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Abstract

This paper provides a general framework for controlling quality characteristics related to
control variables and limited to the intervals (0, 1], [0, 1), or [0, 1]. The proposed control
chart is based on the inflated beta regression model considering a reparametrization of the
inflated beta distribution indexed by the response mean, which is useful for modeling frac-
tions and proportions. The contribution of the paper is twofold. First, we extend the inflated
beta regression model by allowing a regression structure for the precision parameter. We
also present closed-form expressions for the score vector and Fisher’s information matrix.
Second, based on the proposed regression model, we introduce a new model-based control
chart. The control limits are obtained considering the estimates of the inflated beta regres-
sion model parameters. We conduct a Monte Carlo simulation study to evaluate the perfor-
mance of the proposed regression model estimators, and the performance of the proposed
control chart is evaluated in terms of run length distribution. Finally, we present and discuss
an empirical application to show the applicability of the proposed regression control chart.

1 Introduction

Standard control charts are directly applied to the output of a quality characteristic. However,
the quality characteristic (process output) can be affected by external covariates (control vari-
ables), where we rather control a varying mean than a constant one. In these cases, the regres-
sion control chart [1] may be an effective statistical process control tool. Such method is
widely used when the quality of a process or product is better characterized by a functional
relationship between the response variable and one or more explanatory variables [2].

The standard regression control chart is based on the linear regression model, where the
variable of interest is assumed to be normally distributed. However, in practice, several of
these variables may not follow a normal distribution, leading to poor Gaussian-based infer-
ences. Thus, several studies have been proposing non-Gaussian model-based control charts.
[3] presented a model-based scheme for monitoring multiple gamma-distributed variables. By
considering that robust methods can be effective in the presence of outlying observations, [4]
explored the robust generalized linear model for a gamma-distributed response. [5] used
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deviance residual for monitoring variables in a three-stage process assuming gamma, normal,
and Poisson distributions.

Examples of a non-Gaussian process output are variables that assume values in the standard
unit interval, such as fractions and proportions. In such instances, the usual regression control
chart may be inappropriate since double bounded data are typically asymmetric and the
Gaussian-based assumption is not suitable. In this sense, [6] proposed the beta regression con-
trol chart to monitor fractions and proportions related to control variables. The proposed con-
trol chart considers the beta regression model with varying dispersion [7], assuming that the
mean and dispersion parameters of beta distributed variables are related to exogenous vari-
ables and modeled by regression structures. However, fractions and proportions may contain
zeros and/or ones, leading to the unsuitable use of the beta distribution for data modeling [8].

Alternative regression models have been proposed to mend beta regression flaws in the
presence of zeros and/or ones. [9] presented a unit inflated beta model for modeling efficiency
scores as a function of exogenous variables. [10] proposed a zero inflated beta model to analyze
data in corporate capital structures. [8] introduced a general class of zero or one inflated beta
regression models, which is a natural extension of the beta regression model [11] to model var-
iables that assume values in (0, 1] or [0, 1). [12] proposed an inflated beta regression model
based on a reparametrization of the inflated beta distribution. This model accommodates
mixed random variable responses, with non-negligible probabilities of assuming zeros and/or
ones and continuous values in the interval (0, 1) that follows a beta distribution. The inflated
beta regression model introduced by [12] may be useful for developing model-based control
charts for monitoring inflated beta distributed processes as it considers an interesting parame-
trization in terms of the response variable mean. However, the model proposed by [12] does
not consider a regression structure for the precision parameter. The monitoring of the mean
and precision (or dispersion) is relevant to the statistical process control [6, 13, 14]. In addi-
tion, incorrect modeling of the dispersion can generate a high number of false alarms or loss of
detection power of special causes [6]. Moreover, dispersion modeling is necessary in regression
models in order to obtain accurate inferences about the structure parameters of the mean
regression [15].

Control chart is a dynamic tool that works under two different phases, namely Phase I and
Phase II. In practical situations, the in-control parameters are unknown and have to be esti-
mated from a Phase I data set. Different Phase I data sets lead to different control chart perfor-
mance. Thus, it is important to study the practitioner-to-practitioner variability due to
parameter estimation. The aim of Phase I analysis is to estimate the parameters, while quick
detection of out-of-control state is conducted in Phase II [16]. The literature offers some stud-
ies related to Phase I and Phase II analyses in regression models. For example, [17] proposed
Phase I profile monitoring schemes for binary responses that can be represented by logistic
regression models. [17] developed several Hotelling T>-type Phase I control charts for moni-
toring the parameters of a logistic regression linking to a binary response and one or more pre-
dictor variables. [18] developed control charts by integrating an exponentially weighted
moving average scheme with a likelihood ratio test based on logistic regression models in
Phase II study. [19] proposed a new modeling and monitoring framework for Phase I analysis
of multivariate profiles by incorporating the regression-adjustment technique into the func-
tional principal components analysis. [20] proposed the monitoring of profiles using general-
ized linear models during Phase II in which the explanatory variables can be a fixed design or
any random arbitrary design.

In this context, this paper introduces the inflated beta regression control chart (IBRCC)
with varying dispersion, useful for monitoring double bounded variables when zeros or ones
appear in the data along with the presence of control variables. The process output may
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represent individual measures (e.g. efficiency score) or a ratio between continuous numbers
(e.g. relative humidity). The contribution of the present paper is twofold. First, we extend the
inflated beta regression model proposed by [12] by allowing a regression structure for the pre-
cision parameter. We also discuss likelihood inference of the model parameters. Second, we
introduce the IBRCC based on the proposed inflated beta regression model with varying dis-
persion. Since in practice the parameters of the regression model are unknown, the proposed
control chart is implemented into two phases. In Phase I, the parameters are estimated from
an in-control sample, and in Phase II, we perform the monitoring scheme.

The remaining of the paper unfolds as follows. In Section 2, we describe the IBRCC and
introduce the beta inflated mean regression model with varying dispersion. We also discuss
likelihood inference and present the control limits estimation procedure. Section 3 presents a
simulation study to evaluate (i) the inflated beta regression model with varying dispersion esti-
mators and (ii) the performance of the proposed IBRCC and some competing control charts
in the literature based on the run length (RL). In Section 4, we discuss and present an empirical
application to show the applicability of the proposed IBRCC in real situations. Finally, some
conclusions are presented in Section 5.

2 Inflated beta regression control chart

In this section, we introduce the IBRCC. Firstly, in Subsection 2.1 we present the inflated beta
regression model with varying dispersion. The model we propose in this work is an extension
of the model proposed by [12], where the authors used a reparametrization of the inflated beta
distribution indexed by the response mean. In the Subsection 2.2 we present the model-based
control limits for the proposed IBRCC. Secondly, in Subsubsection 2.2.1, we discuss the likeli-
hood inference for the model parameters. Finally, in Subsubsection 2.2.2 we present the con-
trol limits estimation procedure.

2.1 Inflated beta regression model with varying dispersion

The inflated beta density function is given by [12]
o(l—7y), if y=0,
fOiog 0057, ¢0) = § Blim ), it ye(0,1), (1)
07, it y=1,

where 0 < op < 1,0 < a; < 1,0 <y < 1,and ¢ > 0 are the distribution parameters, c =1 —
ao(1 =) —ay v, = y(1 — ay)/c, and B(y; 1, ¢) is the beta density function given by [11]

r(¢> b (1—p)p—1
& 7,U,¢: HUI]-_ e ) 0< <17
R TN (LA !
where 0 < y < 1, ¢ > 0, and I'(:) is the gamma function. Here, ¢ is a precision parameter
. . . . o ¢ —uy )20 -
(inversion of the dispersion), E(y) = 7, and Var (y) = (111‘@"‘” Y+ ((l,wﬁﬂ},)ilg,)(lW - 1) i

Density (1) is said to be zero and one inflated beta, i.e., y ~ SBIm(a,, ,, 7, ¢). Note that P
(y=0)=0a¢(1-y)and P(y = 1) = o1 3, thus if &y = 0 and & > 0, the distribution in (1) is called
one inflated beta distribution. Differently, if og > 0 and @; = 0, the distribution given in (1) is
called zero inflated beta distribution.

Let yy, ..., ¥, be independent random variables where each y; has the density in (1) for
t=1, ..., n. The inflated beta regression model with varying dispersion, which is an extension
of the regression model proposed by [12], is given by the following structures for modeling the
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response y;
&%) =%/ o, (2)
&(y,) =Xk, (3)
&) =xp, (4)
aule) = X 6 (5)

where ® = [w,, ,, ... ,wkl]T, K= [Ky, Ky, KkZ]T, B=1ByBys--- ».Bk;JT’ and{ =

[C0,Ciyeens Ck4]T are vectors of unknown regression parameters, X, = [1,%,,,. .. ,fctkl]T,

X =[1,%,... ,y'c,kz]T, x, = [1,x,,... ,xtkg]T, and ¥, = [1,%,,,... ,&thVI]T are observations on

ki, ky, ks, and k, covariates, respectively,and g, : (0,1) - R, g, : (0,1) = R, g : (0,1) — R,
and g, : (0,00) — IR are real-valued link functions with continuous second derivatives. For
g1(+), £2(+), and gs(+), several different link functions can be used, such as logit, probit, log-log,
complementary log-log, or Cauchy. For g,(-), the choices are log or square root link functions,
for example. More details about link functions on the class of beta regression models can be
foundin [11] and [21].

Notably, the model proposed by [12] assume that, for t =1, .. ., n, ¢, = ¢ (constant preci-
sion). In the present study, the precision parameter is allowed to vary across observations,
making the proposed model more general than the original inflated beta regression model.
The assumption of non-constant dispersion is natural in several production processes [22-24].
In practical situations, it is important to monitor the dispersion of the process because an
increase in dispersion may indicate process deterioration, while a reduction in dispersion
means an improvement in process capability [25]. In addition, it is possible to consider control
variables for modeling the parameters o, and ¢, which are related to the probabilities of zero
and one, respectively.

2.2 Model-based control chart limits

The purpose of IBRCC is to monitor double bounded processes that contain values equal to
zero or one, considering that the mean, precision, and parameters related to the probabilities
of zero and one (¢ and ;) of the quality characteristic of interest are affected by control vari-
ables. Let (1 — &) be a control region where a is the type I error probability, the lower control
limit (LCL), center line (CL), and upper control limit (UCL) of the proposed control chart are
defined, respectively, by

LCL, = F*(a/2;50,0,,7, ),

t
CLt =%
UCL, =F"'(1—a/2;50y,0,,7,¢,),

where F(y) = P(Y < y) = [ f(u,0,0,,7, ¢)du is the inflated beta cumulative distribution
function and F'(-) is the quantile function of the inflated beta variable. The parameters a,,
014 ¥y and ¢, are functions of w, x, B, and {, respectively, and through (2), (3), (4), and (5) we
have 7, = g, (¥ w), 0, = &' (¥ k)7, = g (x; B), and &, = g;" (¥ {). In practice, the
model parameters are unknown and estimation methods are necessary to estimate the in-con-
trol limits. Thus, we consider the likelihood theory [26-28], which we discuss in the following
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subsection. We presented results of the log-likelihood and score functions, which are exten-
sions of those developed for the inflated beta regression model proposed by [12].

2.2.1 Likelihood inference. We shall consider the maximum likelihood estimator (MLE)
for the parameter vector 0 = (wT, K, ﬁT, { T)T. The log-likelihood function is given by

00) = th(a[)t?alt’yt’(bt)? (6)
t=1
with

€0) = toglo (1~ 1)l (0) + Tog 31,08, (1)
+[10g (Ct) + log ('@@t; M qj)t))“(l - ]]'O(yt))(l - ]]'1(yt)>]7

where 1,,(y,) is an indicator function that equals 1 if y =0 and 0 if y € (0, 1], 1, (y,) is an indica-
tor function that equals 1 if y=1and 0if y € [0, 1), and

10g [‘@(yt; Ky (bz)] = lOgF((bt) - 10gr(ﬂt¢t> - logr((l - tu“t)(bt) + (.U:f?t - 1))’? + (¢t - 2))’1\7

in which oy, 1 ¥ and ¢, are given by the regression structures in (2), (3), (4), and (5), respec-
tively. Additionally,

log(1 )_lty>7 v, € (0,1),
t

Yoo =
0, y,=0 or y =1,
log(l _yt)7 VS (071),
and yl =
0, y,=0 or y =1

By deriving the log-likelihood function in (6) with respect to each element of the parameter
vector 6, we obtain the score vector given by U(0) = (U0, U0, U,;(B)T, Ug(y)T)T. The
MLE of @ is obtained by solving the non-linear system (U0, U0, Uﬁ(O)T, Ug(y)T) =0,
where 0 is a null vector of dimension (k; + k, + k; + ky). The MLEs cannot be expressed in
closed-form, hence the maximization of the log-likelihood function needs to be numerically
conducted through a Newton or quasi-Newton algorithm. In this work, we used the quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [29] for computational
implementation.

The Fisher information matrix (K(6)), which is useful for large sample inferences, requires
the expectations of second order derivatives of the log-likelihood function. The score vector U
(6) and Fisher’s information matrix can be found in the Appendix.

To test hypotheses on the parameter 8;,j =1, .. ., (k; + k; + k3 + k), we consider the null
hypothesis 7 : 8, = 0][.] versus ¢, : 6, # 0;]. The Wald test may be considered using the fol-
lowing z statistic [26]

66
z=—"—1,
se(0,)

where EJ. represents the MLE of 0; and the standard error of /H\j is given by
~ ~ s ~ ~
i

se(0)) = [diag(cov(@))];”", in which cov (@) = K~'(8) is the asymptotic variance and covari-

ance matrix of 8. In large sample sizes and under %, the z statistic follows a standard
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normal distribution [26]. The test is performed by comparing the computed z statistic with
the usual quantiles of the standard normal distribution.

2.2.2 Control limits estimation. After obtaining the MLE of 6, 0= (@', K", B, ZT)T,
and considering an in-control process, the estimated control limits are given by

ICL, = F(0/2;8y, 51,70 b)), (7)
CL, 2%
UCL, =F (1 — /28,87, ), 8)

where &, = g (%, ®), 3, = & (%), 7, = & (x/ ), and ¢, = g, (&, (). Thus, we propose
the following algorithm to implement the IBRCC.

1. Fit the inflated beta regression model with varying dispersion under Phase I and obtain the
MLEs, namely @, K, E, and Z

2. Using covariates in Phase II, estimate aq,, a5, ¥5» and ¢, such that o, = g, ' (X @),
a, =g ' (X/K),7, =g (x/B),and ¢, = g ' (] ().

3. For a given type I error probability & and the estimates o,,, &, 7, and &, compute the esti-
mated control limits using (7) and (8).

4. Plot each data point y; together with the estimated control limits U/C\Lt and ﬁt, for
t=1,...,n

The observation y, that is out of the estimated control limits interval (ITC\LI7 L/C\Lt) is con-
sidered out-of-control.

3 Simulation study

This section presents a Monte Carlo simulation study to evaluate the estimators of the intro-
duced inflated beta regression model with varying dispersion and the performance of the
IBRCC. The performance of the proposed control chart is compared with some alternatives in
literature, namely: the usual linear regression control chart (RCC) [1], the beta regression con-
trol chart (BRCC) [6], and the inflated beta control chart (IBCC) [30]. Note that the RCC is a
classical regression control chart that works under Gaussian assumptions. The other control
charts are state-of-the-art alternatives, but the BRCC does not consider inflation in zeros and/
or ones and the IBCC does not include covariates.

We used the following structures for data generation

logit(a,,) = w,+ w,X,,
logit(ot,,) = n, + %,
logit(y,) = By + fix,
log(¢,) = +0%,
with t=1, ..., n. The values of x,, X,, and X, were obtained from a Bernoulli distribution with
parameter p = 0.3, and x; was generated from a uniform distribution in the interval (0, 1), thus

considering discrete and continuous random variables. We considered 5, 000 Monte Carlo
replications and sample sizes n = 100, 200, and 500. According to [31] and [32], this number of
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Table 1. Different scenarios considered in the simulation study.

Scenario

NN e W N

https://doi.org/10.1371/journal.pone.0236756.t001

Wo
-1.00
-2.30

0.00
—-3.50

0.00
—-2.50

0.00

Parameters
o /5 Bo B ) G
—-0.20 -1.00 —-0.20 -0.30 0.60 2.00 1.00
0.90 0.00 0.00 -2.40 0.80 4.50 —-0.30
0.00 -2.50 0.50 3.50 —-1.50 2.00 —-0.70
0.50 0.00 0.00 —4.40 1.20 5.50 —-0.50
0.00 -3.50 0.30 2.50 —-1.80 1.00 —-0.20
0.90 0.00 0.00 -2.70 1.00 3.00 —-0.30
0.00 -1.00 —-0.20 3.00 -1.20 1.50 —-0.30

replications is enough to obtain accurate results. All simulations were performed using the R
programming language [33].

In the numerical evaluation, we considered several scenarios with different characteristics,
namely: zero and one inflated beta regression model (Scenario 1), zero inflated beta regression
model (Scenarios 2, 4, and 6), and one inflated beta regression model (Scenarios 3, 5, and 7).
The parameter values are shown in Table 1. In Scenario 1, the mean is centered on the stan-
dard unit interval, y € [0.43, 0.57], and the average percentage of zeros and ones in the sample
is approximately equal to 13% for both. Scenarios 2, 4, and 6 consider the mean close to zero,
with y € [0.063, 0.154], [0.012, 0.039], and [0.039, 0.119], and average percentages of zeros in
the sample equal to 9.3%, 3.4%, and 6.4%, respectively. For Scenarios 3, 5, and 7, the mean is
close to one, with ¥ € [0.881, 0.971], [0.668, 0.924], and [0.858, 0.952], and average percentages
of ones in the sample equal to 8.3%, 2.6%, and 23.5%, respectively.

3.1 Point estimation evaluation

For the point estimation evaluation, we computed the mean, percentage relative bias (RB), and
mean square error (MSE) for each estimator in all Scenarios (see Table 1). For brevity and sim-
ilarity of results, we only present results for Scenarios 1, 2, and 7 (n = 100 and n = 500) as
shown in Table 2. The figures show that the mean of the estimators is close to the correspond-
ing parameter values. The RB and MSE decrease when the sample size increases, indicating
that the MLEs are consistent. For instance, for 3; (y submodel) in Scenario 1, the RB of the
estimator is equal to 0.2257% for n = 100 and equal to —0.0548% for n = 500. Regarding MSE,
considering wy in Scenario 2 and n € {100, 500}, the MSE is equal to 0.2291 and 0.0373, respec-
tively. As in other studies related to beta regression [21, 34], it is noteworthy that the RB of
MLEs corresponding to the precision covariate parameters is greater than those of that

model the mean response. For instance, consider Zl (¢ submodel) in Scenario 7, we have

RB = -8.2035% for n = 100 and RB = —2.4411% for n = 500. Regarding parameters related to
the probabilities of zeros and ones, the bias also decreases considerably as sample size
increases. For example, in Scenario 1 and # = 100, the estimator of w; (¢ submodel) yields
RB = 16.9130% and the estimator of 77; (r; submodel) yields RB = 14.8922%. For n = 500, the
bias for the same estimators reduces to 4.5210% and 3.4431%, respectively.

In practice, the regression model relating the output and covariates is rarely known and the
parameters have to be estimated. Our simulation results show that the MLE in the proposed
model perform well, presenting low MSE for the estimates in all situations. This way, the pro-
posed control chart may also present good performance in practice. In the next section, we
shall investigate the run length performance of the IBRCC with estimated parameters.
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Table 2. Monte Carlo simulation results of point estimation evaluation.

n| Param. —
100 Mean
RB
MSE
500 Mean
RB
MSE

n| Param. —
100 Mean
RB
MSE
500 Mean
RB
MSE

n| Param.—
100 Mean
RB
MSE
500 Mean
RB
RB

https://doi.org/10.1371/journal.pone.0236756.t1002

wo =—1.00
-1.0393
3.9304
0.1396
-1.0078
0.7846
0.0230

wo =—2.30
—-2.3694
3.0207
0.2291
-2.313
0.5780
0.0373

wy=0.0

Scenario 1
w; =-0.20 1o = —1.00 m =-0.20 Bo=-0.30 S =0.60 {o=2.00 {,=1.00
—-0.2338 —-1.0439 —-0.2298 —-0.3026 0.6013 2.0455 1.0717
16.9130 4.3925 14.8922 0.8683 0.2257 2.2770 7.1753
0.3936 0.1425 0.4091 0.0279 0.0553 0.0403 0.1412
—-0.2090 -1.0146 —-0.2069 —0.3009 0.5997 2.0080 1.0142
4.5210 1.4628 3.4431 0.3143 —-0.0548 0.4141 1.4201
0.0695 0.0241 0.0686 0.0052 0.0101 0.0071 0.0250
Scenario 2
w; =0.90 1o =0.0 1m =0.0 Bo=-2.40 S =0.80 {o=4.50 {1 =-0.30
0.9302 — — —-2.4034 0.80115 4.5469 —-0.2616
3.3572 — — 0.1455 0.1445 1.0435 —-12.7889
0.2588 — — 0.0076 0.0161 0.0359 0.1254
0.9030 — — 2.4002 0.8005 4.5093 —-0.2911
0.3328 — — 0.0096 0.0637 0.2072 -2.9518
0.0403 — — 0.0013 0.0027 0.0062 0.0222
Scenario 7
w; =0.0 1o = —1.00 n, =-0.20 Bo =3.00 By =-1.20 {o=1.50 {;=-0.30
— —-1.0201 -0.2602 3.0223 -1.2099 1.5475 —-0.2753
— 2.0136 30.1092 0.7455 0.8254 3.1698 —-8.2035
— 0.0827 0.3659 0.0952 0.2023 0.0478 0.0990
— —-1.0007 —-0.2116 3.0062 —-1.2028 1.5094 -0.2927
— 0.0794 5.8189 0.2071 0.2380 0.6269 -2.4411
— 0.0156 0.0539 0.0155 0.0318 0.0085 0.0176

3.2 Control charts performance

This section presents a run length analysis to evaluate the performance of the considered con-
trol charts. When the process is in-control, the run length (RL) distribution follows a geomet-
ric distribution with parameter o, which is the type I error probability [35]. The ability of a
control chart to detect changes in the process is usually measured by the average number of
observations until the detection of an out-of-control point (ARL) [36]. However, other mea-
sures can also be used for this purpose. We considered another location measure, the median
(MRL), a dispersion measure, and the standard deviation (SDRL) of the RL distribution. Addi-
tionally, we computed the mean absolute percentage error (MAPE) for each measure for all
evaluated control charts.

We compared the proposed IBRCC with the standard RCC [1], and the state-of-the-art
charts, namely BRCC [6] and IBCC [30]. Since the BRCC does not consider values equal to
zero or one, we replaced zeros by 0.0001 and ones by 0.9999 for its application. For all
considered control charts, we examined two aspects of evaluation: in-control (ARL, = 4,

MRL, = 209 SDRL, = 4/ (1;2“)) and out-of-control (ARL,; = 1, where S s the type I error

07 In(l—2
probability) [30, 35]. For brevity, we do not present the MRL and SDRL results for the out-of-
control process. The control charts were evaluated in Scenarios 2 to 7 (Table 2), considering
inflation in 0 or 1. Scenario 1 was not covered in this section because it does not reflect real sta-
tistical process control situations, being possible to present perfect nonconforming and perfect
conforming in the same process.
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Table 3. Run length analysis to evaluate the IBRCC, BRCC, RCC, and IBCC with a = 0.01.

Scenario n

2 100
200

500

3 100
200

500

4 100
200

500

5 100
200

500

6 100
200

500

7 100
200

500

MAPE 100
200

500

https://doi.org/10.1371/journal.pone.0236756.t1003

M/R\Ln
69.48
69.16
69.42
74.27
70.87
70.24
63.05
68.37
69.22
66.68
69.76
69.79
69.48
70.71
70.12
75.14
71.22
69.88

4.73

1.45

0.57

IBRCC

ARL,
99.43
98.73
99.28

106.22

101.17

100.49
90.08
97.81
98.90
94.64
99.76

100.31
99.03

101.42

100.28

105.57

101.62
99.88

4.77
1.32
0.50

Control Chart
BRCC RCC IBCC

SDRL, | MRL, | ARL, | SDRL, | MRL, | ARL, | SDRL, | MRL, | ARL, | SDRL,
97.75 7.54 10.65 10.12 43.53 62.19 61.17 77.08 109.87 107.91
97.46 7.58 10.69 10.17 38.34 54.85 54.04 76.69 109.59 108.19
97.67 7.57 10.69 10.16 37.96 54.16 53.32 77.53 110.57 108.69
104.76 7.68 10.86 10.34 23.62 33.78 33.09 87.16 124.41 122.26
99.52 7.79 11.01 10.50 21.62 30.85 30.21 86.61 122.65 119.98
98.76 7.87 11.10 10.57 21.42 30.58 29.93 88.00 125.35 122.89
88.78 19.24 27.48 26.92 35.35 50.50 49.66 97.63 138.71 135.74
96.37 19.95 28.52 27.96 30.22 43.21 42.53 95.68 136.66 134.42
97.20 20.33 29.04 28.42 29.84 42.51 41.75 97.63 139.37 137.04
92.66 19.00 27.16 26.56 32.33 46.20 45.30 93.19 132.47 129.93
98.21 19.73 28.20 27.61 27.38 39.18 38.55 92.42 132.07 129.97
100.08 20.24 2891 28.30 26.02 37.16 36.47 92.98 132.53 129.88
97.10 10.04 14.24 13.71 27.49 39.24 38.47 79.40 113.00 110.72
100.22 10.20 14.48 13.94 25.08 35.84 35.20 78.84 112.44 110.78
98.59 10.29 14.61 14.06 24.84 35.49 34.80 80.02 114.04 112.06
103.76 3.00 4.17 3.64 21.89 31.30 30.71 82.76 118.03 116.25
100.05 3.00 4.18 3.64 20.32 29.03 28.45 82.43 117.38 115.39
98.28 3.00 4.19 3.65 19.97 28.52 27.90 82.88 118.20 115.92
5.23 84.05 84.24 84.71 55.82 56.13 56.72 24.03 22.75 21.07
1.30 83.63 83.82 84.28 60.92 61.17 61.64 22.94 21.80 20.39
1.27 83.38 83.58 84.06 61.62 61.93 62.45 24.47 23.34 21.69

To ensure that the comparisons between ARL; occur between control charts of same ARL,,
we adjusted the chart limits to obtain ARL, equal to the specified nominal values of 100 and
370. This control chart calibration is suggested in the literature [30, 37-39]. After ARL, cali-
bration, a § change was induced in the mean and precision regression structures to generate
out-of-control processes as the following: logit(y,) = 8 + B, + 1 x; and log(¢,) = 0 + {, + (| %,.
By enabling the process to be out-of-control, we obtained the estimated ARL; for different val-
ues of 6. When & = 0, the process is in-control and the ARL, can be evaluated.

The A/R\LO, l\mo, and SﬁiLo evaluation results are shown in Tables 3 and 4. Consider an
in-control process with ¢ — values of 0.01 and 0.0027, from the geometric distribution of the
RL we have ARL values equal to 100 and 370, nominal MRL values equal to 69.0 and 256.1,
and values of SDRL equal to 99.5 and 369.5, respectively. The IBRCC showed better perfor-
mance than BRCC, RCC, and IBCC, reaching empirical values closer to the nominal levels in
all evaluated scenarios. In Scenarios 2, 4, and 6, the IBRCC and IBCC obtained 0 as the lower
control limit, thus no point exceeded this limit. Similarly, in Scenarios 3, 5, and 7, the upper
control limit of the mentioned charts were 1. The fact that these scenarios present the 0 or 1 as
control limits is related to the value of the probabilities of occurrence of 0 or 1. That is, the
IBRCC and IBCC will present zero as control limit when P(Y = 0) = %,,(1 —7,) > /2 and
one as control limit when P(Y = 1) = &,,7, > /2. The high probability of Y assuming values
equal to one or zero means that these values are not atypical (out of control) but usual occur-
rences of the process.
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Table 4. Run length analysis to evaluate the IBRCC, BRCC, RCC, and IBCC with & = 0.0027.

Scenario n

2 100
200

500

3 100
200

500

4 100
200

500

5 100
200

500

6 100
200

500

7 100
200

500

MAPE 100
200

500

https://doi.org/10.1371/journal.pone.0236756.t1004

MRL,
279.42
266.36
262.62
318.25
279.92
270.43
250.95
261.78
261.74
258.92
278.17
279.66
279.43
280.08
267.76
312.39
286.76
268.50
11.26
7.58
4.82

IBRCC
A/\RL()
377.20
368.23
366.62
426.92
385.53
376.94
342.62
364.01
364.58
351.89
382.32
383.90
379.74
386.16
373.17
417.06
390.91
373.47
7.50
3.27
1.63

Control Chart
BRCC RCC IBCC

SDRL, | MRL, | ARL, | SDRL, | MRL, | ARL, | SDRL, | MRL, | ARL, | SDRL,
346.43 7.59 10.72 10.19 87.81 124.47 121.69 300.24 416.27 396.89
350.79 7.61 10.73 10.20 73.39 105.73 104.39 293.99 411.46 396.08
349.45 7.59 10.71 10.18 72.33 103.34 101.68 301.16 419.35 402.25
387.41 8.17 11.59 11.07 35.13 50.12 49.23 305.31 422.34 401.87
364.98 8.23 11.68 11.16 31.33 44.70 43.90 299.12 415.33 395.29
361.74 8.26 11.70 11.17 30.91 44.12 43.37 309.09 428.96 410.88
319.09 20.10 28.74 28.17 88.01 124.20 120.69 444.32 607.52 570.76
348.01 20.42 29.19 28.62 71.42 101.93 100.16 434.44 596.99 564.95
348.34 20.51 29.31 28.70 69.61 99.46 97.80 448.49 616.69 581.46
327.00 23.40 33.48 32.84 115.84 157.55 146.89 405.71 555.36 524.39
358.68 24.04 34.35 33.72 73.29 103.69 100.90 399.52 551.36 523.64
356.75 24.40 34.89 34.24 62.04 88.66 87.15 404.63 557.51 528.28
353.87 10.69 15.18 14.64 43.98 62.72 61.53 274.89 383.03 366.43
365.02 10.78 15.29 14.75 39.10 55.86 55.04 270.35 378.39 364.49
356.16 10.79 15.33 14.78 38.57 54.98 54.06 276.81 387.16 372.06
376.00 3.00 4.23 3.70 35.12 50.18 49.31 335.56 466.47 445.26
365.49 3.00 4.24 3.70 31.35 44.82 44.10 333.98 463.49 443.27
358.37 3.00 4.24 3.70 30.46 43.55 42.81 341.14 471.54 448.48

7.04 95.25 95.32 95.46 73.59 74.36 75.22 34.45 28.42 22.32

2.89 95.18 95.25 95.39 79.18 79.43 79.77 32.20 26.89 21.68

3.89 95.15 95.22 95.36 80.22 80.45 80.75 35.45 29.78 23.74

Tables 3 and 4 also show the MAPE results. The proposed control chart has the lowest val-
ues for the MAPE. For example, consider o = 0.01, corresponding ARL,, and n = 200, the
MAPE obtained for the IBRCC, BRCC, RCC, and IBCC were, 1.32, 83.82, 61.17, and 21.80,
respectively. It is noteworthy that, for the IBRCC, the MAPE decreases considerably when the
sample size increases.

Among the considered alternative control charts, the IBCC achieved better performance
than the BRCC and RCC in all scenarios. In Scenario 2 (Table 4), for n = 200, the IBCC pre-
sented a false alarm after 411 samples, when, in fact, a false alarm was expected for every 370
samples. In the same scenario, the BRCC and the RCC presented a false alarm rate in approxi-
mately 11 and 106 samples, respectively. These results show the importance of considering an
accurate model to reduce false alarms. We also note that the BRCC obtained the worst perfor-
mance. In Table 3, consider Scenario 3 and #n = 100, the RCC and BRCC presented a false
alarm in approximately each 50 and 27 observations, respectively. It is important to note that
BRCC performance worsened as the 0 or 1 percentage increased. Confirming this fact, the
IBCC also presented lower MAPE than BRCC and RCC in all scenarios. Considering o =
0.0027, n = 500, and the MRL, measure, the MAPE obtained for the IBRCC, BRCC, RCC, and
IBCC were, respectively, 4.82, 95.15, 80.22, and 35.45.

Results of the ARL; evaluation are shown graphically in Figs 1 and 2. It was not possible to
correct ARL, for the BRCC due to the poor in-control performance. Thus, the evaluation of
ARL; was given only for the IBRCC, RCC, and IBCC. It is noteworthy that when several con-
trol charts are compared in terms of ARL, the one that presents the lowest ARL; among those
with same ARL, is the control chart that outperforms the competitors [30]. By analyzing the
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Fig 1. ARL , curves evaluation for the inflated beta regression control chart (solid line), regression control chart
(dashed line), and inflated beta control chart (dotted line) when the mean is out-of-control.

https://doi.org/10.1371/journal.pone.0236756.9001
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Fig 2. ARL , curves evaluation for the inflated beta regression control chart (solid line), regression control chart
(dashed line), and inflated beta control chart (dotted line) when the precision is out-of-control.

https://doi.org/10.1371/journal.pone.0236756.9002
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ARL, results, when the perturbation was introduced in the mean of the process (Fig 1), we
observe that in Scenario 3 the IBRCC performs better than the RCC and IBCC, and in Scenario
2 the performance of the control charts are similar. We note that the IBRCC detects more
quickly the out-of-control process. For example, in Scenario 3, ARL = 370, n = 100, and

6 = —0.4, the IBRCC takes 176 samples on average to detect a change in the process, while the
IBCC takes 186 and the RCC takes 192 to detect a change of same magnitude. The simulation
results showed similar behavior when a perturbation in the precision of the process occurs
(Fig 2). The control charts detect process changes more quickly as the precision increases (dis-
persion decreases).

By considering the results obtained in the simulation, we see a necessity of using a control
chart based on an appropriate regression model, such as the IBRCC, when the variable of
interest is restricted to the intervals [0, 1) or (0, 1]. The use of the linear regression-based con-
trol chart is inappropriate for data of this type since the support of the usual regression model
is the whole real space. Interestingly, the BRCC proved to be more inadequate in the presence
of values equal to zero or one than the traditional RCC or the IBCC that uses inflated beta dis-
tribution but does not consider a regression structure. Since the BRCC does not accommodate
values equal to zero or one, by substituting zeros for 0.0001 and ones for 0.9999, an inflation in
these values is induced. That is, the probability mass at 0.0001 and/or 0.9999 exceeds what is
allowed by the beta distribution, which is an absolutely continuous distribution. This reflects
on the estimates of the parameters of the regression structures and, automatically, the esti-
mates of the control limits are impaired.

4 Real data application

This section contains an empirical application in which the proposed control chart (IBRCC)
and three other competing control charts are analyzed: the RCC, BRCC, and IBCC. The data
evaluated in this section refer to the public administrative efficiency of the municipalities in
the state of Sao Paulo, Brazil. The data are a subset of those analyzed by [40], who considered
all Brazilian municipalities. The dataset we used contains 427 municipalities for the year 2000
and it is available at http://www.de.ufpb.br/~luiz/datasets/Dataset_plosone.txt. The covariates
are from Secretaria do Tesouro Nacional (http://www.tesouro.fazenda.gov.br/), Instituto Bra-
sileiro de Geografia e Estatistica (IBGE) (https://www.ibge.gov.br/), and Instituto de Pesquisa
Econdmica Aplicada (IPEA) (https://www.ipea.gov.br/portal/), Brazil. The quality characteris-
tic, y, is introduced by [40] and represents individual observations of an efficiency index,
assuming values in (0, 1] and measuring how well mayors spend taxpayer money in order to
provide them with public services. The efficiency index is equal to one when there is full effi-
ciency. There are 32 units that are fully efficient (i.e., about 7.5% of the observations are equal
to one). A brief description of the variables used in the analysis is presented in Table 5. Vari-
ables CONS, R2, and MT are dummies, i.e., they are equal to 0 or 1. The covariate CONS equals
1 if the municipality participates in the inter-municipal consortia, the covariate R2 equals 1
whenever the municipality receives more than 10% of its tax revenue to royalty, and the covari-
ate MT equals 1 whenever the municipality is tourist, 0 otherwise for the three dummies covar-
iates. It is important to mention that 100 municipalities were sorted to estimate the model
parameters (Phase I), while the remaining observations were used for monitoring (Phase II).
At the outset, the inflated (at one) beta mean regression model, the beta regression model
substituting 1 for 0.9999, and a linear regression model were selected and fitted. We used the
logit link for y and ¢ and the log link for ¢. For the beta regression, we considered logit for
and log link for ¢. The maximum likelihood estimates of the models parameters are displayed
in Table 6. All covariates were significant at the nominal level of 5%. In order to compare the

PLOS ONE | https://doi.org/10.1371/journal.pone.0236756  July 30, 2020 13/20


http://www.de.ufpb.br/~luiz/datasets/Dataset_plosone.txt
http://www.tesouro.fazenda.gov.br/
https://www.ibge.gov.br/
https://www.ipea.gov.br/portal/
https://doi.org/10.1371/journal.pone.0236756

PLOS ONE Inflated beta regression control chart

Table 5. Description of the variables for efficiency data.

Variable Description

EFFIC Efficiency scores

EXP Personnel expenses in Reais

INC Average income in Reais

CONS Participation in inter-municipal consortia
URB Urbanization rate

R2 Royalties

E20 Demographic density

MT Tourist municipality

https://doi.org/10.1371/journal.pone.0236756.t1005

fitted regression models, we considered the MAPE and MSE between the observed and fitted
values. According to these criteria the inflated beta regression model outperforms the other
ones, with MAPE = 26.8835 and MSE = 0.0387, while the beta regression model obtains
MAPE = 29.4101 and MSE = 0.0454, and linear regression model achieves MAPE = 29.3617
and MSE = 0.0389.

Table 7 presents some descriptive statistics of the estimated control limits. Note that the
proposed control chart and the IBCC are the only ones that have an upper control limit con-
stant and equal to one. Differently, when beta regression control chart is used, the control lim-
its were restricted to the open interval (0, 1) and thus, in this case, fully efficient municipalities
are considered out-of-control. In addition, we verify that, by using the standard RCC, the lim-
its assume values below zero and above one, not being restricted to the interval (0, 1], where
the data are distributed. The interpretation of the limits, in this case, makes no practical sense
and leads to loss of detection power of out-of-control points.

Fig 3 graphically presents the control limits of the (a) IBRCC, (b) BRCC, (c) RCC, and (d)
IBCC together with the observed values of efficiency considering ARL, = 100. Considering the
fact that the efficiency index assumes values in (0, 1], the proposed model-based control chart

Table 6. Adjusted models for efficiency data.

The fitted inflated beta regression model

Submodel for y Submodel for ¢ Submodel for o,

Intercept E20 INC URB Intercept MT Intercept EXP INC R2
Estimate 0.6552 0.0001 —-0.0015 0.0124 2.0339 0.7744 —-2.2551 —1.0427 0.0014 0.5052
Std. error 0.4348 <0.0001 0.0005 0.0059 0.1527 0.3822 0.0884 0.0071 0.0001 0.0987
p-value 0.1319 <0.0001 0.0009 0.0371 <0.0001 0.0428 <0.0001 <0.0001 <0.0001 <0.0001

The fitted beta regression model
Submodel for y Submodel for ¢

Intercept EXP E20 URB R2 Intercept CONS URB
Estimate -0.7151 -0.1436 0.0002 0.0171 0.7391 4.2200 -2.2783 -0.0292
Std. error 0.4272 0.0704 0.0001 0.0056 0.3100 0.8236 0.3102 0.0095
p-value 0.0941 0.0415 0.0280 0.0023 0.0173 <0.0001 <0.0001 0.0022

The fitted linear regression model
Model for u

Intercept CONS URB
Estimate 0.3829 0.1282 0.0031
Std. error 0.1126 0.0497 0.0013
p-value 0.0010 0.0114 0.0196

https://doi.org/10.1371/journal.pone.0236756.t006
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Table 7. Descriptive statistics—minimum (min), first quantile (Q,/4), median, mean, third quantile (Qs,4), and maximum (max)—control limits for efficiency data.

Limits

LClLiprcc
UCLiprcc
LCLprcc
UCLgrcc
LCLgcc
UCLrcc
LCLicc
UCLpcc

min Qu/4 median mean Qs max
0.0042 0.2176 0.2500 0.2546 0.2832 0.5936
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0001 0.0998 0.1656 0.1429 0.2006 0.4323
0.0001 0.9582 0.9864 0.9594 0.9974 0.9999
-0.0070 0.1731 0.2064 0.2040 0.2305 0.3640
0.9057 1.0858 1.1191 1.1167 1.1432 1.2767
0.2424 0.2424 0.2424 0.2424 0.2424 0.2424
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

https://doi.org/10.1371/journal.pone.0236756.t007

(IBRCC) presents limits with a smaller range. Interestingly, the BRCC does not accommodate
values equal to one by substituting values equal to one for 0.9999, an inflation in these values is
induced, therefore the BRCC is less adequate in the presence of values equal to one than the
traditional RCC. The use of the linear regression-based control chart is inappropriate for data
of this type since the support of the usual regression model is the whole real space. Finally, the
IBCC that uses inflated beta distribution but does not consider regression structure presents
constant limits that are not appropriate in situations were we have control variables (covari-
ates). It is worth mentioning that IBRCC detected 7 out-of-control points, while BRCC
detected 36 out-of-control points. Lastly, we carried out the RESET misspecification test [41],
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Fig 3. Plot of the control limits based on (a) inflated beta regression control chart, (b) beta regression control chart, (c) regression control
chart, and (d) inflated beta control chart for monitoring the efficiency indexes for municipalities in the state of Sao Paulo, Brazil,
considering ARL, = 100.

https://doi.org/10.1371/journal.pone.0236756.9g003
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where the null hypothesis is that the fitted model is correctly specified and the alternative
hypothesis is that there is model misspecification. We perform the test using the second power
of the estimated mean linear predictor as testing variables. We do not reject the null hypothesis
at the 1% nominal level, thus suggesting that our model is correctly specified.

5 Conclusions

In this paper, we proposed a new model-based control chart for controlling quality characteris-
tics limited to the intervals (0, 1] or [0, 1) using the inflated beta regression model. For this
purpose, we extended the inflated beta regression model proposed by [12] by allowing a regres-
sion structure for the precision parameter. In this way, it is possible to model the mean
response, the data precision, and functions of the probability of a given observation assuming
zero or one through a regression framework. Our simulation study showed that the relative
bias and mean square error decrease when the sample size increases. With regard to the sensi-
tivity analysis in terms of run length (RL), the proposed IBRCC showed the best performance
in all considered cases. In addition, the results indicated that it is better to ignore the explana-
tory variables and use the inflated beta control chart (IBCC) than to use a control chart based
on an inappropriate regression model. We also considered an application to real data and
highlight the practical importance of the proposed chart when the response is distributed in
unit intervals containing ones. Finally, we suggest the use of the inflated beta regression con-
trol chart to monitor output quality characteristics, which is better characterized by a func-
tional relation between the response variable, double bounded in unit intervals containing
zeros or ones along with one or more explanatory variables.

A Score function and Fisher’s information matrix

In this appendix we obtain the score function and presented a closed-form expression for
Fisher’s information matrix for all parameters of the inflated beta regression model with
varying dispersion. We assume that the observed values of the dependent fractional variable
are sorted according to the 0, 1, and (0, 1)-values with ny, n;, and n — m terms, respectively,
where m = ng + n,. Furthermore, i = E(y!) = ¢(1,0,) — ¥ ((1 — u,)¢,) and

=EW) =¥ ((1—u)o,) — ¥(¢,), where y(:) is the digamma function.

Let

Olog [B(y,; 1, ¢,)] o
alut - ¢t0/t /“Lt)'

The score function for w is given by

80C(lt aa()t a:ut aaot
Z (%cm O, Z Bocm O, Z 8/1[ 0oy, Ow;”

+1

where du,, /0w, = X,;/g;(%,). Therefore,
04(6) - 1 Y .
= 1] t xt'
o, Z{g() Tita0n) - [t&( K

4, 71— yt)izlgl(ozlr))(yt ) ; ] (1-1,(9,)1 111(%))}-
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The score function for « is given by

00, 0)9, , < L(0) 0n, O,
Z &xu 8K Z 8051[ 316 Z op, 0oy, Ok’

t=m+1

where du,, /Ox; = %,;/g;(2,,). Thus,
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For p, the score function is given by

av, - 8% 0% 0) Ou, Iy,
Z 8% 3ﬁ 8V Z 3% 9B, Z f% Iy, 0B,

t=ny+1 m+1

where 9y,/0B; = x,/g;(y,) and O, /OB, = %x Then we have
3Vt
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9 _z_;{ =780, " L) + ACH xit ()
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The score function for { is given by
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where 9¢,/0(; = %,/¢,(¢,). Therefore,
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J t=1

In matrix form, each term of the score vector is given by
(/1(0) :XTTI{]IIO =[G, = RA,(Y” 7'//{*)]12}3
U.(0) = XTTZ{]QII =[G+ RA(Y" — AL},
Uﬁ(a) = XTT:;{_B2IO + B, + [Ss + W(Y* - //l*)]lz}v
:(0)

U.(0) =X"T,MI,

where T, = d1ag{ T T o } dlag{ e ,m}, T,= diag{gg(lyl) b ,g:,;(ly”)},
T, = dlag{M, s m} = diag(y;, ..., y,), A" = diag(u;, ..., 1),
M =diag{m,, ..., mu},m, = pu,(y; — 1) + (v — ui), Ay = diag{(1 — ap1) - . ., (1 — )},
A, =diag{(1 - ayy), ..., (1 —a1,)}h B, = diag{%7 %} B, = dlag{ e 1_17 },
R= diag{‘mlg"’l) B } J, = d1ag{ e } J, = dlag{ ek i},
1(1- “01)(1 1) ‘n(lfyon)l oty In
W= dlag{ 2 e }G _dlag{ ""cn}’
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. 1—y 1—y . o — - S, .
G, = diagq—2, ..., =2, S, = diagq 20— | 2w b X js a X kp matrix whose ¢-th row
2 o ', 3 o0 I
isx, X is a n x k, matrix whose t-th row is ', X is a n x k3 matrix whose t-th row is x;, X is a

n x k, matrix whose t-th row is ¥, I, = (1,(»,), .-, 1,(»,)) > I, = (1,(,), - --,1,(,)) ', and

L=(1-1,0,)1=1,(n),.. 1= 1,0,) 1= 1,(,))".

The joint information matrix for the parameter vector 8 = (w', k', ', {") " is given by
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