated beta distribution indexed by the response mean, which is useful for modeling frac-

tions and proportions. The contribution of the paper is twofold. First, we extend the inflated

beta regression model by allowing a regression structure for the precision parameter. We

also present closed-form expressions for the score vector and Fisher’s information matrix.

Second, based on the proposed regression model, we introduce a new model-based control

chart. The control limits are obtained considering the estimates of the inflated beta regres-

sion model parameters. We conduct a Monte Carlo simulation study to evaluate the perfor-

mance of the proposed regression model estimators, and the performance of the proposed

control chart is evaluated in terms of run length distribution. Finally, we present and discuss

an empirical application to show the applicability of the proposed regression control chart.

1 Introduction

Standard control charts are directly applied to the output of a quality characteristic. However,

the quality characteristic (process output) can be affected by external covariates (control vari-

ables), where we rather control a varying mean than a constant one. In these cases, the regres-

sion control chart [1] may be an effective statistical process control tool. Such method is

widely used when the quality of a process or product is better characterized by a functional

relationship between the response variable and one or more explanatory variables [2].

The standard regression control chart is based on the linear regression model, where the

variable of interest is assumed to be normally distributed. However, in practice, several of

these variables may not follow a normal distribution, leading to poor Gaussian-based infer-

ences. Thus, several studies have been proposing non-Gaussian model-based control charts.

[3] presented a model-based scheme for monitoring multiple gamma-distributed variables. By

considering that robust methods can be effective in the presence of outlying observations, [4]

explored the robust generalized linear model for a gamma-distributed response. [5] used
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deviance residual for monitoring variables in a three-stage process assuming gamma, normal,

and Poisson distributions.

Examples of a non-Gaussian process output are variables that assume values in the standard

unit interval, such as fractions and proportions. In such instances, the usual regression control

chart may be inappropriate since double bounded data are typically asymmetric and the

Gaussian-based assumption is not suitable. In this sense, [6] proposed the beta regression con-

trol chart to monitor fractions and proportions related to control variables. The proposed con-

trol chart considers the beta regression model with varying dispersion [7], assuming that the

mean and dispersion parameters of beta distributed variables are related to exogenous vari-

ables and modeled by regression structures. However, fractions and proportions may contain

zeros and/or ones, leading to the unsuitable use of the beta distribution for data modeling [8].

Alternative regression models have been proposed to mend beta regression flaws in the

presence of zeros and/or ones. [9] presented a unit inflated beta model for modeling efficiency

scores as a function of exogenous variables. [10] proposed a zero inflated beta model to analyze

data in corporate capital structures. [8] introduced a general class of zero or one inflated beta

regression models, which is a natural extension of the beta regression model [11] to model var-

iables that assume values in (0, 1] or [0, 1). [12] proposed an inflated beta regression model

based on a reparametrization of the inflated beta distribution. This model accommodates

mixed random variable responses, with non-negligible probabilities of assuming zeros and/or

ones and continuous values in the interval (0, 1) that follows a beta distribution. The inflated

beta regression model introduced by [12] may be useful for developing model-based control

charts for monitoring inflated beta distributed processes as it considers an interesting parame-

trization in terms of the response variable mean. However, the model proposed by [12] does

not consider a regression structure for the precision parameter. The monitoring of the mean

and precision (or dispersion) is relevant to the statistical process control [6, 13, 14]. In addi-

tion, incorrect modeling of the dispersion can generate a high number of false alarms or loss of

detection power of special causes [6]. Moreover, dispersion modeling is necessary in regression

models in order to obtain accurate inferences about the structure parameters of the mean

regression [15].

Control chart is a dynamic tool that works under two different phases, namely Phase I and

Phase II. In practical situations, the in-control parameters are unknown and have to be esti-

mated from a Phase I data set. Different Phase I data sets lead to different control chart perfor-

mance. Thus, it is important to study the practitioner-to-practitioner variability due to

parameter estimation. The aim of Phase I analysis is to estimate the parameters, while quick

detection of out-of-control state is conducted in Phase II [16]. The literature offers some stud-

ies related to Phase I and Phase II analyses in regression models. For example, [17] proposed

Phase I profile monitoring schemes for binary responses that can be represented by logistic

regression models. [17] developed several Hotelling T2-type Phase I control charts for moni-

toring the parameters of a logistic regression linking to a binary response and one or more pre-

dictor variables. [18] developed control charts by integrating an exponentially weighted

moving average scheme with a likelihood ratio test based on logistic regression models in

Phase II study. [19] proposed a new modeling and monitoring framework for Phase I analysis

of multivariate profiles by incorporating the regression-adjustment technique into the func-

tional principal components analysis. [20] proposed the monitoring of profiles using general-

ized linear models during Phase II in which the explanatory variables can be a fixed design or

any random arbitrary design.

In this context, this paper introduces the inflated beta regression control chart (IBRCC)

with varying dispersion, useful for monitoring double bounded variables when zeros or ones

appear in the data along with the presence of control variables. The process output may
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represent individual measures (e.g. efficiency score) or a ratio between continuous numbers

(e.g. relative humidity). The contribution of the present paper is twofold. First, we extend the

inflated beta regression model proposed by [12] by allowing a regression structure for the pre-

cision parameter. We also discuss likelihood inference of the model parameters. Second, we

introduce the IBRCC based on the proposed inflated beta regression model with varying dis-

persion. Since in practice the parameters of the regression model are unknown, the proposed

control chart is implemented into two phases. In Phase I, the parameters are estimated from

an in-control sample, and in Phase II, we perform the monitoring scheme.

The remaining of the paper unfolds as follows. In Section 2, we describe the IBRCC and

introduce the beta inflated mean regression model with varying dispersion. We also discuss

likelihood inference and present the control limits estimation procedure. Section 3 presents a

simulation study to evaluate (i) the inflated beta regression model with varying dispersion esti-

mators and (ii) the performance of the proposed IBRCC and some competing control charts

in the literature based on the run length (RL). In Section 4, we discuss and present an empirical

application to show the applicability of the proposed IBRCC in real situations. Finally, some

conclusions are presented in Section 5.

2 Inflated beta regression control chart

In this section, we introduce the IBRCC. Firstly, in Subsection 2.1 we present the inflated beta

regression model with varying dispersion. The model we propose in this work is an extension

of the model proposed by [12], where the authors used a reparametrization of the inflated beta

distribution indexed by the response mean. In the Subsection 2.2 we present the model-based

control limits for the proposed IBRCC. Secondly, in Subsubsection 2.2.1, we discuss the likeli-

hood inference for the model parameters. Finally, in Subsubsection 2.2.2 we present the con-

trol limits estimation procedure.

2.1 Inflated beta regression model with varying dispersion

The inflated beta density function is given by [12]

f ðy; a0; a1; g; �Þ ¼

a0ð1 � gÞ; if y ¼ 0;

cBðy; m; �Þ; if y 2 ð0; 1Þ;

a1g; if y ¼ 1;

8
>>><

>>>:

ð1Þ

where 0< α0 < 1, 0< α1 < 1, 0< γ< 1, and ϕ> 0 are the distribution parameters, c = 1 −
α0(1 − γ) − α1 γ, μ = γ(1 − α1)/c, andBðy; m; �Þ is the beta density function given by [11]

Bðy; m; �Þ ¼
Gð�Þ

Gðm�ÞGðð1 � mÞ�Þ
ym�� 1ð1 � yÞð1� mÞ�� 1

; 0 < y < 1;

where 0< μ< 1, ϕ> 0, and Γ(�) is the gamma function. Here, ϕ is a precision parameter

(inversion of the dispersion), E(y) = γ, and Var ðyÞ ¼ ð1þa1�Þ

1þ�
gþ

ð1� a1Þ
2�

ð1� a0ð1� gÞ� a1gÞð1þ�Þ
� 1

� �
g2.

Density (1) is said to be zero and one inflated beta, i.e., y � BImða0; a1; g; �Þ. Note that P
(y = 0) = α0(1 − γ) and P(y = 1) = α1 γ, thus if α0 = 0 and α1 > 0, the distribution in (1) is called

one inflated beta distribution. Differently, if α0 > 0 and α1 = 0, the distribution given in (1) is

called zero inflated beta distribution.

Let y1, . . ., yn be independent random variables where each yt has the density in (1) for

t = 1, . . ., n. The inflated beta regression model with varying dispersion, which is an extension

of the regression model proposed by [12], is given by the following structures for modeling the

PLOS ONE Inflated beta regression control chart

PLOS ONE | https://doi.org/10.1371/journal.pone.0236756 July 30, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0236756


response yt

g1ða0tÞ ¼ ~x>t o; ð2Þ

g2ða1tÞ ¼ �x>t k; ð3Þ

g3ðgtÞ ¼ x>t b; ð4Þ

g4ð�tÞ ¼ €x>t z; ð5Þ

where o ¼ ½o0;o1; . . . ;ok1
�
>

, k ¼ ½k0; k1; . . . ; kk2
�
>

, b ¼ ½b0; b1; . . . ; bk3
�
>

, and z ¼

½z0; z1; . . . ; zk4
�
>

are vectors of unknown regression parameters, ~xt ¼ ½1; ~xt1; . . . ; ~xtk1
�
>

,

�xt ¼ ½1; �xt1; . . . ; �xtk2
�
>

, xt ¼ ½1; xt1; . . . ; xtk3
�
>

, and €xt ¼ ½1; €xt1; . . . ; €xtk4
�
>

are observations on

k1, k2, k3, and k4 covariates, respectively, and g1 : ð0; 1Þ ! IR, g2 : ð0; 1Þ ! IR, g3 : ð0; 1Þ ! IR,

and g4 : ð0;1Þ ! IR are real-valued link functions with continuous second derivatives. For

g1(�), g2(�), and g3(�), several different link functions can be used, such as logit, probit, log-log,

complementary log-log, or Cauchy. For g4(�), the choices are log or square root link functions,

for example. More details about link functions on the class of beta regression models can be

found in [11] and [21].

Notably, the model proposed by [12] assume that, for t = 1, . . ., n, ϕt = ϕ (constant preci-

sion). In the present study, the precision parameter is allowed to vary across observations,

making the proposed model more general than the original inflated beta regression model.

The assumption of non-constant dispersion is natural in several production processes [22–24].

In practical situations, it is important to monitor the dispersion of the process because an

increase in dispersion may indicate process deterioration, while a reduction in dispersion

means an improvement in process capability [25]. In addition, it is possible to consider control

variables for modeling the parameters α0 and α1, which are related to the probabilities of zero

and one, respectively.

2.2 Model-based control chart limits

The purpose of IBRCC is to monitor double bounded processes that contain values equal to

zero or one, considering that the mean, precision, and parameters related to the probabilities

of zero and one (α0 and α1) of the quality characteristic of interest are affected by control vari-

ables. Let (1 − α) be a control region where α is the type I error probability, the lower control

limit (LCL), center line (CL), and upper control limit (UCL) of the proposed control chart are

defined, respectively, by

LCLt ¼ F� 1ða=2; a0t; a1t; gt; �tÞ;

CLt ¼ gt;

UCLt ¼ F� 1ð1 � a=2; a0t; a1t; gt; �tÞ;

where FðyÞ ¼ PðY � yÞ ¼
R y

0
f ðu; a0; a1; g; �Þdu is the inflated beta cumulative distribution

function and F−1(�) is the quantile function of the inflated beta variable. The parameters α0t,

α1t, γt, and ϕt are functions of ω, κ, β, and z, respectively, and through (2), (3), (4), and (5) we

have a0t ¼ g � 1
1
ð~x>t oÞ, a1t ¼ g � 1

2
ð�x>t kÞ, gt ¼ g � 1

3
ðx>t bÞ, and �t ¼ g � 1

4
ð€x>t zÞ. In practice, the

model parameters are unknown and estimation methods are necessary to estimate the in-con-

trol limits. Thus, we consider the likelihood theory [26–28], which we discuss in the following

PLOS ONE Inflated beta regression control chart

PLOS ONE | https://doi.org/10.1371/journal.pone.0236756 July 30, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0236756


subsection. We presented results of the log-likelihood and score functions, which are exten-

sions of those developed for the inflated beta regression model proposed by [12].

2.2.1 Likelihood inference. We shall consider the maximum likelihood estimator (MLE)

for the parameter vector θ = (ω>, κ>, β>, z>)>. The log-likelihood function is given by

‘ðθÞ ¼
Xn

t¼1

‘tða0t; a1t; gt; �tÞ; ð6Þ

with

‘ðθÞ ¼
Xn

t¼1

log ½a0tð1 � gtÞ�10ðytÞ þ log ða1tgtÞ11ðytÞ

þ½ log ðctÞ þ log ðBðyt; mt; �tÞÞ�½ð1 � 10ðytÞÞð1 � 11ðytÞÞ�;

where 10ðytÞ is an indicator function that equals 1 if y = 0 and 0 if y 2 (0, 1], 11ðytÞ is an indica-

tor function that equals 1 if y = 1 and 0 if y 2 [0, 1), and

log ½Bðyt; mt; �tÞ� ¼ logGð�tÞ � logGðmt�tÞ � logGðð1 � mtÞ�tÞ þ ðmt�t � 1Þy�t þ ð�t � 2Þyyt ;

in which α0t, α1t, γt, and ϕt are given by the regression structures in (2), (3), (4), and (5), respec-

tively. Additionally,

y�t ¼
log

yt
1 � yt

� �

; yt 2 ð0; 1Þ;

0; yt ¼ 0 or yt ¼ 1;

8
><

>:

and yyt ¼
log ð1 � ytÞ; yt 2 ð0; 1Þ;

0; yt ¼ 0 or yt ¼ 1:

(

By deriving the log-likelihood function in (6) with respect to each element of the parameter

vector θ, we obtain the score vector given by U(θ) = (Uω(θ)>, Uκ(θ)>, Uβ(θ)>, Uz(γ)>)>. The

MLE of θ is obtained by solving the non-linear system (Uω(θ)>, Uκ(θ)>, Uβ(θ)>, Uz(γ)>) = 0,

where 0 is a null vector of dimension (k1 + k2 + k3 + k4). The MLEs cannot be expressed in

closed-form, hence the maximization of the log-likelihood function needs to be numerically

conducted through a Newton or quasi-Newton algorithm. In this work, we used the quasi-

Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [29] for computational

implementation.

The Fisher information matrix (K(θ)), which is useful for large sample inferences, requires

the expectations of second order derivatives of the log-likelihood function. The score vector U
(θ) and Fisher’s information matrix can be found in the Appendix.

To test hypotheses on the parameter θj, j = 1, . . ., (k1 + k2 + k3 + k4), we consider the null

hypothesisH 0 : θj ¼ θ0

j versusH 1 : θj 6¼ θ0

j . The Wald test may be considered using the fol-

lowing z statistic [26]

z ¼
bθ j � θ0

j

bseðbθ jÞ
;

where bθ j represents the MLE of θj and the standard error of bθ j is given by

bseðbθ jÞ ¼ ½diagðdcovðbθÞÞ�
1=2

j , in which dcovðbθÞ ¼ K � 1ðbθÞ is the asymptotic variance and covari-

ance matrix of bθ. In large sample sizes and underH 0, the z statistic follows a standard
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normal distribution [26]. The test is performed by comparing the computed z statistic with

the usual quantiles of the standard normal distribution.

2.2.2 Control limits estimation. After obtaining the MLE of θ, bθ ¼ ðbω>; bκ>; bβ>;bζ>Þ>,

and considering an in-control process, the estimated control limits are given by

dLCLt ¼ F� 1ða=2; ba0t; ba1t;bgt;
b�tÞ; ð7Þ

cCLt ¼ bgt;

dUCLt ¼ F� 1ð1 � a=2; ba0t; ba1t;bgt;
b�tÞ; ð8Þ

where ba0t ¼ g � 1
1
ð~x>t boÞ, ba1t ¼ g � 1

2
ð�x>t bkÞ, bgt ¼ g � 1

3
ðx>t bbÞ, and b�t ¼ g � 1

4
ð€x>t bzÞ. Thus, we propose

the following algorithm to implement the IBRCC.

1. Fit the inflated beta regression model with varying dispersion under Phase I and obtain the

MLEs, namely bo, bk, bb, and bz.

2. Using covariates in Phase II, estimate α0t, α1t, γt, and ϕt such that ba0t ¼ g � 1
1
ð~x>t boÞ,

ba1t ¼ g � 1
2
ð�x>t bkÞ, bgt ¼ g � 1

3
ðx>t bbÞ, and b�t ¼ g � 1

4
ð€x>t bzÞ.

3. For a given type I error probability α and the estimates ba0t, ba1t, bgt, and b�t, compute the esti-

mated control limits using (7) and (8).

4. Plot each data point yt together with the estimated control limits dUCLt and dLCLt, for

t = 1, . . ., n.

The observation yt that is out of the estimated control limits interval ( dUCLt;
dLCLtÞ is con-

sidered out-of-control.

3 Simulation study

This section presents a Monte Carlo simulation study to evaluate the estimators of the intro-

duced inflated beta regression model with varying dispersion and the performance of the

IBRCC. The performance of the proposed control chart is compared with some alternatives in

literature, namely: the usual linear regression control chart (RCC) [1], the beta regression con-

trol chart (BRCC) [6], and the inflated beta control chart (IBCC) [30]. Note that the RCC is a

classical regression control chart that works under Gaussian assumptions. The other control

charts are state-of-the-art alternatives, but the BRCC does not consider inflation in zeros and/

or ones and the IBCC does not include covariates.

We used the following structures for data generation

logitða0tÞ ¼ o0 þ o1�xt;

logitða1tÞ ¼ Z0 þ Z1~xt;

logitðgtÞ ¼ b0 þ b1xt;

logð�tÞ ¼ z0 þ z1€xt;

with t = 1, . . ., n. The values of ~xt , �xt , and €xt were obtained from a Bernoulli distribution with

parameter p = 0.3, and xt was generated from a uniform distribution in the interval (0, 1), thus

considering discrete and continuous random variables. We considered 5, 000 Monte Carlo

replications and sample sizes n = 100, 200, and 500. According to [31] and [32], this number of

PLOS ONE Inflated beta regression control chart

PLOS ONE | https://doi.org/10.1371/journal.pone.0236756 July 30, 2020 6 / 20

https://doi.org/10.1371/journal.pone.0236756


replications is enough to obtain accurate results. All simulations were performed using the R
programming language [33].

In the numerical evaluation, we considered several scenarios with different characteristics,

namely: zero and one inflated beta regression model (Scenario 1), zero inflated beta regression

model (Scenarios 2, 4, and 6), and one inflated beta regression model (Scenarios 3, 5, and 7).

The parameter values are shown in Table 1. In Scenario 1, the mean is centered on the stan-

dard unit interval, γ 2 [0.43, 0.57], and the average percentage of zeros and ones in the sample

is approximately equal to 13% for both. Scenarios 2, 4, and 6 consider the mean close to zero,

with γ 2 [0.063, 0.154], [0.012, 0.039], and [0.039, 0.119], and average percentages of zeros in

the sample equal to 9.3%, 3.4%, and 6.4%, respectively. For Scenarios 3, 5, and 7, the mean is

close to one, with γ 2 [0.881, 0.971], [0.668, 0.924], and [0.858, 0.952], and average percentages

of ones in the sample equal to 8.3%, 2.6%, and 23.5%, respectively.

3.1 Point estimation evaluation

For the point estimation evaluation, we computed the mean, percentage relative bias (RB), and

mean square error (MSE) for each estimator in all Scenarios (see Table 1). For brevity and sim-

ilarity of results, we only present results for Scenarios 1, 2, and 7 (n = 100 and n = 500) as

shown in Table 2. The figures show that the mean of the estimators is close to the correspond-

ing parameter values. The RB and MSE decrease when the sample size increases, indicating

that the MLEs are consistent. For instance, for β1 (γ submodel) in Scenario 1, the RB of the

estimator is equal to 0.2257% for n = 100 and equal to −0.0548% for n = 500. Regarding MSE,

considering ω0 in Scenario 2 and n 2 {100, 500}, the MSE is equal to 0.2291 and 0.0373, respec-

tively. As in other studies related to beta regression [21, 34], it is noteworthy that the RB of

MLEs corresponding to the precision covariate parameters is greater than those of that

model the mean response. For instance, consider bz1 (ϕ submodel) in Scenario 7, we have

RB = −8.2035% for n = 100 and RB = −2.4411% for n = 500. Regarding parameters related to

the probabilities of zeros and ones, the bias also decreases considerably as sample size

increases. For example, in Scenario 1 and n = 100, the estimator of ω1 (α0 submodel) yields

RB = 16.9130% and the estimator of η1 (α1 submodel) yields RB = 14.8922%. For n = 500, the

bias for the same estimators reduces to 4.5210% and 3.4431%, respectively.

In practice, the regression model relating the output and covariates is rarely known and the

parameters have to be estimated. Our simulation results show that the MLE in the proposed

model perform well, presenting low MSE for the estimates in all situations. This way, the pro-

posed control chart may also present good performance in practice. In the next section, we

shall investigate the run length performance of the IBRCC with estimated parameters.

Table 1. Different scenarios considered in the simulation study.

Scenario Parameters

ω0 ω1 η0 η1 β0 β1 z0 z1

1 −1.00 −0.20 −1.00 −0.20 −0.30 0.60 2.00 1.00

2 −2.30 0.90 0.00 0.00 −2.40 0.80 4.50 −0.30

3 0.00 0.00 −2.50 0.50 3.50 −1.50 2.00 −0.70

4 −3.50 0.50 0.00 0.00 −4.40 1.20 5.50 −0.50

5 0.00 0.00 −3.50 0.30 2.50 −1.80 1.00 −0.20

6 −2.50 0.90 0.00 0.00 −2.70 1.00 3.00 −0.30

7 0.00 0.00 −1.00 −0.20 3.00 −1.20 1.50 −0.30

https://doi.org/10.1371/journal.pone.0236756.t001
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3.2 Control charts performance

This section presents a run length analysis to evaluate the performance of the considered con-

trol charts. When the process is in-control, the run length (RL) distribution follows a geomet-

ric distribution with parameter α, which is the type I error probability [35]. The ability of a

control chart to detect changes in the process is usually measured by the average number of

observations until the detection of an out-of-control point (ARL) [36]. However, other mea-

sures can also be used for this purpose. We considered another location measure, the median

(MRL), a dispersion measure, and the standard deviation (SDRL) of the RL distribution. Addi-

tionally, we computed the mean absolute percentage error (MAPE) for each measure for all

evaluated control charts.

We compared the proposed IBRCC with the standard RCC [1], and the state-of-the-art

charts, namely BRCC [6] and IBCC [30]. Since the BRCC does not consider values equal to

zero or one, we replaced zeros by 0.0001 and ones by 0.9999 for its application. For all

considered control charts, we examined two aspects of evaluation: in-control (ARL0 ¼
1

a
,

MRL0 ¼
lnð0:5Þ
lnð1� aÞ, SDRL0 ¼

ffiffiffiffiffiffiffiffi
ð1� aÞ

a2

q

) and out-of-control (ARL1 ¼
1

1� b
, where β is the type II error

probability) [30, 35]. For brevity, we do not present the MRL and SDRL results for the out-of-

control process. The control charts were evaluated in Scenarios 2 to 7 (Table 2), considering

inflation in 0 or 1. Scenario 1 was not covered in this section because it does not reflect real sta-

tistical process control situations, being possible to present perfect nonconforming and perfect

conforming in the same process.

Table 2. Monte Carlo simulation results of point estimation evaluation.

Scenario 1

n# Param.! ω0 = −1.00 ω1 = −0.20 η0 = −1.00 η1 = −0.20 β0 = −0.30 β1 = 0.60 z0 = 2.00 z1 = 1.00

100 Mean −1.0393 −0.2338 −1.0439 −0.2298 −0.3026 0.6013 2.0455 1.0717

RB 3.9304 16.9130 4.3925 14.8922 0.8683 0.2257 2.2770 7.1753

MSE 0.1396 0.3936 0.1425 0.4091 0.0279 0.0553 0.0403 0.1412

500 Mean −1.0078 −0.2090 −1.0146 −0.2069 −0.3009 0.5997 2.0080 1.0142

RB 0.7846 4.5210 1.4628 3.4431 0.3143 −0.0548 0.4141 1.4201

MSE 0.0230 0.0695 0.0241 0.0686 0.0052 0.0101 0.0071 0.0250

Scenario 2

n# Param.! ω0 = −2.30 ω1 = 0.90 η0 = 0.0 η1 = 0.0 β0 = −2.40 β1 = 0.80 z0 = 4.50 z1 = −0.30

100 Mean −2.3694 0.9302 — — −2.4034 0.80115 4.5469 −0.2616

RB 3.0207 3.3572 — — 0.1455 0.1445 1.0435 −12.7889

MSE 0.2291 0.2588 — — 0.0076 0.0161 0.0359 0.1254

500 Mean −2.313 0.9030 — — 2.4002 0.8005 4.5093 −0.2911

RB 0.5780 0.3328 — — 0.0096 0.0637 0.2072 −2.9518

MSE 0.0373 0.0403 — — 0.0013 0.0027 0.0062 0.0222

Scenario 7

n# Param.! ω0 = 0.0 ω1 = 0.0 η0 = −1.00 η1 = −0.20 β0 = 3.00 β1 = −1.20 z0 = 1.50 z1 = −0.30

100 Mean — — −1.0201 -0.2602 3.0223 -1.2099 1.5475 −0.2753

RB — — 2.0136 30.1092 0.7455 0.8254 3.1698 −8.2035

MSE — — 0.0827 0.3659 0.0952 0.2023 0.0478 0.0990

500 Mean — — −1.0007 −0.2116 3.0062 −1.2028 1.5094 −0.2927

RB — — 0.0794 5.8189 0.2071 0.2380 0.6269 −2.4411

RB — — 0.0156 0.0539 0.0155 0.0318 0.0085 0.0176

https://doi.org/10.1371/journal.pone.0236756.t002
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To ensure that the comparisons between ARL1 occur between control charts of same ARL0,

we adjusted the chart limits to obtain ARL0 equal to the specified nominal values of 100 and

370. This control chart calibration is suggested in the literature [30, 37–39]. After ARL0 cali-

bration, a δ change was induced in the mean and precision regression structures to generate

out-of-control processes as the following: logit(γt) = δ + β0 + β1 xt and logð�tÞ ¼ dþ z0 þ z1 €xt .

By enabling the process to be out-of-control, we obtained the estimated ARL1 for different val-

ues of δ. When δ = 0, the process is in-control and the ARL0 can be evaluated.

The dARL0, dMRL0, and dSDRL0 evaluation results are shown in Tables 3 and 4. Consider an

in-control process with α − values of 0.01 and 0.0027, from the geometric distribution of the

RL we have ARL values equal to 100 and 370, nominal MRL values equal to 69.0 and 256.1,

and values of SDRL equal to 99.5 and 369.5, respectively. The IBRCC showed better perfor-

mance than BRCC, RCC, and IBCC, reaching empirical values closer to the nominal levels in

all evaluated scenarios. In Scenarios 2, 4, and 6, the IBRCC and IBCC obtained 0 as the lower

control limit, thus no point exceeded this limit. Similarly, in Scenarios 3, 5, and 7, the upper

control limit of the mentioned charts were 1. The fact that these scenarios present the 0 or 1 as

control limits is related to the value of the probabilities of occurrence of 0 or 1. That is, the

IBRCC and IBCC will present zero as control limit when PðY ¼ 0Þ ¼ ba0tð1 � bgtÞ � a=2 and

one as control limit when PðY ¼ 1Þ ¼ ba1tbgt � a=2. The high probability of Y assuming values

equal to one or zero means that these values are not atypical (out of control) but usual occur-

rences of the process.

Table 3. Run length analysis to evaluate the IBRCC, BRCC, RCC, and IBCC with α = 0.01.

Scenario n Control Chart

IBRCC BRCC RCC IBCC

dMRL0
dARL0

dSDRL0
dMRL0

dARL0
dSDRL0

dMRL0
dARL0

dSDRL0
dMRL0

dARL0
dSDRL0

2 100 69.48 99.43 97.75 7.54 10.65 10.12 43.53 62.19 61.17 77.08 109.87 107.91

200 69.16 98.73 97.46 7.58 10.69 10.17 38.34 54.85 54.04 76.69 109.59 108.19

500 69.42 99.28 97.67 7.57 10.69 10.16 37.96 54.16 53.32 77.53 110.57 108.69

3 100 74.27 106.22 104.76 7.68 10.86 10.34 23.62 33.78 33.09 87.16 124.41 122.26

200 70.87 101.17 99.52 7.79 11.01 10.50 21.62 30.85 30.21 86.61 122.65 119.98

500 70.24 100.49 98.76 7.87 11.10 10.57 21.42 30.58 29.93 88.00 125.35 122.89

4 100 63.05 90.08 88.78 19.24 27.48 26.92 35.35 50.50 49.66 97.63 138.71 135.74

200 68.37 97.81 96.37 19.95 28.52 27.96 30.22 43.21 42.53 95.68 136.66 134.42

500 69.22 98.90 97.20 20.33 29.04 28.42 29.84 42.51 41.75 97.63 139.37 137.04

5 100 66.68 94.64 92.66 19.00 27.16 26.56 32.33 46.20 45.30 93.19 132.47 129.93

200 69.76 99.76 98.21 19.73 28.20 27.61 27.38 39.18 38.55 92.42 132.07 129.97

500 69.79 100.31 100.08 20.24 28.91 28.30 26.02 37.16 36.47 92.98 132.53 129.88

6 100 69.48 99.03 97.10 10.04 14.24 13.71 27.49 39.24 38.47 79.40 113.00 110.72

200 70.71 101.42 100.22 10.20 14.48 13.94 25.08 35.84 35.20 78.84 112.44 110.78

500 70.12 100.28 98.59 10.29 14.61 14.06 24.84 35.49 34.80 80.02 114.04 112.06

7 100 75.14 105.57 103.76 3.00 4.17 3.64 21.89 31.30 30.71 82.76 118.03 116.25

200 71.22 101.62 100.05 3.00 4.18 3.64 20.32 29.03 28.45 82.43 117.38 115.39

500 69.88 99.88 98.28 3.00 4.19 3.65 19.97 28.52 27.90 82.88 118.20 115.92

MAPE 100 4.73 4.77 5.23 84.05 84.24 84.71 55.82 56.13 56.72 24.03 22.75 21.07

200 1.45 1.32 1.30 83.63 83.82 84.28 60.92 61.17 61.64 22.94 21.80 20.39

500 0.57 0.50 1.27 83.38 83.58 84.06 61.62 61.93 62.45 24.47 23.34 21.69

https://doi.org/10.1371/journal.pone.0236756.t003
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Tables 3 and 4 also show the MAPE results. The proposed control chart has the lowest val-

ues for the MAPE. For example, consider α = 0.01, corresponding ARL0, and n = 200, the

MAPE obtained for the IBRCC, BRCC, RCC, and IBCC were, 1.32, 83.82, 61.17, and 21.80,

respectively. It is noteworthy that, for the IBRCC, the MAPE decreases considerably when the

sample size increases.

Among the considered alternative control charts, the IBCC achieved better performance

than the BRCC and RCC in all scenarios. In Scenario 2 (Table 4), for n = 200, the IBCC pre-

sented a false alarm after 411 samples, when, in fact, a false alarm was expected for every 370

samples. In the same scenario, the BRCC and the RCC presented a false alarm rate in approxi-

mately 11 and 106 samples, respectively. These results show the importance of considering an

accurate model to reduce false alarms. We also note that the BRCC obtained the worst perfor-

mance. In Table 3, consider Scenario 3 and n = 100, the RCC and BRCC presented a false

alarm in approximately each 50 and 27 observations, respectively. It is important to note that

BRCC performance worsened as the 0 or 1 percentage increased. Confirming this fact, the

IBCC also presented lower MAPE than BRCC and RCC in all scenarios. Considering α =

0.0027, n = 500, and the MRL0 measure, the MAPE obtained for the IBRCC, BRCC, RCC, and

IBCC were, respectively, 4.82, 95.15, 80.22, and 35.45.

Results of the ARL1 evaluation are shown graphically in Figs 1 and 2. It was not possible to

correct ARL0 for the BRCC due to the poor in-control performance. Thus, the evaluation of

ARL1 was given only for the IBRCC, RCC, and IBCC. It is noteworthy that when several con-

trol charts are compared in terms of ARL, the one that presents the lowest ARL1 among those

with same ARL0 is the control chart that outperforms the competitors [30]. By analyzing the

Table 4. Run length analysis to evaluate the IBRCC, BRCC, RCC, and IBCC with α = 0.0027.

Scenario n Control Chart

IBRCC BRCC RCC IBCC

dMRL0
dARL0

dSDRL0
dMRL0

dARL0
dSDRL0

dMRL0
dARL0

dSDRL0
dMRL0

dARL0
dSDRL0

2 100 279.42 377.20 346.43 7.59 10.72 10.19 87.81 124.47 121.69 300.24 416.27 396.89

200 266.36 368.23 350.79 7.61 10.73 10.20 73.39 105.73 104.39 293.99 411.46 396.08

500 262.62 366.62 349.45 7.59 10.71 10.18 72.33 103.34 101.68 301.16 419.35 402.25

3 100 318.25 426.92 387.41 8.17 11.59 11.07 35.13 50.12 49.23 305.31 422.34 401.87

200 279.92 385.53 364.98 8.23 11.68 11.16 31.33 44.70 43.90 299.12 415.33 395.29

500 270.43 376.94 361.74 8.26 11.70 11.17 30.91 44.12 43.37 309.09 428.96 410.88

4 100 250.95 342.62 319.09 20.10 28.74 28.17 88.01 124.20 120.69 444.32 607.52 570.76

200 261.78 364.01 348.01 20.42 29.19 28.62 71.42 101.93 100.16 434.44 596.99 564.95

500 261.74 364.58 348.34 20.51 29.31 28.70 69.61 99.46 97.80 448.49 616.69 581.46

5 100 258.92 351.89 327.00 23.40 33.48 32.84 115.84 157.55 146.89 405.71 555.36 524.39

200 278.17 382.32 358.68 24.04 34.35 33.72 73.29 103.69 100.90 399.52 551.36 523.64

500 279.66 383.90 356.75 24.40 34.89 34.24 62.04 88.66 87.15 404.63 557.51 528.28

6 100 279.43 379.74 353.87 10.69 15.18 14.64 43.98 62.72 61.53 274.89 383.03 366.43

200 280.08 386.16 365.02 10.78 15.29 14.75 39.10 55.86 55.04 270.35 378.39 364.49

500 267.76 373.17 356.16 10.79 15.33 14.78 38.57 54.98 54.06 276.81 387.16 372.06

7 100 312.39 417.06 376.00 3.00 4.23 3.70 35.12 50.18 49.31 335.56 466.47 445.26

200 286.76 390.91 365.49 3.00 4.24 3.70 31.35 44.82 44.10 333.98 463.49 443.27

500 268.50 373.47 358.37 3.00 4.24 3.70 30.46 43.55 42.81 341.14 471.54 448.48

MAPE 100 11.26 7.50 7.04 95.25 95.32 95.46 73.59 74.36 75.22 34.45 28.42 22.32

200 7.58 3.27 2.89 95.18 95.25 95.39 79.18 79.43 79.77 32.20 26.89 21.68

500 4.82 1.63 3.89 95.15 95.22 95.36 80.22 80.45 80.75 35.45 29.78 23.74

https://doi.org/10.1371/journal.pone.0236756.t004
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Fig 1. dARL1 curves evaluation for the inflated beta regression control chart (solid line), regression control chart

(dashed line), and inflated beta control chart (dotted line) when the mean is out-of-control.

https://doi.org/10.1371/journal.pone.0236756.g001
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Fig 2. dARL1 curves evaluation for the inflated beta regression control chart (solid line), regression control chart

(dashed line), and inflated beta control chart (dotted line) when the precision is out-of-control.

https://doi.org/10.1371/journal.pone.0236756.g002
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ARL1 results, when the perturbation was introduced in the mean of the process (Fig 1), we

observe that in Scenario 3 the IBRCC performs better than the RCC and IBCC, and in Scenario

2 the performance of the control charts are similar. We note that the IBRCC detects more

quickly the out-of-control process. For example, in Scenario 3, ARL = 370, n = 100, and

δ = −0.4, the IBRCC takes 176 samples on average to detect a change in the process, while the

IBCC takes 186 and the RCC takes 192 to detect a change of same magnitude. The simulation

results showed similar behavior when a perturbation in the precision of the process occurs

(Fig 2). The control charts detect process changes more quickly as the precision increases (dis-

persion decreases).

By considering the results obtained in the simulation, we see a necessity of using a control

chart based on an appropriate regression model, such as the IBRCC, when the variable of

interest is restricted to the intervals [0, 1) or (0, 1]. The use of the linear regression-based con-

trol chart is inappropriate for data of this type since the support of the usual regression model

is the whole real space. Interestingly, the BRCC proved to be more inadequate in the presence

of values equal to zero or one than the traditional RCC or the IBCC that uses inflated beta dis-

tribution but does not consider a regression structure. Since the BRCC does not accommodate

values equal to zero or one, by substituting zeros for 0.0001 and ones for 0.9999, an inflation in

these values is induced. That is, the probability mass at 0.0001 and/or 0.9999 exceeds what is

allowed by the beta distribution, which is an absolutely continuous distribution. This reflects

on the estimates of the parameters of the regression structures and, automatically, the esti-

mates of the control limits are impaired.

4 Real data application

This section contains an empirical application in which the proposed control chart (IBRCC)

and three other competing control charts are analyzed: the RCC, BRCC, and IBCC. The data

evaluated in this section refer to the public administrative efficiency of the municipalities in

the state of São Paulo, Brazil. The data are a subset of those analyzed by [40], who considered

all Brazilian municipalities. The dataset we used contains 427 municipalities for the year 2000

and it is available at http://www.de.ufpb.br/~luiz/datasets/Dataset_plosone.txt. The covariates

are from Secretaria do Tesouro Nacional (http://www.tesouro.fazenda.gov.br/), Instituto Bra-

sileiro de Geografia e Estatı́stica (IBGE) (https://www.ibge.gov.br/), and Instituto de Pesquisa

Econômica Aplicada (IPEA) (https://www.ipea.gov.br/portal/), Brazil. The quality characteris-

tic, y, is introduced by [40] and represents individual observations of an efficiency index,

assuming values in (0, 1] and measuring how well mayors spend taxpayer money in order to

provide them with public services. The efficiency index is equal to one when there is full effi-

ciency. There are 32 units that are fully efficient (i.e., about 7.5% of the observations are equal

to one). A brief description of the variables used in the analysis is presented in Table 5. Vari-

ables CONS, R2, and MT are dummies, i.e., they are equal to 0 or 1. The covariate CONS equals

1 if the municipality participates in the inter-municipal consortia, the covariate R2 equals 1

whenever the municipality receives more than 10% of its tax revenue to royalty, and the covari-

ate MT equals 1 whenever the municipality is tourist, 0 otherwise for the three dummies covar-

iates. It is important to mention that 100 municipalities were sorted to estimate the model

parameters (Phase I), while the remaining observations were used for monitoring (Phase II).

At the outset, the inflated (at one) beta mean regression model, the beta regression model

substituting 1 for 0.9999, and a linear regression model were selected and fitted. We used the

logit link for γ and α1 and the log link for ϕ. For the beta regression, we considered logit for μ
and log link for ϕ. The maximum likelihood estimates of the models parameters are displayed

in Table 6. All covariates were significant at the nominal level of 5%. In order to compare the
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fitted regression models, we considered the MAPE and MSE between the observed and fitted

values. According to these criteria the inflated beta regression model outperforms the other

ones, with MAPE = 26.8835 and MSE = 0.0387, while the beta regression model obtains

MAPE = 29.4101 and MSE = 0.0454, and linear regression model achieves MAPE = 29.3617

and MSE = 0.0389.

Table 7 presents some descriptive statistics of the estimated control limits. Note that the

proposed control chart and the IBCC are the only ones that have an upper control limit con-

stant and equal to one. Differently, when beta regression control chart is used, the control lim-

its were restricted to the open interval (0, 1) and thus, in this case, fully efficient municipalities

are considered out-of-control. In addition, we verify that, by using the standard RCC, the lim-

its assume values below zero and above one, not being restricted to the interval (0, 1], where

the data are distributed. The interpretation of the limits, in this case, makes no practical sense

and leads to loss of detection power of out-of-control points.

Fig 3 graphically presents the control limits of the (a) IBRCC, (b) BRCC, (c) RCC, and (d)

IBCC together with the observed values of efficiency considering ARL0 = 100. Considering the

fact that the efficiency index assumes values in (0, 1], the proposed model-based control chart

Table 5. Description of the variables for efficiency data.

Variable Description

EFFIC Efficiency scores

EXP Personnel expenses in Reais

INC Average income in Reais

CONS Participation in inter-municipal consortia

URB Urbanization rate

R2 Royalties

E20 Demographic density

MT Tourist municipality

https://doi.org/10.1371/journal.pone.0236756.t005

Table 6. Adjusted models for efficiency data.

The fitted inflated beta regression model

Submodel for γ Submodel for ϕ Submodel for α0

Intercept E20 INC URB Intercept MT Intercept EXP INC R2

Estimate 0.6552 0.0001 −0.0015 0.0124 2.0339 0.7744 −2.2551 −1.0427 0.0014 0.5052

Std. error 0.4348 <0.0001 0.0005 0.0059 0.1527 0.3822 0.0884 0.0071 0.0001 0.0987

p-value 0.1319 <0.0001 0.0009 0.0371 <0.0001 0.0428 <0.0001 <0.0001 <0.0001 <0.0001

The fitted beta regression model

Submodel for μ Submodel for ϕ
Intercept EXP E20 URB R2 Intercept CONS URB

Estimate −0.7151 −0.1436 0.0002 0.0171 0.7391 4.2200 −2.2783 −0.0292

Std. error 0.4272 0.0704 0.0001 0.0056 0.3100 0.8236 0.3102 0.0095

p-value 0.0941 0.0415 0.0280 0.0023 0.0173 <0.0001 <0.0001 0.0022

The fitted linear regression model

Model for μ
Intercept CONS URB

Estimate 0.3829 0.1282 0.0031

Std. error 0.1126 0.0497 0.0013

p-value 0.0010 0.0114 0.0196

https://doi.org/10.1371/journal.pone.0236756.t006
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(IBRCC) presents limits with a smaller range. Interestingly, the BRCC does not accommodate

values equal to one by substituting values equal to one for 0.9999, an inflation in these values is

induced, therefore the BRCC is less adequate in the presence of values equal to one than the

traditional RCC. The use of the linear regression-based control chart is inappropriate for data

of this type since the support of the usual regression model is the whole real space. Finally, the

IBCC that uses inflated beta distribution but does not consider regression structure presents

constant limits that are not appropriate in situations were we have control variables (covari-

ates). It is worth mentioning that IBRCC detected 7 out-of-control points, while BRCC

detected 36 out-of-control points. Lastly, we carried out the RESET misspecification test [41],

Table 7. Descriptive statistics—minimum (min), first quantile (Q1/4), median, mean, third quantile (Q3/4), and maximum (max)—control limits for efficiency data.

Limits min Q1/4 median mean Q3/4 max

LCLIBRCC 0.0042 0.2176 0.2500 0.2546 0.2832 0.5936

UCLIBRCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LCLBRCC 0.0001 0.0998 0.1656 0.1429 0.2006 0.4323

UCLBRCC 0.0001 0.9582 0.9864 0.9594 0.9974 0.9999

LCLRCC -0.0070 0.1731 0.2064 0.2040 0.2305 0.3640

UCLRCC 0.9057 1.0858 1.1191 1.1167 1.1432 1.2767

LCLIBCC 0.2424 0.2424 0.2424 0.2424 0.2424 0.2424

UCLIBCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

https://doi.org/10.1371/journal.pone.0236756.t007

Fig 3. Plot of the control limits based on (a) inflated beta regression control chart, (b) beta regression control chart, (c) regression control

chart, and (d) inflated beta control chart for monitoring the efficiency indexes for municipalities in the state of São Paulo, Brazil,

considering ARL0 = 100.

https://doi.org/10.1371/journal.pone.0236756.g003
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where the null hypothesis is that the fitted model is correctly specified and the alternative

hypothesis is that there is model misspecification. We perform the test using the second power

of the estimated mean linear predictor as testing variables. We do not reject the null hypothesis

at the 1% nominal level, thus suggesting that our model is correctly specified.

5 Conclusions

In this paper, we proposed a new model-based control chart for controlling quality characteris-

tics limited to the intervals (0, 1] or [0, 1) using the inflated beta regression model. For this

purpose, we extended the inflated beta regression model proposed by [12] by allowing a regres-

sion structure for the precision parameter. In this way, it is possible to model the mean

response, the data precision, and functions of the probability of a given observation assuming

zero or one through a regression framework. Our simulation study showed that the relative

bias and mean square error decrease when the sample size increases. With regard to the sensi-

tivity analysis in terms of run length (RL), the proposed IBRCC showed the best performance

in all considered cases. In addition, the results indicated that it is better to ignore the explana-

tory variables and use the inflated beta control chart (IBCC) than to use a control chart based

on an inappropriate regression model. We also considered an application to real data and

highlight the practical importance of the proposed chart when the response is distributed in

unit intervals containing ones. Finally, we suggest the use of the inflated beta regression con-

trol chart to monitor output quality characteristics, which is better characterized by a func-

tional relation between the response variable, double bounded in unit intervals containing

zeros or ones along with one or more explanatory variables.

A Score function and Fisher’s information matrix

In this appendix we obtain the score function and presented a closed-form expression for

Fisher’s information matrix for all parameters of the inflated beta regression model with

varying dispersion. We assume that the observed values of the dependent fractional variable

are sorted according to the 0, 1, and (0, 1)-values with n0, n1, and n −m terms, respectively,

where m = n0 + n1. Furthermore, m�t ¼ Eðy�t Þ ¼ cðmt�tÞ � cðð1 � mtÞ�tÞ and

myt ¼ Eðyyt Þ ¼ cðð1 � mtÞ�tÞ � cð�tÞ, where ψ(�) is the digamma function.

Let

@ log ½Bðyt; mt; �tÞ�

@mt
¼ �tðy

�

t � m
�

t Þ:

The score function for ω is given by

@‘ðθÞ
@oj

¼
Xn0

t¼1

@‘tðθÞ
@a0t

@a0t

@oj
þ
Xn

t¼mþ1

@‘tðθÞ
@a0t

@a0t

@oj
þ
Xn

t¼mþ1

@‘tðθÞ
@mt

@mt

@a0t

@a0t

@oj
;

where @a0t=@oj ¼ ~xtj=g 01ða0tÞ. Therefore,

@‘ðθÞ
@oj

¼
Xn

t¼1

(
1

a0tg 01ða0tÞ
~xtj10ðytÞ �

"
1 � gt
ctg 01ða0tÞ

~xtj

� �t
gtð1 � gtÞð1 � a1tÞðy�t � m

�
t Þ

c2
t g 01ða0tÞ

~xtj

#

ð1 � 10ðytÞÞð1 � 11ðytÞÞ

)

:
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The score function for κ is given by

@‘ðθÞ
@kj

¼
Xm

t¼n0þ1

@‘tðθÞ
@a1t

@a1t

@kj
þ
Xn

t¼mþ1

@‘tðθÞ
@a1t

@a1t

@kj
þ
Xn

t¼mþ1

@‘tðθÞ
@mt

@mt

@a1t

@a1t

@kj
;

where @a1t=@kj ¼ �xtj=g 02ða1tÞ. Thus,

@‘ðθÞ
@kj

¼
Xn

t¼1

(
1

a1tg 02ða1tÞ
�xtj11ðytÞ �

"
gt

ctg 02ða1tÞ
�xtj

þ�t
gtð1 � gtÞð1 � a0tÞðy�t � m

�
t Þ

c2
t g 02ða1tÞ

�xtj

#

ð1 � 10ðytÞÞð1 � 11ðytÞÞ

)

:

For β, the score function is given by

@‘ðθÞ
@bj

¼
Xn0

t¼1

@‘tðθÞ
@gt

@gt
@bj
þ
Xm

t¼n0þ1

@‘tðθÞ
@gt

@gt
@bj
þ
Xn

t¼mþ1

@‘tðθÞ
@gt

@gt
@bj
þ
Xn

t¼1

@‘tðθÞ
@mt

@mt

@gt

@gt
@bj

;

where @gt=@bj ¼ xtj=g 03ðgtÞ and @mt=@bj ¼
ð1� a0tÞð1� a1tÞ

c2t g
0
3
ðgtÞ

xtj. Then we have

@‘ðθÞ
@bj

¼
Xn

t¼1

(

�
1

ð1 � gtÞg 03ðgtÞ
xtj10ðytÞ þ

1

gtg 03ðgtÞ
xtj11ðytÞ

þ
ða0t � a1tÞ

ctg 03ðgtÞ
xtj þ �t

ð1 � a0tÞð1 � a1tÞðy�t � m
�
t Þ

c2
t g 03ðgtÞ

xtj

� �

ð1 � 10ðytÞÞð1 � 11ðytÞÞ

)

:

The score function for z is given by

@‘ðθÞ
@zj

¼
Xn

t¼1

@‘tðθÞ
@�t

@�t

@zj
;

where @�t=@zj ¼ €xtj=g 04ð�tÞ. Therefore,

@‘ðθÞ
@zj

¼
Xn

t¼1

mtðy�t � m
�
t Þ þ ðy

y
t � m

y
t Þ

g 0
4
ð�tÞ

€xtj

� �

ð1 � 10ðytÞÞð1 � 11ðytÞÞ:

In matrix form, each term of the score vector is given by

UoðθÞ ¼ ~X>T1fJ1I0 � ½G2 � RA2ðY� � M
�
Þ�I2g;

UkðθÞ ¼ �X>T2fJ2I1 � ½G1 þ RA1ðY� � M
�
Þ�I2g;

UbðθÞ ¼ X>T3f� B2I0 þ B1I1 þ ½S3 þWðY� � M �
Þ�I2g;

UzðθÞ ¼ €X>T4MI2;

where T1 ¼ diag 1

g0
1
ða01Þ

; . . . ; 1

g0
1
ða0nÞ

n o
, T2 ¼ diag 1

g0
2
ða11Þ

; . . . ; 1

g0
2
ða1nÞ

n o
, T3 ¼ diag 1

g0
3
ðg1Þ
; . . . ; 1

g0
3
ðgnÞ

n o
,

T4 ¼ diag 1

g0
4
ð�1Þ
; . . . ; 1

g0
4
ð�nÞ

n o
, Y� ¼ diagðy�

1
; . . . ; y�nÞ,M

�
¼ diagðm�

1
; . . . ; m�nÞ,

M = diag{m1, . . ., mn}, mt ¼ mtðy�t � m
�
t Þ þ ðy

y
t � m

y
t Þ, A1 = diag{(1 − α01), . . ., (1 − α0n)},

A2 = diag{(1 − α11), . . ., (1 − α1n)}, B1 ¼ diag 1

g1
; . . . ; 1

gn

n o
, B2 ¼ diag 1

1� g1
; . . . ; 1

1� gn

n o
,

R ¼ diag �1g1ð1� g1Þ

c2
1

; . . . ;
�ngnð1� gnÞ

c2n

n o
, J1 ¼ diag 1

a01
; . . . ; 1

a0n

n o
, J2 ¼ diag 1

a11
; . . . ; 1

a1n

n o
,

W ¼ diag �1ð1� a01Þð1� a11Þ

c2
1

; . . . ;
�nð1� a0nÞð1� a1nÞ

c2n

n o
, G1 ¼ diag g1

c1
; . . . ;

gn
cn

n o
,
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G2 ¼ diag 1� g1
c1
; . . . ;

1� gn
cn

n o
, S3 ¼ diag a01 � a11

c1
; . . . ;

a0n � a1n
cn

n o
, ~X is a n × k1 matrix whose t-th row

is ~x>t , �X is a n × k2 matrix whose t-th row is �x>t , X is a n × k3 matrix whose t-th row is x>t , €X is a

n × k4 matrix whose t-th row is €x>t , I0 ¼ ð10ðy1Þ; . . . ;10ðynÞÞ
>

, I1 ¼ ð11ðy1Þ; . . . ; 11ðynÞÞ
>

, and

I2 ¼ ðð1 � 10ðy1ÞÞð1 � 11ðy1ÞÞ; . . . ; ð1 � 10ðynÞÞð1 � 11ðynÞÞÞ
>

.

The joint information matrix for the parameter vector θ = (ω>, κ>, β>, z>)> is given by

KðθÞ ¼

Koo Kok Kob Koz

Kko Kkk Kkb Kkz

Kbo Kbk Kbb Kbz

Kzo Kzk Kzb Kzz

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

where Koo ¼
~X>T2

1

J1
B2
þ ½G2

2
þ R2A2

2
V��C

n o
~X , Kok ¼ K>

ko
¼ ~X>T1T2½G1G2 � R2A1A2V��C�X ,

Kob ¼ K>
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¼ ~X>T1T3½� S2 þWA2RV��CX, Koz ¼ K>
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¼ ~X>T1T4RA2HC€X ,

Kkk ¼
�X>T2

2

J2
B1
þ

n
þ½G2

1
þ R2A2

1
V��C

o
�X , Kkb ¼ K>
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¼ �X>T2T3½S1 � WA1RV��CX,

Kkz ¼ K>
zk
¼ � �X>T2T4RA1HC€X , Kbb ¼ X>T2

3

B2

J1
þ

B1

J2
þ ½S2

3
þW2V��C

n o
X,

Kbz ¼ K>
zb
¼ X>T3T4WHC€X , Kzz ¼

€X>T2
4
DC€X , S1 ¼ diag 1� a01

c2
1
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1� a0n
c2n

n o
,

S2 ¼ diag 1� a11

c2
1
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1� a1n
c2n

n o
, V� ¼ diagfv�

1
; . . . ; v�ng, v

�
t ¼ c

0
ðmt�tÞ þ c

0
ðð1 � mtÞ�tÞ,

H ¼ diagfm1v�1 þ f1; . . . ; mnv�n þ fng, ft = −ψ0((1 − μt)ϕt), D = diag{d1, . . ., dn},

dt ¼ c
0
ð�tÞ � c

0
ðmt�tÞm

2
t � c

0
ðð1 � mtÞ�tÞð1 � mtÞ

2
, C = diag{c1, . . ., cn}, and

ct = 1 − α0t(1 − γt) − α1t γt.
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Bayer.

Investigation: Luiz M. A. Lima-Filho, Tarciana Liberal Pereira, Tatiene C. Souza, Fábio M.
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