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Abstract

The occurrence of genotype by environment interaction (G x E), which is defined as the dif-

ferential response of genotypes to environmental variation, is frequently reported in maize

cultures, making it challenging to recommend cultivars. Methods allowing to study the

potential nonlinear pattern of genotype responses to environmental variation allied to prior

beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and

stability of genotypes. In this context, the present study aimed to assess the adaptability and

stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate

the efficacy of using informative and minimally informative prior distributions for the selection

of cultivars. Randomized complete-block design experiments were carried out to study the

yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The

Bayesian segmented regression model fitted using informative prior distributions presented

lower credibility intervals and Deviance Criterium of Information values, compared to those

obtained by fitting using minimally informative distributions. Therefore, the model using

informative prior distributions was considered for the adaptability and stability evaluation of

maize genotypes. Once most northeastern farmers in Brazil have limited capital, the geno-

type P4285HX should be considered for planting, due to its high yield performance and

adaptability to unfavorable environments.

Introduction

Maize (Zea mays L.) cultures are appreciated worldwide. Thus it has tremendous relevance due

to its several uses and applications in areas ranging from animal feed to technological industries.

Furthermore, because maize is grown under different environmental conditions, it interacts

with various environments, resulting in varied genotype performances [1]. Such interactions
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hinder the genotype sealing works given that the best-suited genotype for a specific environ-

ment may not be best suited for another environment where such interactions take place.

Thus, recommendations for the broad adaptability and stability of cultivars become costly [1].

The literature presents several methodologies to study phenotypic adaptability and stability.

Examples of such methods are those based on simple linear regression [2], piecewise linear

regression [3, 4], mixed models (REML/BLUP) [5], non-parametric methods [6, 7], multivari-

ate analysis, for example, multiple and expanded centroid methods [8, 9] and Bayesian infer-

ence for simple linear regression [10].

Unlike the deterministic and frequentist methods, the Bayesian framework allows for the

incorporation of additional information relating to the parameters through prior distributions,

which are characterized by the probability distribution. According to [11], all information is

useful and must be used in the Bayesian analysis. Additionally, owing to the large quantity of

information available from previous studies, incorporating this information during modeling

is reasonable [12].

Despite being interesting, the Bayesian approach to adaptability and stability studies is based

on a simple regression model [10]. According to [13], the simple linear regression models are

unable to fit a potential nonlinear pattern to genotype responses to environmental variations.

Aiming to solve this deficiency, under a statistical “frequentist” framework, [3, 4] proposed the

segmented regression model allowing the identification of the “ideal” genotype, which presents

high yield performance, high stability and low sensitivity to adverse conditions. Nascimento et al.

[12] proposed the Bayesian segmented regression model approach to analyze phenotypic adapt-

ability and stability. This approach differs from the “frequentist” framework, allowing the addition

of prior beliefs to unknown parameters, bringing new insights for plant breeders. Additionally,

this method allows for the exploitation of potential nonlinear patterns of genotype responses to

environmental variations, aiming to identify genotypes that present high yield performance, and

high stability under adverse conditions. This genotype is denoted as “ideal,” according to [4].

In light of the above, the present study aimed to assess the adaptability and stability of

maize hybrids by using the Bayesian segmented regression model and evaluate the efficacy of

using informative and minimally informative prior distributions in the selection of cultivars.

Materials and methods

During the agricultural years 2012 and 2013, 25 maize hybrids from public and private compa-

nies from the states of Maranhão (Balsas, Brejo, Colinas, and São Raimundo das Mangabeiras

counties), Piauı́ (Nova Santa Rosa, Teresina, and Uruçuı́ counties), and Sergipe (Nossa

Senhora das Dores, Frei Paulo, and Umbaúba counties) were assessed. The assessments com-

prised 11 environments, where the Nossa Senhora das Dores County had two different fertili-

zation and each one was assumed as a different environment (Table 1).

During the trials, samples considered to have high fertilization ranges were treated with a

total of 180.00 kg ha-1 of N, 149.80 kg ha-1 of P2O5 and 85.60 kg ha-1 of K2O, whereas samples

considered to have low fertilization ranges were treated with 45.00 kg ha-1 of N, 37.80 kg ha-1

of P2O5 and 21.60 kg ha-1 of K2O, in the form of 535 and 135 kg ha-1 of 8-28-16 Zn at the time

of sowing, respectively.

The experimental design was based on randomized blocks, with two repetitions, wherein

each plot comprised four 5.0 m-long rows, with spacings of 0.70 m x 0.20 m, between rows,

and between holes within the rows, respectively.

Fertilization was performed according to the results of the soil analysis from each experi-

mental area. Irrigation was not carried out, and weed and pest control was performed accord-

ing to the crop’s requirement in each region.
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The maize yield data were subjected to variance analysis for each environment. A joint anal-

ysis was carried out by adopting the model: yijk = μ + r/ek(j) + ej + gi + geij + εijk, where yijk is the

phenotypic mean, μ is the overall mean, r/ek(j) is the effect of the kth repetition in the jth envi-

ronment, gi is the fixed effect of the ith genotype, ej is the effect of the jth environment normally

and independently distributed (NID) ð0; s2
eÞ, geij is the effect of the interaction of the ith geno-

type in the jth environment NID ð0; s2
geÞ, and εijk is the experimental error NIDð0;s2

εÞ:

Model and Bayesian inference

The bi-segmented regression model is given by

yij ¼ bi0 þ bi1Ij þ bi2TðIjÞ þ eij; ð1Þ

where yij is the response of genotype i in environment j, βi0 is the mean response of genotype i,
βi1 is the slope under the first regime (the linear regression coefficient related to the unfavor-

able environments), and βi2 represents the change in slope from the first to the second regime

(βi1 + βi2 is the slope after the change-point, that is, the linear response to the favorable

Table 1. List of hybrid maize cultivars and their respective origins, types, cycles, colors, grain textures and companies.

Cultivar Transgenic/Conventional Type1 Cycle2 Grain color3 Grain texture4 Company

30A95HX Transgenic TH E OR SMHARD MORGAN

30A68HX Transgenic SH EE OR SMHARD MORGAN

BM820 Conventional SH E R HARD BIOMATRIX

DKB330YG Conventional SH EE R/OR SMDENT DEKALB

AS1596R2 Transgenic SH E R SMDENT AGROESTE

P4285H Transgenic SH E Y/OR HARD DU PONT

2B710HX Transgenic SH E Y/OR SMHARD DOW

30A16HX Transgenic SH E OR SMHARD MORGAN

DKB370 Conventional SHm E Y/OR SMHARD DEKALB

AG8041YG Transgenic SH E Y/OR SMHARD SEMENTES

20A55HX Transgenic TH E OR SMHARD MORGAN

30F53HR Transgenic SH E OR SMHARD DU PONT

30A37HX Transgenic SH EE Y/OR SMHARD MORGAN

30A91HX Transgenic SHm E Y/OR SMHARD MORGAN

2B587HX Transgenic SH E Y/OR SMDENT DOW

2B433HX Transgenic TH EE Y/OR SMDENT DOW

AS1555YG Transgenic SH E OR SMHARD AGROESTE

BRS2022 Conventional DH E OR SMDENT EMBRAPA

Statusvip Transgenic SH E OR HARD SYNGENTA

BRS2020 Conventional DH E OR SMHARD EMBRAPA

2B707HX Transgenic SH E OR SMHARD DOW

20A78HX Transgenic SH E OR SMHARD DOW

2B604HX Transgenic SHm E OR SMHARD DOW

30K73H Transgenic SH E Y/OR SMHARD DU PONT

2B688HX Transgenic TH E OR SMHARD DOW

1DH: Double hybrid; TH: Triple hybrid; SHm: Modified single hybrid.
2EE: Extra early; E: Early.
3OR: Orange; R: Reddish; Y:Yellow.
4SMDENT:Semi-dent; SMHARD:Semi-hard.

https://doi.org/10.1371/journal.pone.0236571.t001
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environments). Further, Ij is the coded environmental index, T(Ij) = 0 if Ij� 0, or TðIjÞ ¼
Ij � �Iþ if Ij> 0, and �Iþ is mean of the coded environmental index considering only environ-

ments with positive indexes and eij is the error term, NID (0, σ2).

The Bayesian approach for the bi-segmented model is described in Nascimento et al. [12].

In summary, assuming eijjIs2
ie � Nð0; Is2

ieÞ, each observation yij has a distribution

yij � Nðbi0 þ bi1Ij þ bi2TðIjÞ; Is2
ieÞ, and the likelihood function for each genotype is given by

Li bi0; bi1; bi2; s
2
ie; yij

� �
¼

1

ð
ffiffiffiffiffiffiffiffiffiffi
2ps2

ie

p
Þ
a

exp

(

�
1

2s2
ie

X

IfIj�0g

½yij � bi0 � bi1Ij�
2
�

1

2s2
ie

X

IfIj>0g

½yij � bi0 � bi1Ij � bi2ðIj � �IþÞ�
2

) : ð1:1Þ

The prior distributions for the parameters (βi0, βi1, βi2, s2
ie) are given by

bi0jmbi0 ; s
2

bi0
� Nðmbi0 ; s

2

bi0
Þ ð1:2Þ

bi1jmbi1 ; s
2

bi1
� Nðmbi1 ; s

2

bi1
Þ; ð1:3Þ

bi2jmbi2 ; s
2

bi2
� Nðmbi2 ; s

2

bi2
Þ; ð1:4Þ

and

1

s2
ie

¼ tieja1; b1 � Gamma ai; bið Þ; ð1:5Þ

where mi0i0
i0, s2

bi0
,mi1i1

i1, s2
bi1

, mi2i2
i2, s2

bi2
, and αi, βi are the known parameters. This last prior

distribution is the Gamma distribution with mean and variance equal to a

b
e a

b2, respectively.

Additionally, ie the precision is equal to 1

s2
ie
.

The joint posterior distribution is proportional to the product of the likelihood function

(Eq 1.1) and the prior distributions (Eqs 1.2–1.5).

Pðbi0; bi1; bi2; tei ¼ 1=s2
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jyijÞ /
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To make inferences regarding the parameters in Eq 2, the Markov chain Monte Carlo

(MCMC) was used to obtain the posterior marginal distributions for each parameter.
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The marginal distribution samples of the stability parameter, s2
di, were obtained indirectly.

This parameter is a function of s2
ie. Therefore, using the s2

ie values from each interaction, we

obtain s2
di according to the following expression: ŝ2

di ¼ ŝ
2
ie �

MSR
r , where MSR is the residual

mean square obtained from the variance analysis and r is the number of repetitions of the

experiment. The hypotheses of interest were tested by calculating the 95% credibility intervals

for the parameters.

Priors distributions

Two models were fitted to assess the model’s goodness of fit. Model 1 (M1—minimally informative

prior distributions) was characterized by minimally informative prior distributions, which were

represented by distributions with large variances: bi0jmbi0 ; s
2
bi0
� Nðmbi0 ¼ 0; s2

bi0
¼ 100000Þ,

bi1jmbi1 ; s
2
bi1
� Nðmbi1 ¼ 0; s2

bi1
¼ 100000Þ, bi2jmbi2 ; s

2
bi2
� Nðmbi2 ¼ 0; s2

bi2
¼ 100000Þ, and

τie|αi, βi ~ Gamma(αi = 0.001, βi = 0.001).

Model 2 (M2—informative prior distributions), similar to the method employed in [12],

was characterized by the estimates obtained from the frequentist analysis of the bi-segmented

model, used as information to define the hyperparameters.

Assessing the model’s goodness of fit

Models M1 (minimally informative priors) and M2 (informative priors) were compared by

means of the Deviance Information Criterion (DIC) [14]: DIC ¼ DðŷÞ � 2pD. Here, DðŷÞ is a

point estimate of the deviance obtained by replacing the parameters with their posterior mean

estimates in the likelihood function and 2pD is given by the effective number of parameters in

the models. Models with lower DIC are preferred.

Bayesian analysis

We adopted MCMC chains considering 100,000 iterations of the Gibbs sampler algorithm.

We set the burn-in to 10,000 iterations and thinned every five iterations. In each chain, we

analyzed the posterior mean, standard deviation, 95% credibility intervals, and convergence

criterion statistics [15, 16]. The methodology was implemented in software R [17], and the

joint distribution samples were obtained using the rbugs function of the rbugs package [18],

which was accomplished by fusing R and OpenBugs (a software application for the Bayesian

analysis of complex statistical models using MCMC methods). The MCMC chain convergence

was accessed by Geweke and Raftery-Lewis diagnostics using the package [19] provided in the

R software [17].

Results and discussion

The analysis of variance of the maize yield (kg/ha) demonstrated that the genotypes, environ-

ments and the genotype x environment interaction (G×E) presented a significant effect

(P< 0.05) (Table 2). The significance of G x E interaction indicates contrasts between environ-

ments and differential genotypic responses to environmental effects. The occurrence of G × E

interaction, which can be defined as the differential response of genotypes to environmental

variation, is frequently reported in maize cultures, making it challenging to recommend culti-

vars [20–24].

The posteriori means and their respective credibility intervals (CI) provided estimates

for the adaptability and stability parameters. Considering the results provided by the model
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M1, which is characterized by the minimally informative prior distributions, most geno-

types (14 genotypes) presented the linear regression coefficient related to the unfavorable

environments equal to 1 (βi1 = 1), except 30A16HX, 2B707HX, 2B587HX, 30A37HX,

2B604HX, 20A55HR, 20A78HX and DKB370, which presented values higher than 1

(βi1 > 1), and the genotypes P4285HX and BRS2020, which presented values lower

than 1 (βi1 < 1) (Table 3). Among those genotypes that presented the linear regression

coefficient related to the unfavorable environments equal to 1, only two (30A68HX and

AS1555YG) exhibited the linear response to the favorable environments higher than 1 (βi1 +

βi2 > 1) (Table 3). No genotype presented stability parameter (s2
di) equal to zero. On the

other hand, the genotype AS1555YG presented coefficient of determination higher than

80% (Table 3). However, only the genotype 30A68HX presented higher mean productivity

(b̂0;30A68HX ¼ 9465:56 > m̂ ¼ 8682:99).

Considering the results provided by the model M1, which is characterized by the minimally

informative prior distributions, most genotypes (14 genotypes) presented the linear regression

coefficient related to the unfavorable environments equal to 1 (βi1 = 1), except 30A16HX,

2B707HX, 2B587HX, 30A37HX, 2B604HX, 20A55HR, 20A78HX and DKB370, which pre-

sented values higher than 1 (βi1 > 1) and the genotypes P4285HX and BRS2020, which pre-

sented values lower than 1 (βi1 < 1) (Table 3). Among those genotypes that presented the

linear regression coefficient related to the unfavorable environments equal to 1, only two

(30A68HX and AS1555YG) presented the linear response to the favorable environments

higher than 1 (βi1 + βi2 > 1) (Table 3). No genotype presented stability parameter (s2
di) equal

to zero. On the other hand, the genotype AS1555YG presented coefficient of determination

higher than 80% (Table 3). However, only the genotype 30A68HX presented higher mean pro-

ductivity (b̂0;30A68HX ¼ 9465:56 > m̂ ¼ 8682:99).

According to the results obtained by Model 2 (M2), which is characterized by the infor-

mative prior distributions, out of the 25 genotypes, 11 (30A68HX, 2B710HX, 30F53HR,

2B433HX, DKB370, AG8041YG, 30K73H, DKB330, AS1596YG and BM820) presented the

linear regression coefficient related to the unfavorable environments equal to 1 (βi1 = 1).

The nine genotypes observed in the previous analysis presented values higher than 1 (βi1 >
1) and five (P4285HX, AS1555YG, BRS2022, 30A91HX and BRS2020) presented values

lower than 1 (βi1 < 1) (Table 3). Among those genotypes that presented the linear

regression coefficient related to the unfavorable environments equal to 1, only the

genotype 30A68HX showed the linear response to the favorable environments higher than 1

(βi1 + βi2 > 1) and high mean productivity (b̂0;30A68HX ¼ 9465:56 > m̂ ¼ 8682:99) (Table 3).

Table 2. Mean squares from analysis of variance (ANOVA) for yield of 25 hybrid maize genotypes assessed in 22

environments.

Sources of variation DF Mean square (MS)

Blocks/Environments 22 1989297

Genotypes (G) 24 16241624��

Environments (E) 21 114452906��

Genotypes x Environments (G x E) 504 2454148��

Error 528 708661

Mean (kg/ha) 8682.99

��Significant at 0.01 probability levels by F test.

https://doi.org/10.1371/journal.pone.0236571.t002
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Table 3. Estimates of the a posteriori means (�β0i) and of the credible intervals1 (95%) of the adaptability2 (�β1i and �β1i þ
�β2i) and stability parameters3 (�σ 2

di, R2), by

taking into consideration informative and non-informative priors for maize hybrids.

Genotypes LI�β0i
�β0i LS�β0i LI�β1i

�β1i LS�β1i LI�β1i þ
�β2i

�β1i þ
�β2i LS�β1i þ

�β2i LI�σ 2
di �σ 2

di LS�σ 2
di R2

Minimally informative priors (M1)

30A68HX 9316.00 9465.56 9911.00 0.79 0.90 1.24 1.53 1.79 2.58 841275.00 1115511.90 2114100.00 77.44

30A16HX 9295.00 9431.87 9838.03 1.44 1.54 1.85 1.72 1.95 2.67 701600.00 930323.50 1763075.00 89.85

2B707HX 9134.00 9288.44 9748.03 1.05 1.17 1.52 1.17 1.44 2.25 896975.00 1189343.80 2254100.00 80.12

2B587HX 9088.00 9200.56 9536.00 1.24 1.32 1.58 1.26 1.45 2.04 477375.00 632954.50 1199075.00 90.03

30A37HX 9072.00 9195.19 9560.03 1.14 1.23 1.51 0.75 0.96 1.61 566600.00 751357.90 1424050.00 86.00

2B604HX 9052.00 9194.07 9615.03 1.02 1.13 1.45 1.57 1.82 2.56 752675.00 998071.40 1891100.00 83.58

2B710HX 9067.00 9181.73 9524.00 0.98 1.07 1.33 0.80 1.00 1.60 496300.00 658055.00 1247050.00 84.56

30A95HX 8894.00 9075.28 9615.03 1.08 1.22 1.63 1.17 1.48 2.43 1237000.00 1640324.80 3108150.00 76.18

P4285HX 8915.00 9055.94 9474.03 0.52 0.62 0.94 0.79 1.03 1.77 743475.00 985850.50 1868100.00 63.06

30F53HR 8816.00 9009.92 9585.03 0.74 0.88 1.32 -0.16 0.18 1.19 1404000.00 1862281.10 3529150.00 56.08

2B433HX 8871.75 8960.69 9226.00 0.97 1.04 1.24 0.79 0.95 1.42 298500.00 395843.90 750037.50 89.45

20A55HR 8733.00 8834.60 9136.00 1.14 1.22 1.45 0.56 0.73 1.26 385100.00 510603.50 967545.00 89.34

20A78HX 8652.00 8817.59 9311.03 1.06 1.18 1.56 0.59 0.88 1.75 1034000.00 1370711.40 2597125.00 75.88

DKB370 8610.00 8759.79 9184.00 1.11 1.21 1.53 1.24 1.49 2.27 788600.00 1055663.80 2012125.00 83.03

2B688HX 8612.00 8757.44 9190.00 0.82 0.93 1.26 0.31 0.56 1.32 792775.00 1051201.20 1992100.00 71.56

AG8041YG 8601.00 8744.84 9173.03 0.73 0.84 1.17 0.56 0.81 1.57 779900.00 1034193.00 1960075.00 69.57

30K73H 8578.00 8732.15 9190.00 0.98 1.09 1.44 0.79 1.06 1.86 888300.00 1177882.70 2232100.00 76.85

DKB330 8295.00 8475.94 9015.03 0.90 1.03 1.44 0.81 1.12 2.07 1233000.00 1634763.20 3098125.00 69.38

AS1596YG 8200.00 8363.82 8851.00 0.73 0.85 1.22 0.80 1.08 1.94 1006000.00 1333766.70 2527125.00 66.98

BM820 8140.00 8269.68 8654.00 0.90 1.00 1.29 -0.27 -0.04 0.63 626600.00 830832.00 1574075.00 77.21

AS1555YG 7877.00 7996.51 8365.03 0.65 0.74 1.02 1.67 1.88 2.54 580050.00 777663.90 1477075.00 80.68

Statusvip 7495.00 7780.31 8629.03 0.75 0.96 1.61 0.42 0.92 2.41 3056000.00 4052797.70 7680325.00 46.09

BRS2022 7453.00 7576.31 7944.03 0.63 0.72 1.00 0.09 0.30 0.95 574200.00 761371.30 1443050.00 67.12

30A91HX 7293.00 7487.64 8067.00 0.42 0.56 1.00 -0.40 -0.07 0.96 1424000.00 1887726.00 3577175.00 37.25

BRS2020 7346.00 7466.96 7826.03 0.40 0.49 0.76 -0.17 0.04 0.67 547575.00 726058.60 1376050.00 50.86

Informative priors (M2)

30A68HX 9464.00 9464.00 9464.00 0.81 0.90 1.17 1.59 1.80 2.41 679400.00 863019.30 1503000.00 76.90

30A16HX 9430.00 9430.00 9430.00 1.46 1.54 1.80 1.77 1.96 2.53 576100.00 731857.10 1274025.00 89.75

2B707HX 9287.00 9287.00 9287.00 1.08 1.17 1.45 1.24 1.45 2.07 720600.00 915214.00 1593025.00 79.60

2B587HX 9199.00 9199.00 9199.00 1.25 1.32 1.54 1.29 1.46 1.95 409675.00 520498.60 907202.50 90.00

30A37HX 9194.00 9194.00 9194.00 1.16 1.23 1.46 0.79 0.97 1.49 475900.00 604773.60 1054000.00 85.78

2B604HX 9193.00 9192.79 9193.00 1.04 1.13 1.39 1.63 1.82 2.41 613900.00 779879.20 1358000.00 83.29

2B710HX 9180.00 9180.33 9181.00 0.99 1.07 1.29 0.84 1.01 1.50 423700.00 538376.70 937920.00 84.36

30A95HX 9073.00 9073.00 9073.00 1.11 1.22 1.54 1.25 1.49 2.19 971375.00 1233075.60 2145000.00 75.36

P4285HX 9054.00 9054.01 9054.00 0.54 0.62 0.88 0.84 1.04 1.62 607100.00 771220.60 1343000.00 61.97

30F53HR 9008.00 9008.00 9008.00 0.77 0.88 1.22 -0.06 0.19 0.92 1095000.00 1388961.00 2415000.00 53.95

2B433HX 8960.00 8960.00 8960.00 0.98 1.04 1.22 0.81 0.95 1.37 276400.00 351203.30 612807.50 89.50

20A55HR 8833.00 8833.58 8834.00 1.15 1.22 1.41 0.58 0.74 1.19 340900.00 433232.50 755505.00 89.29

20A78HX 8816.00 8816.00 8816.00 1.08 1.18 1.48 0.67 0.89 1.55 821775.00 1043252.90 1815025.00 75.06

DKB370 8756.00 8756.00 8756.00 0.85 0.93 1.20 0.37 0.57 1.16 643500.00 817506.60 1424000.00 70.66

2B688HX 8755.00 8755.00 8755.00 1.12 1.21 1.48 1.29 1.49 2.09 649075.00 824492.50 1436000.00 82.39

AG8041YG 8743.00 8743.00 8743.00 0.76 0.84 1.11 0.62 0.82 1.41 634000.00 805464.40 1403000.00 68.65

30K73H 8730.00 8730.26 8731.00 1.00 1.10 1.37 0.86 1.07 1.69 714275.00 907119.60 1579025.00 76.18

DKB330 8474.00 8474.00 8474.00 0.93 1.04 1.35 0.89 1.13 1.83 968275.00 1229178.30 2138000.00 68.21

AS1596YG 8362.00 8362.00 8362.00 0.76 0.86 1.15 0.87 1.09 1.74 801200.00 1017188.20 1770000.00 65.83

(Continued)
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This genotype is suitable for growers who employ high-level technology, since it responds

well to improved environments [13]. In line with the M1 results, the genotype 30A68HX

presented stability parameter (s2
di) higher than zero and coefficient of determination lower

than 80% (Table 3).

The analysis considering M2 was able to better discriminate the genotypes, since, out of 25

genotypes, 14 and 11 presented the linear regression coefficient related to the unfavorable

environments equal to 1 for M1 and M2 fitted models, respectively.

A comparative analysis of the limits of credibility intervals obtained by the two fitted mod-

els (M1 and M2) reveals that the use of informative prior distributions (M2) reduced the limits

of credibility intervals, when compared to minimally informative prior distributions (M1).

Similar results were observed by [11], who used the Bayesian segmented regression model for

adaptability and stability evaluation of cotton genotypes. Nascimento et al. [10], Couto et al.

[20] and Teodoro et al. [25] used the Eberhart and Russel’s Bayesian method to evaluate the

phenotypic stability and adaptability of alfalfa and popcorn cultivars and obtained similar

results. Additionally, the difference in DIC values between models using minimally informa-

tive and informative priors ranged between 1.59 and 2.01. Once smaller DIC values indicate

better data fitting, these results demonstrate that M2 should be considered for the adaptability

and stability evaluation of maize genotypes (Table 4).

Overall, the Bayesian framework of the segmented regression model allowed the incorpo-

ration of additional information related to the parameters, through prior distributions, which

reduced the ranges of the credibility intervals, increased the precision of parameter estimates,

and, consequently, provided reliable genotype selection. In practice, this information can be

obtained from previous studies, including [10, 20]. Due to the lack of prior information related

to the evaluated maize hybrids in the literature, in this work, the estimates obtained from the

frequentist analysis of the segmented model were used to define the hyperparameters.

In practice, most northeastern farmers in Brazil have limited capital, which prevents them

from investing in production technology. Therefore, genotypes adapted to unfavorable envi-

ronments should be considered for low technology planting [26]. The recommendation of cul-

tivars not adapted to regional conditions leads to low yield and other serious problems, such as

the indiscriminate use of pesticides and excessive cultural treatment [27]. Considering the

results provided by the model M2 (informative prior distributions), only the genotype

P4285HX presented the linear regression coefficient related to the unfavorable environments

lower than 1 (βi1 < 1) and high mean productivity (b̂0;P4285HX ¼ 9054:01 > m̂ ¼ 8682:99)

(Table 3).

Table 3. (Continued)

BM820 8268.00 8268.00 8268.00 0.92 1.00 1.24 -0.22 -0.04 0.51 520500.00 661250.80 1152025.00 76.53

AS1555YG 7990.00 7990.44 7991.00 0.67 0.74 0.98 1.70 1.88 2.41 496000.00 630259.80 1099000.00 80.08

Statusvip 7777.00 7777.00 7777.00 0.82 0.97 1.41 0.61 0.93 1.86 2302000.00 2913389.60 5059000.00 42.69

BRS2022 7575.00 7575.00 7575.00 0.64 0.72 0.95 0.13 0.31 0.84 481600.00 611894.50 1067000.00 66.20

30A91HX 7485.00 7485.65 7486.00 0.45 0.56 0.90 -0.30 -0.06 0.68 1109000.00 1406803.70 2445025.00 33.92

BRS2020 7466.00 7466.00 7466.00 0.42 0.49 0.72 -0.13 0.04 0.56 461800.00 586780.90 1022025.00 49.27

1LI: Lower Bound; LS: Upper Bound.

2�β1i: is the linear regression coefficient related to the unfavorable environments; �β1i þ
�β2i: is the linear response to the favorable environments.

3 �σ 2
di : is the stability parameter; R2: is the coefficient of determination.

https://doi.org/10.1371/journal.pone.0236571.t003
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Conclusions

Incorporating additional information about the parameters through prior distributions

decreases the credibility interval ranges. The difference in DIC values between models using

minimally informative (M1) and informative priors (M2) was positive, which indicates a better

data fitting, considering M2. Therefore, it should be an alternative for the adaptability and sta-

bility evaluation of maize genotypes.

The genotype P4285HX presents high yield performance and adaptability to unfavorable

environments and should be considered for low technology planting, which is practiced by

northeastern Brazilians farmers.
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