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Abstract

This paper considers the analysis of continuous time gradient-based optimization algorithms

through the lens of nonlinear contraction theory. It demonstrates that in the case of a time-

invariant objective, most elementary results on gradient descent based on convexity can be

replaced by much more general results based on contraction. In particular, gradient descent

converges to a unique equilibrium if its dynamics are contracting in any metric, with convex-

ity of the cost corresponding to the special case of contraction in the identity metric. More

broadly, contraction analysis provides new insights for the case of geodesically-convex opti-

mization, wherein non-convex problems in Euclidean space can be transformed to convex

ones posed over a Riemannian manifold. In this case, natural gradient descent converges

to a unique equilibrium if it is contracting in any metric, with geodesic convexity of the cost

corresponding to contraction in the natural metric. New results using semi-contraction pro-

vide additional insights into the topology of the set of optimizers in the case when multiple

optima exist. Furthermore, they show how semi-contraction may be combined with specific

additional information to reach broad conclusions about a dynamical system. The contrac-

tion perspective also easily extends to time-varying optimization settings and allows one to

recursively build large optimization structures out of simpler elements. Extensions to natural

primal-dual optimization and game-theoretic contexts further illustrate the potential reach of

these new perspectives.

1 Introduction

This paper considers the analysis of continuous-time gradient-based optimization through the

lens of nonlinear contraction theory. It is motivated, in part, by recent observations in machine

learning that arise in the application of gradient descent (or its stochastic counterpart) for the

training of over-parameterized networks [1]. Modern networks often possess many more

parameters than training examples and can fit the labels perfectly, resulting in submanifold

valleys of the parameter space with equal cost [2–4]. Moreover, recent results suggest that

highly-redundant networks experience few to no local optima that are not global optima
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[5–7]. These observations may be surprising in light of the fact that the loss landscapes for

these problems are rarely convex.

Although convex problems admit provable globally optimal solutions, other broader classes

of functions share this same property. For example, Invex functions [8] guarantee that any

local optimum is a global optimum, although the utility of invexity conditions remains a point

of contention [9]. Functions satisfying the Polyak-Lojasiewicz (PL) inequality [1, 3, 10, 11]

give rise to exponentially convergent gradient descent to a provably optimal solution. While

the PL condition is, in general, difficult to verify without an a-priori known globally optimal

solution, the existence of zero-loss solutions in over-parameterized learning [3, 6, 7] makes it

tractable in important special cases. Geodesic convexity [12, 13] generalizes convexity to a Rie-

mannian setting, with applicability to optimization on manifolds [14], as well as to conven-

tional Euclidean settings where Rn is endowed with a manifold structure through the

definition of a metric. Here, we consider another class of conditions for the convergence of

gradient and natural gradient descent to a globally optimal point. We do so through adopting

the perspective of nonlinear contraction theory and analyzing gradient descent in continuous

time.

Contraction theory [15] allows the stability of nonlinear non-autonomous systems to be

characterized through linear time-varying dynamics describing the propagation of infinitesi-

mally small displacements along the systems’ flow. The existence of a Riemannian metric that

contracts these virtual displacements (i.e., elements in the tangent space) is necessary and suffi-

cient for exponential convergence of any pair of trajectories. Contraction naturally yields

methods for constructing stable systems of systems, including synchronization phenomena

[16] and consensus [17, 18] as well as other key building blocks that allow the construction of

large contracting systems out of simpler elements [19]. These properties provide opportunities

to construct larger optimization structures from simpler elements (e.g., in distributed or com-

petitive optimization settings).

The contribution of this paper is to apply these contraction tools for the analysis of gradient

and natural gradient optimization. We consider optimization problems posed over Rn
wherein no explicit manifold structure necessarily exists a-priori. Instead, we consider the

analysis of optimization following endowing these problems with additional structure (a Rie-

mannian metric), analyzing their convergence, and considering the use of contraction tools to

build larger optimization structures out of smaller ones. Analysis proceeds in continuous time.

While this approach is limited, in part, by the fact that computational optimization algorithms

require a discrete implementation, a continuous perspective has yielded insight on important

phenomena such as in the analysis [20], discrete implementations [21], and extensions [22, 23]

of Nesterov’s accelerated gradient descent method [24]. It has also enabled analysis of primal-

dual algorithms [25], where an absolute time reference is obtained by introducing additional

fast dynamics or delays using a singular perturbation framework. Recent results [26] provide

principled tools to derive discrete-time implementations that preserve specific continuous-

time convergence rates.

The paper is organized as follows. Section 2 provides our main results, detailing the applica-

bility of contraction theory to analyze gradient descent in continuous time. We show that con-

vex functions represent the special case of contraction in the identity metric. The flexibility

afforded by state-dependent contraction metrics, however, enables significant extra freedom

for guaranteeing that all local optima are globally optimal. We then consider the extensions of

these results to natural gradient descent, where geodesic convexity of a function corresponds

to contraction of its natural gradient system in the natural metric. In both cases, results high-

light the topology of the set of optimizers in the case of semi-contraction, which would have

most direct applicability to over-parameterized networks. New results also show how semi-
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contraction may be combined with specific additional information to reach broad conclusions

about a dynamical system. Section 3 details extensions of these results to the case of primal-

dual type dynamics that appear in mixed convex/concave saddle systems, and shows how a

broad class of natural adaptive control laws can be interpreted as a primal-dual system. Section

4 discusses the special case of g-convex functions and associated combination properties for

interfacing with other models. Section 5 provides an outlook on potential future advances that

may stem from these connections.

2 Contraction analysis of gradient systems

We first recall basic definitions and facts on convex optimization and show how a contraction

analysis of gradient-based optimization considerably generalizes the class of functions that

admit a unique global optimum. Following this presentation, results are generalized to the case

of geodesically-convex optimization, which is particularly suited to analysis via contraction

tools. Throughout this analysis, given a differentiable function h : Rn ! Rm, we denote the

Jacobian of h(x) by

@h
@x
¼

@h
@x1

� � �
@h
@xn

� �

2 Rm�n

In the special case of a scalar-valued function f : Rn ! R we denote the gradient of f(x) by

rf ðxÞ ¼
@f
@x

� �>

2 Rn

and its Hessian byr2 f(x). Unless otherwise stated, we assume all functions are sufficiently

smooth such that derivatives of the necessary order exist and are continuous.

Before we embark on this discussion, let us note that of course, as illustrated, e.g., in [20]

and in the following example, continuous-time analysis tools in general may be used to con-

ceptually illuminate the mechanisms involved in discrete-time algorithms. As this paper will

show, contraction tools give particularly simple insights into important classes of optimization

problems, such as, e.g., geodesically-convex optimization.

Example 1. The Polyak-Lojasiewicz (PL) inequality is one of the most general sufficient condi-
tions for discrete-time gradient descent to exhibit linear convergence rates without strong convex-
ity of the cost [10, 11]. A function is said to satisfy the PL inequality if it has a (typically
unknown) global minimum value f � and there exists a constant μ> 0 such that

8x; krf ðxÞk2
� mð f ðxÞ � f �Þ

Consider gradient descent on the cost function f(x) from a continuous-time point of view,

_x ¼ � rf ðxÞ

Using V = f(x) − f � as a Lyapunov-like function, and then requiring that V converges exponen-
tially with rate μ, yields

_V ¼ � krf ðxÞk2
� � mV

The inequality above is exactly the PL condition. Thus, we see that the PL condition is nothing
but the condition for exponential convergence of the residual cost V = f(x) − f �.
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Similarly, imposing _V � � m
ffiffiffiffi
V
p

, corresponding to finite-time convergence (in time less than
2
ffiffiffiffiffiffiffiffiffiffi
Vð0Þ

p
=m [27]), would require a modified PL-like condition

8x; krf ðxÞk2
� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxÞ � f �

p

while imposing _V � � mV2 would require

8x; krf ðxÞk � ffiffiffi
m
p
ð f ðxÞ � f �Þ

By comparison, the results pursued via contraction analysis in this paper will ensure expo-

nential convergence of any pair of trajectories for gradient descent, but likewise will ensure

convergence of those solutions to a global optimum.

2.1 Relationships between convexity and contraction

Definition 1 (Strong Convexity). A twice differentiable function f : Rn ! R is α-strongly con-
vex with α> 0 if its Hessian matrixr2 f(x) satisfies the matrix inequality

r2f ðxÞ≽a I 8x 2 Rn

As its name suggests, a function that is strongly convex is convex in the usual sense, while

the converse is not always true. From a dynamic systems perspective, strong convexity pro-

vides exponential convergence of gradient flows:

Proposition 1 (Exponential Convergence of Gradient Systems for Strongly Convex Func-

tions). If a twice differentiable function f : Rn ! R is α-strongly convex, then its gradient system

_x ¼ � rf ðxÞ ð1Þ

converges to the unique global minimum of f exponentially with rate α.

Toward proving this proposition, we will consider stability analysis through the application

of nonlinear contraction theory.

Definition 2 (Contraction Metric [15]). A system _x ¼ hðx; tÞ is said to be contracting at rate
α> 0 with respect to a symmetric positive definite metricM : Rn ! Rn�n, if for all t 2 R and all
x 2 Rn,

_M þ A>MþMA≼ � 2aM ð2Þ

where Aðx; tÞ ¼ @h
@x is the system Jacobian and _M ¼

P
ið@M=@xiÞhiðx; tÞ. The system is said to

be semi-contracting with respect toM when (2) holds with α = 0.

Given an α-contracting system and an arbitrary pair of initial conditions x1(0) and x2(0),

the solutions x1(t) and x2(t) converge to one another exponentially

dMðx1ðtÞ; x2ðtÞÞ � e� at dMðx1ð0Þ; x2ð0ÞÞ ð3Þ

where dMð�; �Þ denotes the geodesic distance on the Riemannian manifold M ¼ ðRn;MÞ. This

property can be shown by considering the evolution of differential displacements δx, which

describe the evolution of nearby trajectories and coincide with the notion of virtual displace-

ments in Lagrangian mechanics. More precisely, letting x(t;x0, t0) denote the solution of

_x ¼ hðx; tÞ from initial condition x(t0) = x0, differential displacements evolve according to

dxðtÞ ¼
@xðt; x0; t0Þ

@x0

dxðt0Þ

Property (3) follows from the evolution of the squared length of these differential
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displacements [15], which verifies

d
dt
ðdx>MdxÞ � � 2aðdx>MdxÞ ð4Þ

Furthermore, if a system is α-contracting in a metric M that satisfies M(x) ≽ β I uniformly for

some constant β> 0, then any two solutions verify

kx1ðtÞ � x2ðtÞk �
1
ffiffiffi
b
p e� atdMðx1ð0Þ; x2ð0ÞÞ

Example 2. Consider an α-strongly convex function f and its associated gradient descent sys-
tem (1). Since f is strongly convex, it has a unique global minimum x�, which is a equilibrium
point of (1). It can be verified that the gradient descent dynamics of f are contracting in the iden-
tity metricM = I with rate α. Since geodesic distances are just Euclidean distances in this metric,
(3) immediately implies that

8t � 0; kxðtÞ � x�k � e� at kxð0Þ � x�k

thus proving Proposition 1.

From this example, it is clear that strongly convex functions are a special case of ones whose

gradient systems are contracting. The following proposition shows that one does not lose the

convergence properties to a global optimum on this more general class of functions.

Proposition 2 (Exponential Convergence of Contracting Gradient Systems). Consider
again gradient descent as in Eq (1). The system converges exponentially to a unique global mini-
mum if it is contracting in some metric.
Proof. Because (1) is autonomous and contracting, it converges exponentially to a unique

equilibrium x� [15]. Furthermore, this equilibrium must be a global minimum since f can only

decrease along trajectories, with _f ¼ � rf ðxÞTMðxÞ� 1
rf ðxÞ < 0 for x 6¼ x�.

The above result, which emphasizes contraction rather than convexity as a sufficient condi-

tion to converge to a global minimum, can be extended to the semi-contracting case as

follows.

Proposition 3 (Asymptotic Convergence of Semi-Contracting Gradient Systems). Consider
a twice differentiable function f : Rn ! R, a symmetric positive definite metricM : Rn ! Rn�n,
and the associated gradient system

_x ¼ � rf ðxÞ ð5Þ

Assume that dynamics (5) is semi-contracting in somemetric, and furthermore that one trajec-
tory of the system is known to be bounded. Then, (a) f has at least one stationary point, (b) any
local minimum of f is a global minimum, (c) all global minima of f are path-connected, and (d)
all trajectories asymptotically converge to a global minimum of f.
Proof. (a) By assumption, there exists some initial condition x0 such that x(t; x0) remains

bounded. This, in turn, implies that the ω-limit set ω[x(t; x0)] is non-empty, compact, forward

invariant, and that

dðxðt; x0Þ;o½xðt; x0Þ�Þ ! 0 as t ! þ1

Let x� denote an element of ω[x(t; x0)]. Since (5) is a gradient system, Theorem 15.0.3 of [28]

guarantees that x� must be an equilibrium point of (5). This proves that f has at least one sta-

tionary point.

Let us now show that ω[x(t; x0)] consists only of the single point x�, by contradiction. Let x�
1

and x�
2

be distinct elements in ω[x(t; x0)]. Further let � ¼ dMðx�1; x
�
2
Þ the geodesic distance

PLOS ONE Beyond convexity—Contraction and global convergence of gradient descent

PLOS ONE | https://doi.org/10.1371/journal.pone.0236661 August 4, 2020 5 / 29

https://doi.org/10.1371/journal.pone.0236661


between x�
1

and x�
2
. Then, the geodesic balls B1≔BM x�

1
; �

3

� �
and BM x�

2
; �

3

� �
are disjoint. Further,

since the system is semi-contracting these geodesic balls are forward invariant. Yet, since x�
1

a

limit point, x(t;x0) arrives within B1 at some point, and never leaves. Likewise, since x�
2

is a

limit point, x(t;x0) arrives within B2 at some point, and never leaves. Thus, we have a contra-

diction, and the limit set must consist of a single point.

(b) and (c): Consider now two equilibrium points of (5), x�
1

and x�
2
, and a smooth path γ(s)

such that gð0Þ ¼ x�
1

and gð1Þ ¼ x�
2
. Since the gradient dynamics are semi-contracting, for each

s the solution x(t;γ(s)) remains bounded. Thus, by the same reasoning as above, each x(t;γ(s))
converges to some equilibrium x�(s) as t! +1. Sincerf(x�(s)) = 0 for each s, and x�(s)
smoothly connects x�

1
and x�

2
, it follows that f ðx�

1
Þ ¼ f ðx�

2
Þ. That is, all solutions converge to the

same value for f.
(d): That all solutions of (1) asymptotically converge to a global minimum of f follows from

that fact that f decreases along all solutions, and all solutions converge to the same value for f.
Remark 1. In the case that a contraction metric needs to be found numerically, note that the

conditions (2) for certifying contraction or semi-contraction are convex criteria. Thus, in many
instances, the process of finding a metric numerically to verify contraction may be accomplished
via convex optimization approaches, such as those based on sums-of-squares programming [29].

2.2 Relationship between geodesic convexity and contraction

Geodesic convexity [12] generalizes conventional notions of convexity to the case where the

domain of a function is equipped with a Riemannian metric. A special case occurs in geomet-

ric programming (GP) [30]. In GP, a non-convex problem over positive variables fxig
N
i¼1

can

be transformed into a convex problem by a change of variables yi ¼ logðxiÞ. Alternately GP

can be formulated over the positive reals viewed as a Riemannian manifold by measuring dif-

ferential length elements ds in a relative sense

ds2 ¼
XN

i¼1

dxi
xi

� �2

¼
XN

i¼1

dy2

i ð6Þ

Geodesically-convex optimization generalizes this transformation strategy to a broader class of

problems [13]. However, beyond special cases (see, e.g., [31]), generative procedures remain

lacking to formulate g-convex optimization problems or recognize g-convexity.

To introduce g-convexity more formally, consider a function f : Rn ! R and a positive

definite metric M : Rn ! Rn�n. We note that geodesic convexity of f is not an intrinsic prop-

erty of the function itself, but rather is a property of f defined on the Riemannian manifold

ðRn;MÞ.
Definition 3 (g-Strong Convexity [32]). A twice differentiable function f : Rn ! R is said

to be geodesically α-strongly convex (with α> 0) in a symmetric positive definite metric M if

its Riemannian Hessian matrix H(x) satisfies:

HðxÞ≽aMðxÞ 8x 2 Rn ð7Þ

The elements of the Riemannian Hessian are given as [32]

Hij ¼ @ ij f � G
k
ij @k f ð8Þ

where @ ij f ¼
@2 f
@xi@xj

provide the elements of the conventional (Euclidean) Hessian and Gk
ij denotes
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the Christoffel symbols of the second kind

Gm
ij ¼

1

2

Xn

k¼1

Mmk @ jMik þ @ iMjk � @kMij

� �h i

with Mij(x) = (M(x)−1)ij. The function f is g-convex when (7) holds with α = 0.

The Riemannian Hessian generalizes the notion of the Hessian from a Euclidean context

and captures the curvature of f along geodesics. Likewise, the natural gradient generalizes the

notion of a Euclidean gradient to the Riemannian context in the following sense.

Definition 4 (Natural Gradient [33]). ConsiderRn equipped with a Riemannian metricM.

The natural gradient of a differentiable function f : Rn ! R is the direction of steepest ascent on
the manifold and is given in coordinates byM(x)−1rf(x).

Remark 2.WhenM(x) is the Hessian of some twice differentiable strictly convex scalar func-
tion ψ(x), natural gradient descent coincides with the continuous-time limit of mirror descent
[34, Sec. 2.3] with potential ψ(x).

Remark 3. From a differential geometric viewpoint, the first covariant derivative of f is a cov-
ector field given in coordinates byrf(x), while the natural gradient is a vector field given in coor-
dinates byM(x)−1rf(x) [33]. In a Euclidean context, whereM(x) is identity, this distinction
between covariant (covector) and contravariant (vector) representations of the gradient is
immaterial.
Similarly, the Riemannian HessianH represents in coordinates the second covariant deriva-

tive of f.
When M is the identity metric, geodesic α-strong convexity naturally coincides with the

definition of α-strong convexity in Definition 1. The natural gradient can be used to directly

mirror Proposition 1 within the Riemannian context.

Theorem 1 (Equivalence between g-Strong Convexity and Contraction of Natural Gradi-

ent). Consider a twice differentiable function f : Rn � R! R, a symmetric positive definite met-
ricM : Rn ! Rn�n, and the natural gradient system [33]

_x ¼ hðx; tÞ ¼ � MðxÞ� 1
rx f ðx; tÞ ð9Þ

Then, f is α-strongly g-convex in the metricM for each t if and only if (9) is contracting with rate
α in the metricM.More specifically, the Riemannian Hessian verifies

H ¼ �
1

2
MAþ A>Mþ _M
� �

ð10Þ

where A ¼ @h
@x.

Appendix 1 provides a self-contained proof using conventional tensor analysis methods

[35], whose relationship with contraction conditions have been noted previously [36, 37]. The

same relationships drive coordinate-free versions of the result in [38].

Remark 4. Theorem 1 can also be viewed as a special case of contraction analysis for complex
Hamilton-Jacobi dynamics [37]. A reorganization of (9) as

MðxÞ _x ¼ � rx f ðx; tÞ

may be recognized as the generalized momentum being the negative covariant gradient within a
Hamiltonian mechanics context.

Remark 5.While Theorem 1 applies to α-strong convexity, the link between the Riemannian
Hessian and the contraction condition (2) also provides immediate equivalence between g-con-
vexity of a function and semi-contraction of its natural gradient dynamics.
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Remark 6. Eq (10) provides an alternate way to compute the geodesic HessianH, and, as
expected, leaves it invariant when the metricM is scaled by a strictly positive constant. Because
of the structure of the natural gradient dynamics, scalingM is akin to scaling time and implies
inversely scaling the contraction rate α, consistently with (7).

By contrast, note that given a fixed dynamicsH, the contraction metric analyzing it can
always be arbitrarily scaled while leaving the contraction rate unchanged.

Similar to in Section 2.1 where convexity corresponded to contraction of gradient in the

identity metric, we likewise see that Thm. 1 imposes g-convexity via a particular choice of con-

traction metric for the natural gradient dynamics. Mirroring Prop. 2, removing this restriction

on the contraction metric leads to significant additional flexibility for guaranteeing conver-

gence to a globally optimal point.

Proposition 4 (Exponential Convergence of Contracting Natural Gradient Systems). Con-
sider again natural gradient descent as in Eq (9). The system converges exponentially to a unique
global minimum if it is contracting in somemetric.
Proof. The proof follows immediately from the same logic as the proof of Proposition 2.

Remark 7. Note that contraction also provides robustness. Consider perturbed dynamics

_x ¼ hðx; tÞ þ dðtÞ with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðtÞ>MðxÞdðtÞ
q

< R uniformly. If the dynamics are contracting with
rate λ, then all trajectories contract to a geodesic ball of radius R/λ [15]. This observation implies
favorable properties for algorithms where an exact gradient may be difficult or intractable to
compute, with approximation methods used in their place.

Theorem 2 (Semi-Contraction for Natural Gradient). Consider a twice differentiable func-
tion f : Rn ! R, a symmetric positive definite metricM : Rn ! Rn�n, and the associated natu-
ral gradient system

_x ¼ � MðxÞ� 1
rf ðxÞ ð11Þ

Assume that dynamics (11) is semi-contracting in somemetric, and furthermore that one trajec-
tory of the system is known to be bounded. Then, (a) f has at least one stationary point, (b) any
local minimum of f is a global minimum, (c) all global minima of f are path-connected, and (d)
all trajectories asymptotically converge to a global minimum of f.
Proof. The proof follows the exact same line of logic as the proof to Prop. 3. The result of

Theorem 15.0.3 of [28], which guarantees that any ω-limit point of gradient descent (5) is an

equilibrium point, generalizes immediately to the case of natural gradient descent (11).

Remark 8. The topology of global optimizers satisfying this semi-contraction condition is the
same as those observed when training over-parameterized networks [2, 3].However, empirical
loss functions in these networks often also experience multiple saddle points [39, 40]. The
attractor sets associated with strict saddles have measure zero [41, 42] under discrete gradient
descent with sufficiently small stepsize (i.e., with adequately close approximation to the continu-
ous time case), while the dimensionality of the attractor sets can be further reduced via smoothed
versions of the gradient [43].

While the presence of strict saddles precludes the ability of a gradient system to be globally
semi-contracting, any of the results given here can be generalized to forward invariant contrac-
tion or semi-contraction regions [15]. In principle, saddles could then be treated by excluding
their measure zero attractor sets from suitably chosen contraction or semi-contraction regions.

The topology of equilibria in semi-contracting gradient systems immediately implies the

following result.

Corollary 1. Consider an autonomous, semi-contracting natural gradient system. If the line-
arization at some equilibrium point is strictly stable, then all system trajectories tend to this
global minimizer.
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More generally, if some equilibrium is locally asymptotically stable, all trajectories tend to this
global minimizer.
Proof. We prove the second part, the first then follows directly from Lyapunov’s lineariza-

tion method. Existence of an equilibrium implies existence of a bounded trajectory. Further-

more, by definition, there exists a ball around the equilibrium point x� such that all trajectories

initiated in that ball tend to x�. If there was another equilibrium, the path connecting it to x�

would intersect that ball, which is a contradiction since the path is itself composed of equilibria

via Thm. 2.

Remark 9. Strict stability of a natural gradient system at an equilibrium point can of course
be established simply by ensuring that all eigenvalues of its Jacobian at this point are strictly in
the left-half complex plane. This condition is equivalent to requiring that the Hessian of the
objective function is positive definite at x�.

Indeed, given the natural gradient dynamics (11) with h(x) = −M(x)−1rf(x), the Jacobian at
any equilibrium x� is

@h
@x

�
�
�
�
x?
¼ �

@½M� 1�

@x

�
�
�
�
x?
� rf ðx?Þ � Mðx?Þ� 1

r2f ðx?Þ

¼ � Mðx?Þ� 1
r2f ðx?Þ

Applying a similarity transformation with the symmetric square root ofM(x�) yields

M1
2ðx?Þ

@h
@x

�
�
�
�
x?
M� 1

2ðx?Þ

¼ � Mðx?Þ�
1
2 r2f ðx?Þ½ �Mðx?Þ�

1
2

All eigenvalues of the symmetric matrix above are real, and they are all strictly negative if and
only if the Hessianr2 f(x�) is positive definite.
Note that this condition is equivalent to the geodesic Hessian at x� being positive definite in

any metric, as the Euclidean Hessian is numerically equal to the geodesic Hessian in any metric
in this case, due to all terms multiplying the Christoffel symbols in (8) being zero.

Corollary 2. Consider an autonomous semi-contracting natural gradient system, and
assume that the system has more than one equilibrium. Then, at any equilibrium, both the
Jacobian matrix of the dynamics and the Hessian of the objective have at least one zero
eigenvalue.
Proof. Consider an equilibrium x�, and an equilibrium path connecting it to some other

equilibrium. The unit tangent vector at x� along this path is an eigenvector of the Jacobian

with eigenvalue zero. Given the algebraic relation between the Jacobian and the objective Hes-

sian pointed out in Remark 9, this shows in turn that the objective Hessian has a zero

eigenvalue.

2.3 Examples

Let us illustrate Theorem 1 using the classical nonconvex Rosenbrock function:

f ðxÞ ¼ 100ðx2
1
� x2Þ

2
þ ðx1 � 1Þ

2 ð12Þ

This function has a unique global optimum at x� = [1, 1]>, which is located along a long, shal-

low, parabolic-shaped valley.
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Example 3 Consider the Rosenbrock function (12) and the metric [32]

MðxÞ ¼
400x2

1
þ 1 � 200x1

� 200x1 100

" #

The metricM(x) satisfies trðMðxÞÞ ¼ 400x2
1
þ 101 > 0 and detðMðxÞÞ ¼ 100 > 0, and thusM

(x)� 0. Note thatM(x) is not the Hessian of f(x). The natural gradient dynamics follows

_x ¼ hðxÞ ¼ � MðxÞ� 1
rf ðxÞ ¼ � 2

x1 � 1

x2
1
� 2x1 þ x2

" #

It can be verified algebraically that

M
@h
@x

� �

þ
@h
@x

� �>

Mþ _M ¼ � 4M

which shows that natural gradient descent is contracting with rate α = 2. This implies that the
natural gradient dynamics satisfy

dMðxðtÞ; x�Þ � e� 2t dMðxð0Þ; x�Þ

where x� = [1, 1]>. Equivalently, the Rosenbrock function is geodesically α-strongly convex with
α = 2.

The Rosenbrock metric M(x) can be viewed as following from a differential change of vari-

ables

dz ¼ YðxÞdx ¼
20x1 � 10

1 0

" #

dx

where M = Θ>Θ yields δ x>M δ x = δ z> δ z. This differential change of variables is integrable,

so that g-convexity of the Rosenbrock can be shown using the explicit nonlinear coordinate

change z1 ¼ 10x2
1
� 10x2 and z2 = x1 − 1 that provides f ¼ z2

1
þ z2

2
.

Example 4.Mirror descent provides another example of a metric corresponding to an explicit
state transformation, with Newton’s method as a special case.
Consider a twice differentiable scalar objective function f(x), and a smooth strictly convex sca-

lar function ψ(x). Denoting byHf(x) =r2 f(x) andHψ =r2 ψ the Hessians of these functions,
continuous-time mirror descent of f(x) under potential ψ(x) corresponds to natural gradient in
the Hessian metricHψ [34, Sec. 2.3]

_x ¼ � H� 1

c
rf ðxÞ ð13Þ

Consider the explicit change of variables z =rψ(x), which can be written in differential form as
δ z = Hψ δ x. The dynamics (13) can be viewed in the mirror space as

_z ¼ Hc _x ¼ � rf ðxÞ

and therefore

d
dt

dz ¼ � Hfdx
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LettingMðxÞ ¼ H2

c
, this yields

d
dt
dxTMðxÞdx½ � ¼

d
dt
dzTdz½ � ¼ � 2 dz>Hf dx ¼ � dx

>½HfHc þHcHf �dx
>

Thus, continuous mirror descent (13) is contracting with rate λ> 0 in the metricMðxÞ ¼ H2

c
if

HfHc þHcHf≽2lH2

c ð14Þ

In the particular case when f is α-strongly convex and the potential function is chosen as
ψ(x) = f(x), Eq (13) simply corresponds to Newton’s method, and (14) verifies that Newton’s
method is contracting with rate 1 in the squared Hessian metricMðxÞ ¼ H2

f ðxÞ [44].

Note that the well-known result that the transformation z =rϕ(x) is one-to-one (given the
strict convexity of ψ) can also be shown by constructing, for a given z, the system

_x þrcðxÞ ¼ z ð15Þ

which is autonomous and contracting in the identity metric and thus must reach a unique equi-
librium point.

The following proposition provides further insight into the case when the contraction met-

ric is related to an explicit change of variables more generally.

Proposition 5 (Relationship between gradient and natural gradient under a diffeomorphic

change of variables). Consider a diffeomorphic change of variables z = g(x), and the associated
metricM(x) = Θ(x)>Θ(x), withYðxÞ ¼ @g

@x. For any twice differentiable function f : Rn ! R,

natural gradient descent in x

_x ¼ � MðxÞ� 1
rf ðxÞ

is equivalent to gradient descent in z

_z ¼ � r f � g� 1½ �ðzÞ

Proof. In the z coordinates we have

_z ¼
@g
@x

_x ¼ � Y M� 1rf ðxÞ ¼ �
@f
@x
Y
� 1

� �>

¼ �
@f � g� 1

@z

� �>

¼ � r f � g� 1½ �ðzÞ

Proposition 6. Consider a metricM(x) and suppose there exists a diffeomorphic change of
variables z = g(x) such thatM(x) = Θ(x)>Θ(x), withYðxÞ ¼ @g

@x. Then, the associated Riemann-
ian curvature tensor with components Rikℓm must be identically zero.

Proof. Note that since δz = Θ(x)δx, it follows that δz> δz = δx>M(x)δx and thus the Rie-

mannian metric tensor expressed in the z coordinates is the identity. Since the components of

the Riemannian metric tensor are constant in these transformed coordinates, it follows that

the components of the Riemannian curvature tensor are identically zero [32]. Transformation

laws for tensors ensure that the components of the curvature tensor remain zero under arbi-

trary coordinate change, thus Rikℓm = 0.

The general freedom to consider differential changes of coordinates δz = Θ(x)δx where Θ is

non-integrable provides additional flexibility and generality to both contraction analysis and

g-convexity, as illustrated by the following examples.
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Example 5. Consider the non-convex function

f ðxÞ ¼ x2
1
þ x2

2
þ x2

1
x2

2

which has a global minimum at x = 0. Contours of the function are shown in Fig 1. Gradient
descent

_x ¼ � rf ðxÞ ¼ � 2
x1ð1þ x2

2
Þ

x2ð1þ x2
1
Þ

" #

can be shown to be contracting at rate λ = 2 in the metric

MðxÞ ¼
2þ x2

1
� x1x2

� x1x2 2þ x2
2

" #

Fig 1 shows two solutions and plots their geodesic distance. The decay is, as expected, at a rate
faster than the exponentially decreasing upper bound as derived from (3). The curvature tensor
for this metric has some non-zero components, such as

R1221 ¼
2

2þ x2
1
þ x2

2

From Proposition 6, this shows that this metric cannot be derived from an explicit change of
coordinates.

Example 6. Consider the function

f ðzÞ ¼ z8
1
� z6

1
� 2z5

1
z2 � z4

1
þ z2

1
z2

2
þ z2

1
þ 2z1z2 þ z2

2

Fig 1. Contracting gradient descent corresponding to Example 5.

https://doi.org/10.1371/journal.pone.0236661.g001
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and natural gradient descent with a given natural metricΘ(z)>Θ(z), where

YðzÞ ¼
1 0

1 � 3z2
1

1

" #

This natural gradient dynamics is verified semi-contracting in the metric

MðzÞ ¼ YðzÞ>
1þ z2

2
� 2z3

1
z2 þ z6

1
0

0 1þ z2
1

" #

YðzÞ

Similar to Example 5, this metric has non-zero Riemannian curvature, and thus cannot be
derived from a change of coordinates. Fig 2 shows the contours of f and two solutions of natural
gradient descent. Fig 3 shows that the the geodesic distance between these two solutions is non-
increasing. Since the system is only semi-contracting, the distance between solutions does not
tend toward zero. It can be verified that f is a sum of squares and thus f(z)� 0, and that f(z) = 0

when z2 ¼ z3
1
� z1. Both initial conditions asymptotically lead to this path connected set of global

optima.

Example 7. Geodesically-convex optimization can also be used to carry out manifold-con-
strained optimization in an unconstrained fashion via recasting problems over a Riemannian
manifold directly [14, 31]. Taking an intrinsic view of the manifold, coordinate free results are
available [38], however, for the purposes of computation, we assume a global coordinate chart
here. Consider for instance optimization over the set Sn

þ
of n × n positive definite matrices, and

specifically the problem of finding the Karcher mean of m matrices Ai 2 S
n
þ

[13], which

Fig 2. Semi-contracting natural gradient descent for Example 6.

https://doi.org/10.1371/journal.pone.0236661.g002
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minimizes the objective function

f ðXÞ ¼
1

2

Xm

i¼1

klogðA� 1

i XÞk2

F

where kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðA>AÞ

p
denotes the Frobenius norm of a matrix A. The function f(X) is m-

strongly convex [13] on Sn
þ
in the metric that measures symmetric differential displacements as

ds2 ¼ trððdX X� 1Þ
2
Þ ð16Þ

Naturally, the requirement that δX be symmetric makes it an element of the tangent space to the
manifold of symmetric positive definite matrices.
This metric generalizes the GP case (6), and coincides with the second-order terms in the Tay-

lor series of the log barrier −logdet(X) [45]. The gradient of f(x) can be written

rf ðXÞ ¼
Xm

i¼1

logðA� 1

i XÞX� 1

and accordingly the natural gradient can be shown to satisfy

Xm

i¼1

X logðA� 1

i XÞ ¼ Xrf ðXÞX

From Theorem 1, any trajectory with arbitrary initial condition Xð0Þ 2 Sn
þ
will remain within

Fig 3. Semi-contracting natural gradient descent for Example 6.

https://doi.org/10.1371/journal.pone.0236661.g003
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Sn
þ
under the natural gradient descent dynamics

_X ¼ �
Xm

i¼1

X logðA� 1

i XÞ

since (intuitively) the Riemannian metric (16)makes any element on the boundary of the positive
definite cone an infinite distance away from any one in the interior, and contraction of the natu-
ral gradient dynamics ensures that geodesic distances decrease exponentially.

Example 8. An approximation to the Riemannian distance of two positive definite (PD)
matrices on the PD cone is given by the Bregman LogDet divergence on Sn

þ

dðAkXÞ ¼ logdetðA� 1XÞ þ trðX� 1AÞ � n ð17Þ

The metric is convex in its first argument, and can be shown to be geodesically convex in the sec-
ond. We illustrate the connection with contraction to show this property. Note that

rdðAkXÞX ¼ X� 1 � X� 1AX� 1

so that the natural gradient descent dynamics are simply

_X ¼ � X rdðAkXÞX½ �X ¼ � Xþ A

with differential dynamics

d _X ¼ � dX

where the differential displacement δ Xmust be symmetric. Considering the rate of change in
length of these differential displacements

d
dt

tr ðX� 1 dXÞ2Þ
� �

¼ � 2trðX� 1AðX� 1dX� 1Þ
2
Þ

and defining the differential change of variables dZ ¼ X� 1
2 dXX� 1

2, one has trðdZ2Þ ¼

trððX� 1 dXÞ2Þ and

d
dt

trðdZ2Þ ¼ � 2tr dZX�
1
2AX�

1
2 dZ

� �
¼ � 2kA

1
2X�

1
2 dZk2

F < 0 ð18Þ

for all δ Z 6¼ 0.Hence, considering only the second argument to LogDet divergence, its Riemann-
ian Hessian is positive definite, thus proving g-convexity via Thm. 1.

2.4 Non-autonomous systems and virtual systems

In our optimization context, the fact that contraction analysis is directly applicable to non-

autonomous systems can be exploited in a variety of ways. As we shall detail later, a key aspect

is that it allows feedback combinations or hierarchies of contracting modules to be exploited

to address more elaborate optimization problems or architectures. Also, it makes the construc-

tion of virtual systems [46] possible to potentially extend results beyond natural-gradient

descent.

Remark 10. The natural gradientM−1(x)rx f(x, t) represents the direction of steepest
ascent on the manifold at any given time. With this in mind, Remark 7 on robustness enables
convergence analysis for natural gradient descent within time-varying optimization contexts
[25]. Let x�(t) denote the optimum of a time-varying α-strongly g-convex function. If
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x�ðtÞ>MðxÞ _x�ðtÞ
q

< R, then the natural gradient will track _x�ðtÞ with accuracy R/α after expo-
nential transient.

Remark 11. Consider a contracting natural gradient system of the form (9). In the autono-
mous case, equations governing the differential displacement follow

d
dt

dx ¼
@h
@x

dx ð19Þ

which has a similar structure to the time evolution of h(x)

d
dt

hðxÞ ¼ rh xð Þð Þ hðxÞ ð20Þ

Thus, for natural gradient descent of an α-strong g-convex function f(x), the same algebra leading
to (4) also gives

d
dt
ðh>MhÞ ¼ � 2h>Hh � � 2aðh>MhÞ

so that the Krasovskii-like function

VðxÞ ¼ hðxÞ>MðxÞhðxÞ ¼ rf ðxÞ>MðxÞ� 1
rf ðxÞ

can be viewed as an exponentially converging Lyapunov function, with global minimum V = 0 at
the unique minimum of f(x). Of course, (19) remains valid for non-autonomous systems as well,
while (20) does not.

The use of virtual contracting systems [46–48] allows guaranteed exponential convergence

to a unique minimum to be extended to classes of dynamics which are not pure natural gradi-

ent. For instance, it is common in optimization to adjust the learning rate as the descent pro-

gresses. Consider a natural gradient descent with the function f(x) α-strongly g-convex in

metric M(x), and define the new system

_x ¼ � pðx; tÞMðxÞ� 1
rf ðxÞ ð21Þ

where the smooth scalar function p(x, t) modulates the learning rate [33] and is uniformly pos-

itive definite,

9 pmin > 0; 8t � 0; 8x; pðx; tÞ � pmin

Let us show that this system tends exponentially to the minimum x� of f(x).

Consider the auxiliary, virtual system,

_y ¼ � MðyÞ� 1
ryð pðx; tÞf ðyÞ Þ ð22Þ

For this system, p(x(t), t) is an external, uniformly positive definite function of time, and thus

ryð pðx; tÞf ðyÞ Þy ¼ pðx; tÞ rf ðyÞ

so that the contraction of (9) with rate α implies the contraction of (22) with rate αpmin. Since

both x(t) and x� are particular solutions of (22), this implies in turn that x(t) tends to x� with

rate αpmin.
Note that since we only assumed that p(x, t) is uniformly positive definite, in general the

actual system (21) is not contracting with respect to the metric M(x).

Remark 12. The learning rate may also be selected to improve the numerical properties of the
algorithm in a discrete time implementation. For example, p(x, t) could vary as the inverse of the
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condition number ofr2 f(x) to improve numeric conditioning without impact on stability
guarantees.

2.5 Contraction +

Corollary 1 above points to a more general class of results where contraction or semi-contrac-

tion properties are combined with other information, such as a stable local linearization or a

decreasing cost, to provide global results.

2.5.1 Contraction is attractive. As we now show, Corollary 1 extends more generally to

autonomous semi-contracting systems. An instance of this result in the case of an identity met-

ric was derived in [49].

Proposition 7. Consider an autonomous system

_x ¼ hðxÞ ð23Þ

semi-contracting in a bounded metricM(x),

0 � b
2

0
I≼MðxÞ≼b2

1
I 8x

If a system equilibrium is locally asymptotically stable, then it is globally asymptotically stable. In
particular, if the system linearization at some equilibrium point is strictly stable, then all system
trajectories tend to this equilibrium.

Proof. The result is a particular case of Theorem 3, to be discussed next.

Theorem 3. Consider a non-autonomous system, semi-contracting in a bounded metric
M(x),

0 � b
2

0
I≼MðxÞ≼b2

1
I 8x ð24Þ

Assume that a specific trajectory x�(t) is locally attractive. Then all trajectories tend asymptoti-
cally to x�(t).
In particular, if contraction holds (possibly in a different bounded metric) along a specific tra-

jectory x�(t), and within a tube of constant size around it, then all trajectories tend asymptoti-
cally to x�(t).
Proof. The first part generalizes the equilibrium argument from [49] to arbitrary trajectories

and arbitrary metrics. Assume that x�(t) is locally attractive, by which we mean there exists

some � > 0 such that, for any initial time t0 and initial condition x0 2 BIðx�ðt0Þ; �Þ, one has

x(t0 + T;x0, t0)! x�(t0 + t) as T! +1. Without loss of generality, we assume t0 = 0.

Consider some generic initial condition x0 with dI(x0, x�(0))> �. We will argue that there is

always a finite time window over which the geodesic distance from x(t; x0) to x�(t) decreases

by a fixed finite increment.

Consider a geodesic connecting x0 and x�(0) and denote by x the unique point on this geo-

desic that is a geodesic distance β0 � away from x�(0). Due to the uniform positive definiteness

of M, this condition implies that x 2 BIðx�ð0Þ; �Þ.
Because of the local attractivity of x�(t), there exists a time t1 > 0 such that

dIðxðt1; xÞ; x�ðt1ÞÞ �
�b0

2b1

which further implies that

dMðxðt1; xÞ; x�ðt1ÞÞ � b0

�

2
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In addition, since the system is semi-contracting, we have

dMðxðt1; xÞ; xðt1; x0ÞÞ � dMðx; x0Þ

and so by the triangle inequality

dMðx�ðt1Þ; xðt1; x0ÞÞ � dMðx; x0Þ þ b0

�

2
¼ dMðx; x0Þ þ dMðx�ð0Þ; xÞ

� dMðx�ð0Þ; xÞ þ b0

�

2

¼ dMðx�ð0Þ; x0Þ � b0

�

2

This implies that so long as dI(x0, x�(0))> �, the trajectory from x0 will eventually decrease its

geodesic distance by a fixed finite increment. Since this process can be repeated, it follows that

there must exist some time T such that xðT; x0Þ 2 BIðx�ðTÞ; �Þ.
To complete the second part of the proof we proceed to show that if contraction (2) holds

within a tube of constant size around trajectory x�(t), for some bounded metric

ðb
?

0
Þ

2I≼;M?ðxÞ≼ðb?
1
Þ

2I and some rate α� > 0, then that trajectory is locally attractive. By con-

dition (2) holding within a tube we mean that there exists some � > 0 such that (2) holds for

any time t and any x 2 BIðx�ðtÞ; �Þ. From boundedness of the metric, we have

b
?

0
dIðx�ðtÞ; xÞ � dM?ðx�ðtÞ; xÞ

so that any initial condition x0 satisfying

dM� ðx�ð0Þ; x0Þ � �b
�

0

necessarily starts within this tube. Further, since (2) holds within the tube, it follows that the

geodesic ball of radius �b
?

0
around x�(t) is forward invariant. Since this ball is contained within

a contraction region, this implies that for any x0 2 BMðx?ð0Þ; b
?

0
�Þ

dM� ðx�ðtÞ; xðt; x0ÞÞ � e� a
?t dM� ðx�ð0Þ; x0Þ

which proves local asymptotic stability of x�(t).
Remark 13. The condition regarding contraction within a tube of fixed size is included to

avoid pathological cases where the region of contraction shrinks to zero as t! +1. For example,
the system _x ¼ � xþ tx3 is contracting with rate 1 at the origin for all time, yet the origin is not
locally asymptotically stable.

Remark 14. Intuitively, the result can be understood by analogy with a shrinking rope. Con-
sider a path of initial conditions connecting x�(0) to any x0. As this path flows forward in time, at
t = 0, only a portion of this path of states is within the basin of attraction for x�(t). Viewing this
path as a rope, the semi-contraction property ensures that no part of the rope can increase in
length as it flows forward through the dynamics. Yet, due to local attractivity at one end of the
rope, a portion of it is guaranteed to have shrinking length, pulling the rest of the rope toward the
the region of attraction.

Remark 15. Numerical tools for determining contraction metrics [29] are based on the fact
that contraction conditions (2) are convex in the metric for a fixed contraction rate. In practice,

these methods often involve an outer search procedure for the contraction rate (e.g., via a

binary search). In this sense, the use of semi-contraction is desirable as it does not require this

additional search.

Remark 16. These results have analogs in the context of controller design using control con-
traction metrics (CCMs) [48, 50]. In this setting, one can impose a semi-contracting closed-loop
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metric everywhere, except in a tube along a desired trajectory where a strict contraction condition
would be required, possibly in a different metric. Since the existence of an exponential (resp.
semi) CCM implies that the closed-loop plant can be rendered contracting (resp. semi-contract-
ing), Theorem 3 would then imply asymptotic stabilizability of the desired trajectory.
This extension likewise has analogs for manifold convergence results [48] and convergence to

a limit cycle by transverse contraction [51], both of which are special cases of CCM results applied
to suitably constructed virtual control systems [48]. In either case, a semi-contracting CCM
everywhere can be combined with a contracting CCM condition on the manifold (or limit cycle)
and within a neighborhood of it to assert asymptotic stability of the manifold (or limit cycle). In
the limit cycle case for autonomous systems, the contracting CCM condition needs only be
enforced on the limit cycle itself, as its satisfaction within some neighborhood is then guaranteed
by compactness. Likewise, for convergence to a compact manifold (e.g., an eggshell) in an autono-
mous system, the contracting CCM condition needs only be considered on the manifold itself.

2.5.2 Contraction as minimization. Similarly, Proposition 2 may be viewed as a particu-

lar instance of the following results, which use contraction properties to minimize a cost or

Lyapunov-like function.

Proposition 8 (Exponential Cost Minimization). Consider an autonomous contracting sys-
tem (23), and a scalar cost function V(x) such that _V ðxÞ � 0 for all x. Then all trajectories tend
exponentially to a global minimum of V.

Proof. Because the system is contracting and autonomous, it tends exponentially to a unique

equilibrium x� [15]. Consider now an arbitrary x, and the system trajectory initialized at x.

Since the cost V can only decrease along the trajectory, this implies that V(x�)� V(x), for all x.

Proposition 9. Consider an autonomous semi-contracting system (23) in a bounded metric
M(x), and a scalar cost function V(x) such that _V ðxÞ � 0 for all x. Assume that one system equi-
librium x� is locally attractive (e.g., that linearization at x� is strictly stable). Then this equilib-
rium is unique, it is a global minimum of V, and all trajectories converge to it asymptotically.
Proof. Applying Proposition 7 shows that all trajectories asymptotically tend to x�, which

also implies that the equilibrium is unique. By the same reasoning as in Proposition 8, since V
can only decrease, V(x�) must be a global minimum.

Remark 17. These results extend readily to the case where a system is semi-contracting within
some forward invariant region, as opposed to globally. These generalizations may have applica-
bility e.g., to the continuous-time limit of trained neural networks [52–54], wherein semi-con-
traction regions represent basins of attraction that are free of saddles. Metrics may become
singular as they approach the boundary of these open sets [15], allowing the semi-contraction
region to cover the entire basin.

Proposition 9 can be stated more generally as follows.

Theorem 4 (Asymptotic Cost Minimization). Consider an autonomous semi-contracting
system in a bounded metricM(x), and a scalar cost function V(x) such that _V ðxÞ � 0 for all x.

Assume that one trajectory is known to be bounded. Let I be a forward invariant set where
_V ¼ 0, and assume that the contraction condition (2) holds on I for some (possibly different)
metric.
Then I is path connected, all system trajectories converge to a unique equilibrium x� 2 I and

V is globally minimized at x�.

Proof. Let us first show that I is path connected, by contradiction. Assume I is not path

connected, then it can be decomposed into two disjoints subsets, I1 and I2. Because I is invari-

ant and the subsets are disjoint, each of the subsets must be invariant. Strict contraction on I1

and I2 then implies that each subset contains at least one locally stable equilibrium point (note

that each of the subsets may themselves be disconnected and thus may contain more than one
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stable equilibrium point). The existence of two equilibrium points contradicts Proposition 9,

and thus I is path connected.

Next, on the connected invariant set I, contraction implies that the geodesic distance

between any two points shrinks exponentially. By the same reasoning as in Proposition 8, this

in turn implies convergence to a global minimum of V.

Remark 18. Note that for a system where a scalar cost V satisfies _V � 0, radial unbounded-
ness of V is a sufficient condition for all trajectories to be bounded, ensuring the existence of a
bounded trajectory as necessary in Thm. 4.

Remark 19. In the case of mechanical systems, V may often be chosen as the total energy of
the system, so that Proposition 8 implies exponential convergence of the total energy, and, in
turn, that potential energy is exponentially minimized. Similarly, Theorem 4 implies that poten-
tial energy is asymptotically minimized.

Remark 20. Contraction criteria can also be expressed in non-Euclidean norms and their
associated matrix measures ([15], section 3.7.ii). The results above extend immediately to these
representations.

3 Primal-dual optimization

Primal-Dual algorithms are widely used in optimization to determine saddle points and also

appear naturally in constrained optimization [45], where Lagrange parameters play the role of

dual variables. When a function is strictly convex in a subset of its variables, and strictly con-

cave in the remaining, gradient descent/ascent dynamics converge to a unique saddle equilib-

rium [55, 56]. Within the context of constrained optimization, these dynamics are known as

the primal-dual dynamics. Such dynamics play an important role e.g., in machine learning, for

instance in adversarial training [57], in the information theory [58] of deep networks, in rein-

forcement learning [59] and actor-critic methods, and in support vector machine representa-

tions [60]. More generally, they are central to a large class of practical min-max problems, such

as problems in physics involving free energy, or, e.g., nonlinear electrical networks modeled in

terms of Brayton-Moser mixed potentials [25, 61, 62].

Consider a scalar function L(x, λ, t), possibly time-dependent, and metrics Mx(x) and

Mλ(λ). Consider the natural primal-dual dynamics, which we define as

MxðxÞ _x ¼ � rxLðx; λ; tÞ ð25aÞ

MλðλÞ _λ ¼ rλLðx; λ; tÞ ð25bÞ

In contrast to Remark 8, wherein spurious saddle equilibrium points presented an obstacle to

global contraction, here the target equilibrium points of these dynamics are, by construction,

chosen to be the saddle points of the function L. Using the metrics Mx(x) and Mλ(λ) extends

the standard case [25], where they would be replaced by constant, symmetric positive definite

matrices. The practical relevance of this extension is illustrated by the following example in the

case of natural adaptive control.

3.1 Primal dual dynamics in natural adaptive control

This section illustrates the presence of natural primal-dual dynamics embedded in the applica-

tion of natural adaptive control laws. Consider a system given by

Jðx; . . . ; xðn� 2Þ; aÞxðnÞ þ Yðx; . . . ; xðn� 1ÞÞa ¼ u ð26Þ

with configuration x 2 RN , control u 2 RN , and unknown parameters a 2 A � Rp. The
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regressor Y 2 RN�p and symmetric matrix J 2 RN�N may depend nonlinearly on the state and

its derivatives. We assume that the matrix J remains positive definite for all a 2 A and that it is

linear in a. As a result, there exists a regressor function W such that

Wðx; . . . ; xðn� 1Þ; xðnÞÞa ¼ Jðx; . . . ; xðn� 2Þ; aÞxðnÞ ð27Þ

þYðx; . . . ; xðn� 1ÞÞa ð28Þ

and a regressor function Q such that for any s 2 RN

�
1

2
_Js ¼ Qðx; . . . ; xðn� 1Þ; sÞ a

Consider a desired trajectory xd(t) and the associated sliding variable [27, 63]

s ¼
d
dt
þ λ

� �n� 1

~x ¼ xðn� 1Þ � xðn� 1Þ
r ð29Þ

where ~x ¼ x � xd. With this sliding variable, we define a reference xðn� 1Þ
r for the order n − 1

derivative of the state.

Choosing the control law

u ¼ � Ksþ ĴxðnÞr þ Yðx; . . . ; xðn� 1ÞÞâ �
1

2
_̂J s

where xðnÞr ¼
d
dt x
ðn� 1Þ
r provides the closed-loop dynamics

J_s þ Ks ¼W~a þQâ ð30Þ

Inspired by the elegant modification of the Slotine and Li adaptive robot controller intro-

duced by Lee et al. [64, 65], we consider the Lyapunov-like function

V ¼
1

2
s>Jsþ df ðakâÞ

where df ðakâÞ denotes the Bregman divergence of a function f assumed convex on A and

given by

df ðakâÞ ¼ f ðaÞ � f ðâÞ� < rf ðâÞ; a � â >

Note that the LogDet divergence from (17) follows this form for f(X) = −logdet(X). Here, we

consider the case when A is open and f is chosen as a convex barrier function on A, such that

the Hessian metric H =r2 f(x) endows A with a barrier Hessian manifold structure [65, 66].

Note that if f is a second-order function 1

2
aTPa, the Bregman divergence is simply 1

2
~a>P~a, with

H−1 equal to the constant matrix P−1 similar to the standard adaptive algorithm [63].

A quick calculation shows that the derivative of the Bregman divergence is simply _̂a>H~a, so

that the adaptation law

_̂a ¼ � H� 1ðWþQÞ> s ð31Þ

yields

_V ¼ � s>Ksþ s>ðWþQÞ~a þ _̂a>H ~a ¼ � s>Ks � 0

Considering a virtual system with W and Q as externally provided functions of time, the
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dynamics (30) and (31) are equivalent to natural primal-dual over the function

L ¼
1

2
s>Ks � s>W~a � s>Q â

in the decoupled metric Ms = J and Mâ ¼ HðâÞ. Overall, this construction enables the results

in natural adaptive robot control [64, 65] to be extended to the broader class (26).

Remark 21. Note that a similar construction could be applied to provide natural adaptation
within recent applications of nonlinear adaptive control [67, Thm. 2] based on control contrac-
tion metrics [48, 50].

3.2 Natural primal dual

Continuous-time convex primal-dual optimization is analyzed from a nonlinear contraction

perspective in [25], building on a earlier result of [19]. As we now show, Theorem 1 yields a

natural extension to geodesic primal-dual optimization, where convexity in terms of primal

and dual variables is replaced by g-convexity, thus broadening the above results to state-depen-

dent metrics.

Theorem 5. Consider a scalar function L(x, λ, t), with L g-strongly convex over x and g-
strongly concave over λ in metricsMx(x) andMλ(λ) respectively. Then, the geodesic primal-dual
dynamics (25) is globally contracting, in metric

Mðx; λÞ ¼
MxðxÞ 0

0 MλðλÞ

" #

ð32Þ

Proof. Letting z = [x>, λ>]> and _z ¼ fðz; tÞ denote the overall system dynamics, the sys-

tem’s Jacobian can be written

Aðx; λ; tÞ ¼
@f
@z
¼

�
@

@x
ðM� 1

x rxLÞ � Mx
� 1 rxλL

Mλ
� 1 rλxL

@

@λ
ðM� 1

λ rλLÞ

2

6
6
6
4

3

7
7
7
5

ð33Þ

so that, using Theorem 1,

MAþ A>M þ _M ¼ � 2
Hx 0

0 � Hλ

" #

< 0

Proposition 10. Consider the primal dual dynamics (25) for a scalar cost function L(x, λ),

with L g-strongly convex over x and g-concave (not necessarily strongly so) over λ in metrics
Mx(x) andMλ(λ) respectively. Suppose also that one solution of (25) is known to be bounded.
Then, for any initial condition, the geodesic primal-dual dynamics (25) converge to an equilib-
rium x�, λ�.Moreover, x� is independent of initial conditions.
Proof. The proof is given as a corollary to Theorem 6 in the next section.

Remark 22. The above proposition highlights that contraction of the PD dynamics (e.g., as
developed in [25]) is not necessary to guarantee convergence to a unique primal solution. Note
however, that the above results only guarantee asymptotic convergence toward the unique primal
equilibrium, as opposed to exponential convergence [25] when contraction can be shown for the
PD dynamics as a whole.

This observation is reminiscent of results in adaptive control wherein the error dynamics of

a certainty-equivalent controller may be asymptotically stable despite the fact that an
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associated adaptation law may not converge to the actual unknown parameters [63, 68], with

adaptation occurring on a “need-to-know” basis in that sense. Conceptually, this principle can

apply to more general contexts involving concurrent control and learning, when effective con-

trol is the main goal (e.g., in reinforcement learning).

4 Applying contraction tools to g-convex optimization

Theorem 1 immediately implies that existing combination properties [15, 19] from contrac-

tion analysis can be directly applied in the context of g-convex optimization. While these prop-

erties derive from simple matrix algebra and in principle could be proven directly from the

definition of geodesic convexity, as we will see most rely for their practical relevance on the

flexibility afforded by the contraction analysis point of view.

4.1 Sum of g-convex

If two functions f1(x, t) and f2(x, t) are g-convex in the same metric for each t, then their sum

f1(x, t) + f2(x, t) is g-convex in the same metric.

Example 9. Consider a function f1(x1, y1, t) g-convex for each t in a block diagonal metric
BlkDiagðMx1

ðx1Þ;Myðy1
ÞÞ and a function f2(x2, y2, t) g-convex for each t in a block diagonal

metric BlkDiagðMx2
ðx2Þ;Myðy2

ÞÞ. Then, the function:

f ðx1; x2; y; tÞ ¼ f1ðx1; y; tÞ þ f2ðx2; y; tÞ

is g-convex in metric BlkDiagðMx1
;Mx2

;MyÞ for each t.

4.2 Skew-symmetric feedback coupling

Assume that a scalar function f1(x1, x2) is α1-strongly g-convex in x1 in a metric M1(x1) for

each fixed x2, and similarly that a scalar function f2(x1, x2) is α2-strongly g-convex in a metric

M2(x2) for each fixed x1. If f1 and f2 satisfy the scaled skew-symmetry property

rx1x2
f1 ¼ � k rx1x2

f2 ð34Þ

where k is some strictly positive constant, then the natural gradient dynamics

_x1 ¼ � M1ðx1Þ
� 1
rx1

f1ðx1; x2Þ

_x2 ¼ � M2ðx2Þ
� 1
rx2

f2ðx1; x2Þ
ð35Þ

is contracting with rate min(α1, α2) in metric M(x1, x2) = BlkDiag(M1(x1), kM2(x2)). Since the

overall system is both contracting and autonomous, it tends to a unique equilibrium

[15]ðx�
1
; x�

2
Þ which satisfies the Nash-like conditions

x�
1
¼ argminx1

f1ðx1; x�2Þ

x�
2
¼ argminx2

f2ðx�1; x2Þ

Note that the result can be broadened to cases where the scaled skew-symmetry property is

not exactly satisfied, by using the small-gain extension in [19]. Taking again the machine learn-

ing context as a potential example, such two-player game dynamics can occur in certain types

of adversarial training.

The result extends to a game with an arbitrary number of players. Consider n functions

ffiðx1; . . . ; xnÞg
n
i¼1

such that each fi is αi-strongly g-convex over xi in a metric Mi(xi). If the
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functions satisfy the skew-symmetry conditions

rxixj
fi ¼ � kjrxixj

fj

for each j> i, then the suitable generalizations of (35) result in a coupled system that is con-

tracting with rate min(α1, . . ., αn) in the metric

M ¼ BlkDiagðM1; k2M2; . . . ; knMnÞ:

The overall system converges to a unique Nash-like equilibrium satisfying

x�
1
¼ argminx1

f1ðx1; x�2; . . . ; x�nÞ

and a similar relation for each other player.

Likewise, the result can be extended to the case when the natural gradient dynamics for

each individual player may only be semi-contracting.

Theorem 6. Consider the two player case (35), wherein (a) f1 is α1-strongly g-convex with α1

> 0 in a uniformly positive definite metricM1(x1) for each x2 (b) the Riemannian Hessian
H2(x1, x2) of f2(x1, x2) in x2 is only positive semi-definite for each x1 in a uniformly positive defi-
nite metric M2(x2) and (c) the skew-symmetry property (34) holds. Assume that one trajectory of
(35) is known to be bounded. Then, every trajectory of (35) converges to a Nash equilibrium x�

1
,

x�
2
.Moreover, x�

1
does not depend on initial conditions (i.e., every Nash has the same strategy for

player 1).
Proof. It can be shown that virtual displacements evolve such that

d
dt
ðdx>

1
M1ðx1Þdx1 þ kdx>2 M2ðx2Þdx2Þ

� � 2 a1dx>1 M1ðx1Þdx1 � 2 k dx>
2
H2ðx1; x2Þdx2

which implies, by Barbalat’s lemma,

dx1 ! 0 and H2ðx1; x2Þdx2 ! 0

Via the same argument as follows from (20), it follows thatrx1
x1(x1(t), x2(t))! 0 as t!1.

So, for each initial condition, x1(t) must converge to some equilibrium x�
1

of the x1 dynamics.

Furthermore, since any δx1! 0, x�
1

must be unique and independent of initial conditions. Let

us now turn to the behavior of the x2 dynamics. Given an arbitrary initial condition (x1,0, x2,0)

for (35), let L+ denote its ω-limit set. Any point in (x1, x2) 2 L+ must satisfy x1 ¼ x�
1
. Since the

dynamics are autonomous, L+ is composed of trajectories of the system

_x1 ¼ 0 ð36Þ

_x2 ¼ � M2ðx2Þ
� 1
rx2

f2ðx�1; x2Þ ð37Þ

Moreover, L+ must be closed and bounded. Since (37) is a natural gradient system of a g-con-

vex function, Thm. 2 ensures that any trajectory of (37) must converge to an equilibrium point

that is a global minimizer for f2ðx�1; x2Þ. Considering any initial condition of (37) that begins in

L+, we denote ðx�
1
; x�

2
Þ 2 Lþ as the resulting equilibrium point. However, since (35) is semi-

contracting, any geodesic ball around ðx�
1
; x�

2
Þ is forward invariant for (35), which implies that

Lþ ¼ fðx�
1
; x�

2
Þg. Thus, x2ðtÞ ! x�

2
as t!1. Note again that, while x�

2
depends on initial con-

ditions, x�
1

does not.
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Corollary 3. Consider any two equilibrium points ðx�
1
; x�

21
Þ and ðx�

1
; x�

22
Þ for a system that sat-

isfies the condition of Theorem 6. Then, the geodesic between these points is comprised of extre-
mal Nash equilibrium points, all of which have the same cost.
Further, if one equilibrium of (37) is locally asymptotically stable, then it is necessarily globally

attractive, and thus all trajectories of (37) converge to this unique equilibrium ðx�
1
; x�

2
Þ regardless

of initial conditions.
Proof. Proof of the first part follows immediately from applying Corollary 3.1 of [12] to the

function f2ðx�1; x2Þ. Proof of the second part follows immediately from the application of Corol-

lary 1 herein.

Corollary 4. Proposition 10 is true.
Proof. Consider Thm. 6 with f1 ¼ Lðx; λÞ and f2 ¼ � Lðx; λÞ.

4.3 Hierarchical natural gradient

Consider a function f1(x1) α1-strongly g-convex in a metric M1(x1), and a function f2(x1, x2)

α2-strongly g-convex in a metric M2(x2) for each given x1. Then, the hierarchical natural gradi-

ent dynamics

_x1 ¼ � M1ðx1Þ
� 1
rx1

f1ðx1Þ

_x2 ¼ � M2ðx2Þ
� 1
rx2

f2ðx1; x2Þ

is contracting with rate min(α1, α2) in metric M(x1, x2) = BlkDiag(M1(x1), M2(x2)), under the

mild assumption that the coupling Jacobian is bounded [15]. Since the overall system is both

contracting and autonomous, it tends to a unique equilibrium [15] at rate min(α1, α2), and

thus to the unique solution of

rx1
f1ðx1Þ ¼ 0

rx2
f2ðx1; x2Þ ¼ 0

By recursion, this structure can be chained an arbitrary number of times, or applied to any

cascade or directed acyclic graph of natural gradient dynamics. Such hierarchical optimization

may play a role, for instance, in backpropagation of natural gradients in machine learning,

with all descents occurring concurrently rather than in sequence.

Remark 23. In large-scale optimization settings such as those appearing commonly in machine
learning, natural gradient with a fully-dense metric can become intractable. In specific cases, such
as natural gradient descent based on Fisher information [33], computationally effective approxi-
mations have been derived [69, 70]. In addition, the combination of simple (e.g., diagonal) metrics
through hierarchical structures lends an opportunity to recover significant complexity at broad
scale − see, e.g., the hierarchical combination of scalar metrics to learn hierarchical representations
of symbolic data in [71, 72]. Such simpler metrics are also well motivated in the context of positive
or monotone systems [73, 74]. In special cases of a dense Hessian metricM(x) =r2 ψ(x) from a
potential ψ(x), note that continuous mirror descent (see also Proposition 5 and Example 4) provides
an alternate method to compute continuous natural gradient. These methods can avoid the need
to invert the metric in cases where there is an explicit inverse exists for the change of variables z =

rψ(x), or when (15) can be run at a fast time scale to invert the gradient map through dynamics.

5 Conclusions

Overall, this paper has demonstrated that nonlinear contraction analysis provides a general

perspective for analyzing and certifying the global convergence properties of gradient-based
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optimization algorithms. The common case of strong convexity corresponds to the special

case of contracting gradient descent in the identity metric, while our analysis admits global

convergence results in the significantly broader case of state-dependent metrics. This result

has clear links to the case of geodesically-convex optimization wherein natural gradient

descent converges to a unique equilibrium if it is contracting in any metric, broadening from

the special case of g-convexity corresponding to contraction in the natural metric. Our analysis

of semi-contraction of gradient systems, and the resulting smoothly connected sets of global

optima may shed additional light on applications in learning with over parameterized net-

works [2] where the set of optimizers is recognized to take the form of a low-dimensional man-

ifold. Results on natural primal dual and the convergence to Nash equilibria showcase the

broad reach of these fundamental results, where they may serve as the basis for the generation

of larger scale distributed optimization algorithms in future work. A framework we call Con-

traction + shows how contraction or semi-contraction properties can be combined with spe-

cific but coarse information on a system, such as the local stability of a particular equilibrium

or the weak decreasing of a cost or a Lyapunov-like function, to conclude on global conver-

gence or minimization.

A natural next step for the application of contraction in optimization is to design geodesic

quorum sensing [16, 75] algorithms for synchronization [76], as well as other consensus mech-

anisms considering time-delays [17, 18], which may serve as the basis for distributed and

large-scale optimization techniques on Riemannian manifolds. Other future applications will

consider stochastic gradient descent in the Riemannian setting [77] with quorum sensing

extensions (as, e.g., in [78, 79]). Such advances could have direct applications, e.g., in the con-

text of machine learning, among others.
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