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Abstract

The affective appraisal of odors is known to depend on their intensity (I), familiarity (F),

detection threshold (T), and on the baseline affective state of the observer. However, the

exact nature of these relations is still largely unknown. We therefore performed an observer

experiment in which participants (N = 52) smelled 40 different odors (varying widely in

hedonic valence) and reported the intensity, familiarity and their affective appraisal (valence

and arousal: V and A) for each odor. Also, we measured the baseline affective state

(valence and arousal: BV and BA) and odor detection threshold of the participants. Analyz-

ing the results for pleasant and unpleasant odors separately, we obtained two models

through network analysis. Several relations that have previously been reported in the litera-

ture also emerge in both models (the relations between F and I, F and V, I and A; I and V,

BV and T). However, there are also relations that do not emerge (between BA and V, BV

and I, and T and I) or that appear with a different polarity (the relation between F and A for

pleasant odors). Intensity (I) has the largest impact on the affective appraisal of unpleasant

odors, while F significantly contributes to the appraisal of pleasant odors. T is only affected

by BV and has no effect on other variables. This study is a first step towards an integral

study of the affective appraisal of odors through network analysis. Future studies should

also include other factors that are known to influence odor appraisal, such as age, gender,

personality, and culture.

1 Introduction

1.1 The affective appraisal of odors

Odors can effectively elicit affective responses [1–5], probably due to the high degree of overlap

and connectivity between the neural systems mediating olfaction and emotion [6–10]. These

affective responses mediate our perception of environmental input and can adapt our output,

thus enabling us to respond in an appropriate way [11]. The affective response to odors is typi-

cally characterized by its valence (pleasantness or hedonic tone) and arousal [12, 13], while

both dimensions are mediated by different neural substrates [14]. Brain imaging studies show

that unpleasant and pleasant odors also activate different brain areas [8, 15–19] in asymmetric

ways [17, 20]. Unpleasant odors are processed faster than pleasant ones [17, 21–23], eliciting
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specific patterns of autonomic [24, 25] and olfactomotor responses [26, 27] and specific neural

activation [14, 16, 18, 20, 28–30]. Also, unpleasant odors are also less prone to top-down influ-

ences such as priming [31], verbal context [32] and odor knowledge [33].

Pleasant odors positively affect mood and decrease arousal, while unpleasant odors have the

opposite effect [34]. It has been observed that unpleasant odors increase skin conductance,

heart rate [35–37] and the startle reflex [38–40] while pleasant odors decrease these parame-

ters. As a result, odors can effectively be used to induce various emotional states [2, 41–43] and

desired behaviors [11]. In real-life settings, odors have for instance effectively been deployed to

reduce patient stress in healthcare environments [44–46], to influence shopping behavior in

retail environments [47, 48] and to influence littering behavior in public environments [49].

Because the principal distinctive properties of food flavors are provided by olfaction rather

than by taste cues [50], our culinary preferences are also to a large extent based on the affective

appraisal of food odors. However, despite the important role of affect in olfaction, it is still

largely unknown how affective appraisal and olfactory perception interact and converge in

everyday life [9].

1.2 Factors related to the affective appraisal of odors

Factors that are known to be related to the affective appraisal of odors include odor sensitivity,

odor intensity, odor familiarity (the feeling that an odor is known or has been perceived

before: [33]) and core affective state [25, 51–54]. Previous studies only investigated the correla-

tions between specific subsets of these factors. As a result, the extent to which individual differ-

ences in these factors and their interrelations differentially influence the affective response of

people to specific odors is still largely unknown [2]. In this section we will first present the

available evidence for the mediating effects of sensitivity, familiarity, and core or baseline affec-

tive state on affective odor appraisal. Fig 1 represents the known relations between these

Fig 1. Hypothetical odor-evoked affect (HOEA) network models for (a) pleasant (PHOEA) and (b) unpleasant (UHOEA) odors. These networks

represent the relations that have been reported in the literature between different factors influencing the affective appraisal of odors. Yellow nodes: the

valence (V) and arousal (A) components of the affective odor appraisal. Blue nodes: the observer’s baseline valence (BV) and arousal (BA) values. I:

odor intensity. T: odor detection threshold. F: odor familiarity. Edge color represents the polarity of the partial correlations green = positive,

red = negative, grey = positive for pleasant odors, negative for unpleasant odors. The edge labels serve to identify the relations for discussion in the text.

https://doi.org/10.1371/journal.pone.0236468.g001
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different factors as hypothetical graphical network models for affective odor appraisal (hypo-

thetical odor evoked affect or HOEA model). Given the aforementioned evidence for the exis-

tence of different processing channels for unpleasant and pleasant odors, we will distinguish

between an unpleasant (UHOEA: Fig 1a) and a pleasant (PHOEA: Fig 1b) model. In the next

sections, we will refer to the relations between the variables in both HOEA models (indicated

by R1-R15 in Fig 1) to facilitate the discussion.

1.2.1 Intensity. Odor intensity is generally negatively correlated with valence (R1): the

more intense being the more unpleasant [51, 55]. However, intensity and valence interact in

complex ways [55–58], involving both innately tuned and learned components. The polarity of

the effect may also depend on the nature of the stimulus and on the perceiver’s personal char-

acteristics [52, 56, 57, 59, 60]. As a result, several exceptions to R1 have been observed, with

some odors showing a positive correlation between valence and intensity, some a negative, and

others an inverted U-shape or even an absence of correlation [55–57, 59]. Experience and

learning significantly determine odor valence [61, 62]. Odor knowledge (identification) signif-

icantly enhances ratings of intensity, pleasantness and familiarity [63]. There are also indica-

tions that individuals with high detection thresholds may show a positive correlation of odor

intensity with valence [56], although the evidence for this assumption is weak. Odor intensity

is typically strongly positively correlated with subjective and autonomic indices of arousal (R2;

[12]), independent of odor valence [14, 56, 57].

1.2.2 Familiarity. Familiarity is implicitly linked to the affective appreciation of our envi-

ronment rather than to explicit source recognition [64]. Olfaction appears to serve novelty or

change detection (possibly mediated by the amygdala: [9, 65, 66]), directing our attention to

odors that are either unknown (not experienced before: categorical novelty) or do not fit our

expectation or previous experience of a given situation (contextual novelty or misfit; see [64]).

Both direct and indirect effects of odor familiarity on affective odor appraisal have been

reported in the literature.

The relation between familiarity and odor valence appears to be asymmetrical. For pleasant

odors (Fig 1b), familiarity and odor valence are typically positively correlated: the more famil-

iar an odor, the more pleasant it is judged (R3 in Fig 1b; e.g.: [12, 51–53, 63, 67–75]). For

unpleasant odors, no consistent relation has been found (R3 is absent in Fig 1a) [25, 33, 51].

This finding agrees with the idea that different evaluative channels are involved in the

processing of negatively and positively valenced stimuli [76]. In general, unpleasant odors are

relatively less prone to top-down (cognitive) influences [31–33]. A negativity bias for unidenti-

fiable pleasant odors may for instance reflect a behavioral system designed for self-protection

that elicits a warning or avoidance response when confronted with a positive but unfamiliar

(unknown or unexpected: [64]) odor that may represent a potential health threat [77].

Familiarity and odor evoked arousal are negatively correlated, independent of odor valence

(R4): the more familiar pleasant (e.g., the comforting and relaxing smell of a familiar environ-

ment or the perfume of a loved one) and unpleasant (e.g., the smells of smoke or decay, signal-

ing threat or danger) odors are, the less arousing they are judged [25].

It also appears that familiarity can indirectly influence the affective appraisal of odors by

modulating their intensity: participants perceive familiar odors as more intense than unfamil-

iar odors (R5; [51, 52, 63, 70]), which may ultimately influence their valence (R1; [63]). Note

that familiarity may differentially affect the affective appraisal of an odor depending on a per-

son’s history with it (e.g., due to a change in valence because of its contiguous presentation

with a positive or negative event [78]).

1.2.3 Affective state. Both direct and indirect effects of affective state on the appraisal of

affective stimuli have been reported in the literature.
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Core or baseline affective state may have a direct impact on subsequent judgements through

misattribution [79–82]. People are inclined to make cognitive appraisals of unrelated topics

and objects reflecting their core affective state (R6-R9; [81, 83]). In particular, they tend to

attribute residual arousal from prior experiences to external cues in subsequent situations (R9;

[84]). Since this may also be the case for the affective appraisal of odors, we hypothesize that

BV and V (R6) and BA and A (R9) may be positively correlated (a carry-over effect), while BV

and A (R7) and BA and V (R8) may be negatively correlated (a contrast effect).

Core affective state can also indirectly influence the affective appraisal of odors. Affective

state modulates chemosensory event-related potentials [54] and affects odor intensity (R10,

R11): it has been observed that emotions enhance odor intensity [85, 86], independent of odor

valence [60, 87]. Furthermore, emotional valence also modulates the odor detection threshold:

a negative emotional state reduces olfactory sensitivity (R12; [54, 86]. This may in turn influ-

ence odor associated affect by modulating the odor intensity: people with elevated thresholds

perceive odors as being less intense (R13; [88–91]). Although emotional arousal mediates the

affective appraisal and intensity of odors [60, 86], there is currently no evidence that it directly

modulates the odor detection threshold [86, 92].

1.3 Relation between valence and arousal

The general assumption of the independence between valence and arousal for the affective

appraisal of affective stimuli has recently been questioned: although valence and arousal appear

to be uncorrelated when valence is ambiguous, they tend to become correlated when valence is

clear [93–95]. Hence, these dimensions may be correlated (R14) for the affective appraisal of

odors with a clear valence. For a wide range of different affective stimuli it has been found that

arousal generally increases (a) with increasing valence for positively valenced stimuli and (b)

with decreasing valence for negatively valenced stimuli [93]. Therefore, we assume that both

variables are positively correlated for pleasant odors (R14 is positive in Fig 1b) and negatively

correlated for unpleasant odors in the HOEA model (R14 is negative in Fig 1a).

Note that the valence of odors may change due to learning effects. While affective odors

appraisal appears to be partly innate [96–98], factors like the frequency and context of prior

exposure, semantic knowledge, and cultural background can cause significant variations in

hedonic perception between individuals and over the course of the human life-span [99]. For

instance, odors that are initially perceived as neutral or positive may acquire a negative conno-

tation and signal threat after they have been experienced in the context of negative life events

[100].

1.4 Current study

The goal of this study was to explore the potential relations between the different variables in

in our literature-based HOEA model (Fig 1). Since previous studies investigated these variables

individually, there is currently no integral model for their interrelations. To fill this gap, we

performed an observer experiment in which participants reported the valence and arousal,

intensity and familiarity for a range of different odors, varying widely in hedonic valence. In

addition, we measured the participants’ baseline affective state and detection threshold. We

explored the relations between baseline affective state, odor familiarity, odor intensity and

odor detection threshold, and their impact on affective odor appraisal through probabilistic

network analysis [101–104]. Network analysis is a data-driven exploratory approach to model-

ling, allowing model structure to spontaneously emerge from the statistical relationships

among indicators, thereby eliminating the need to specify an a-priori model. Network analysis

focusses on the direct relations between observed variables. Hence, network analysis and
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visualization can yield new insights into the relations between variables. In psychology, net-

work analysis has recently become a popular alternative for latent variable modelling in explor-

atory studies of human behavior [101, 103, 105–111]. Psychological networks consist of nodes

representing observed variables (e.g., questionnaire items), connected by edges representing

the statistical relationships between the variables (their pairwise interactions; [112]). Network

analysis typically involves the following three steps [112]: (1) network estimation, (2) network

analysis, and (3) network comparison.

In the rest of this paper we first present the methods, materials and techniques used in this

study. Then we present the results and compare the network models that were estimated from

our present results to the HOEA model that was based on findings from the literature. Finally,

we discuss the implications of the current findings and the limitations of this study.

2 Methods

2.1 Participants

To conduct a power analysis (determine the adequate sample size) an expectation of the effect

size is required. The network equivalent is an expected (weighted) network structure [112].

However, since this is the first study of its kind, no previous similar networks were available.

Sample size was therefore determined from a general rule of thumb suggested in the literature;

namely, three individuals per parameter [112]. Since the HOEA network has 14 edges, this

means that this study required a minimal group size of 42 participants to meet this “rule of

thumb”.

A total of 56 students (32 females, and 24 males, mean age = 24.3 years, SD = 4.6) from

Utrecht University (Utrecht, the Netherlands) participated in this experiment. Participants

were recruited through postings on social media and direct messaging. The exclusion criteria

were age (younger than 18 years and older than 60 years), olfactory deficiencies (e.g., diseases,

having a cold, smoking or drinking alcohol) and pregnancy. Participants were asked not to

wear perfume, use deodorant or wear scented clothing on the testing day. All participants

signed an informed consent form. The experimental protocol was reviewed and approved by

the TNO Internal Review Board (TNO, the Netherlands: reference 2019–024) and was in

accordance with the Helsinki Declaration of 1975, as revised in 2013 [113]. After completing

the study, participants were offered a small compensation (5 Euro or study credits) for their

participation.

2.2 Stimuli

In this study we measured odor-evoked valence and arousal for 40 different odors (see

Table 1), ranging from unpleasant and arousing (e.g., feces, fish), via pleasant and calming

(e.g., clove, cinnamon) to pleasant and stimulating (e.g., peach, caramel). To obtain a stimu-

lus set with valence values distributed across the entire scale range, we complemented the

revised 32-item “Sniffin’ Sticks” odor identification test, which contains neutral and pleasant

smells (www.burghart-mt.de, see also: [114]), with eight additional odors that are typically

perceived as unpleasant: burned wood, diesel fumes, dusty cave, metal, rhinoceros, tar

(obtained from https://retroscent.com and indicated by the RS codes in Table 1) and with

indole (unpleasant smell associated with feces) and wintergreen (typically perceived as less

pleasant by Europeans: [34]; both obtained from www.hekserij.nl). The Sniffin’ Sticks identi-

fication test consists of two sets (a blue capped set and a purple capped set) of 16 numbered

felt pens each, with tips that are impregnated with 4 mL of fluid odor substance. This test is

normally used to assess an individual’s olfactory identification performance [115–117]. We

prepared eight extra sticks by injecting 4 mL of the additional unpleasant odor substances in

PLOS ONE Affective odor perception

PLOS ONE | https://doi.org/10.1371/journal.pone.0236468 July 30, 2020 5 / 28

http://www.burghart-mt.de
https://retroscent.com
http://www.hekserij.nl
https://doi.org/10.1371/journal.pone.0236468


empty Sniffin’ Sticks. Hence, our total stimulus set consisted of 40 sticks pens, numbered

from 1 to 40 (see Table 1). Since extreme differences in intensity may confound the affective

ratings because of the inverse valence-intensity relation, a panel consisting of three of the

authors (SE, YL, AT) verified that the set of odor samples did not contain any outliers in

intensity, prior to the experiments. To ensure the compatibility between the samples, we

Table 1. Mean (SD) valence, arousal, familiarity and intensity ratings for all odors used as stimuli in this study. The Sniffin’ Sticks B and P codes refer to the Blue and

Purple identification test sets (www.burghart-mt.de). The RS codes refer to the RetroScent product code (https://retroscent.com). Odors with a negative mean valence rat-

ing are printed in boldface.

ID Label Code Valence Arousal Familiarity Intensity

1 Anise Sniffin’ B15 0.34 (2.09) 0.05 (2.02) 72.63 (23.39) 54.34 (20.91)

2 Apple Sniffin’ B11 0.84 (2.08) 0.20 (1.98) 55.07 (23.54) 61.89 (19.19)

3 Banana Sniffin’ B5 1.47 (1.72) 0.48 (2.24) 77.25 (17.76) 60.18 (20.14)

4 Burned wood RS-420 -1.54 (2.15) 0.76 (2.09) 49.86 (28.08) 73.07 (21.13)

5 Caramel Sniffin’ P15 2.25 (1.39) 1.11 (2.25) 80.50 (13.62) 58.75 (20.44)

6 Cinnamon Sniffin’ B3 0.98 (1.98) 0.22 (2.40) 61.88 (29.39) 54.25 (23.22)

7 Cloves Sniffin’ B12 -0.33 (2.30) -0.02 (2.23) 51.38 (29.16) 62.88 (21.05)

8 Coconut Sniffin’ P9 1.94 (1.59) 0.87 (2.10) 77.32 (19.03) 56.16 (19.42)

9 Coffee Sniffin’ B10 0.77 (2.26) 0.33 (2.23) 72.52 (27.13) 58.75 (22.12)

10 Coke Sniffin’ P2 0.37 (1.77) -0.48 (1.86) 48.11 (25.65) 49.84 (20.35)

11 Diesel fumes RS-423 -1.76 (1.55) -0.04 (2.22) 48.84 (23.97) 60.86 (21.47)

12 Dusty cave RS-425 -0.20 (1.82) -0.76 (1.89) 36.59 (22.94) 43.00 (25.00)

13 Eucalyptus Sniffin’ P7 0.66 (2.09) 0.21 (2.11) 73.55 (22.77) 70.36 (19.14)

14 Fish Sniffin’ B16 -2.07 (1.74) 0.84 (2.34) 63.16 (27.69) 71.39 (26.26)

15 Garlic Sniffin’ B9 -1.18 (2.20) 0.79 (2.32) 68.30 (26.61) 77.21 (18.14)

16 Ginger Sniffin’ P8 0.01 (1.91) -0.52 (1.87) 47.38 (24.41) 55.36 (20.81)

17 Grapefruit Sniffin’ P4 0.83 (1.91) 0.12 (2.11) 53.20 (24.58) 55.48 (19.65)

18 Grass Sniffin’ P5 0.07 (2.04) -0.14 (2.03) 67.43 (22.45) 63.93 (21.36)

19 Feces Indole -1.97 (1.86) 0.53 (2.16) 40.61 (24.86) 65.13 (22.17)

20 Lavender Sniffin’ P10 0.93 (1.88) -0.08 (2.20) 66.91 (25.23) 56.64 (18.45)

21 Leather Sniffin’ B2 -0.57 (1.91) -0.71 (1.54) 41.52 (25.13) 46.16 (20.95)

22 Lemon Sniffin’ B6 1.49 (1.73) 0.48 (2.12) 60.14 (25.38) 53.70 (21.15)

23 Lilac Sniffin’ P3 0.92 (2.02) -0.32 (2.05) 68.00 (22.94) 59.23 (20.04)

24 Liquorice Sniffin’ B7 0.92 (2.13) 0.00 (1.93) 78.23 (24.00) 57.04 (19.83)

25 Melon Sniffin’ P11 1.58 (1.68) -0.12 (2.38) 66.66 (21.52) 54.64 (22.07)

26 Metal RS-426 -0.71 (1.75) -0.59 (1.82) 36.95 (25.43) 50.09 (22.73)

27 Mushroom Sniffin’ P13 -1.28 (2.10) 0.51 (2.12) 45.13 (29.10) 66.30 (18.68)

28 Onion Sniffin’ P16 -1.73 (2.03) 1.00 (2.12) 55.66 (28.30) 69.20 (21.28)

29 Orange Sniffin’ B1 2.04 (1.30) 0.57 (2.23) 76.25 (19.69) 54.88 (24.05)

30 Peach Sniffin’ P12 2.51 (1.67) 1.55 (2.07) 79.70 (19.67) 61.84 (22.93)

31 Pear Sniffin’ P1 1.14 (1.74) 0.02 (2.11) 59.00 (22.74) 57.23 (19.97)

32 Peppermint Sniffin’ B4 1.63 (1.80) 0.57 (2.02) 84.84 (16.30) 64.80 (23.05)

33 Pineapple Sniffin’ B13 1.21 (2.07) 0.22 (2.17) 58.93 (26.68) 64.77 (18.26)

34 Raspberry Sniffin’ P6 2.20 (1.23) 0.57 (2.18) 66.54 (18.73) 54.77 (21.88)

35 Rhinoceros RS-424 -2.10 (1.48) 0.46 (2.31) 49.34 (25.58) 70.84 (20.02)

36 Rose Sniffin’ B14 1.43 (1.77) -0.09 (2.13) 72.77 (16.78) 61.23 (21.94)

37 Smoked meat Sniffin’ P14 -0.92 (1.82) -0.57 (1.92) 44.16 (26.65) 58.54 (21.82)

38 Tar RS-401 -1.23 (2.20) 0.63 (2.07) 52.71 (26.88) 72.59 (20.06)

39 Turpentine Sniffin’ B8 -0.87 (1.94) -0.55 (2.01) 46.91 (26.11) 57.77 (18.90)

40 Wintergreen Gaultheria oil -0.99 (2.19) 0.02 (2.02) 56.48 (29.89) 69.30 (21.12)

https://doi.org/10.1371/journal.pone.0236468.t001
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adopted the criterion set by the developers of the Sniffin’ Sticks that all intensities should be

within about 25% of the mean intensity [116]. The same set of sticks was used during the

entire experiment. All samples were prepared in compliance with the safety Standards of the

International Fragrance Association [118].

2.3 Measures

2.3.1 Odor detection threshold. Odor detection thresholds were measured using the

standard “Sniffin’ Sticks” odor threshold test (www.burghart-mt.de) in combination with a

single-staircase, triple-forced-choice procedure [117]. The test comprises 16 triplets of pens

(total of 48 pens). The three pens in each triplet are distinguished by the color of their cap (red,

green and blue). Red pens are impregnated with phenylethylalcohol (PEA) diluted in a solvent

according to decreasing concentrations. Blue and green pens are only impregnated with sol-

vent. During the test, participants were blindfolded with a sleep mask to prevent them from

recognizing the odorant-containing pens. For odor presentation, a pen’s cap was removed by

the experimenter for about 3 s and the pen’s tip was placed approximately 2 cm below both

nostrils of the participant. The three pens of a triplet (two containing only the solvent and one

containing also the odorant) were presented in a randomized order. Participants were asked to

detect the odor-containing pen in each triplet (forced choice). Triplets were presented at inter-

vals of approximately 20 s. Reversal of the staircase toward lower concentrations was triggered

either when the odor was correctly detected in two successive trials or toward higher concen-

trations when the odor was not detected in a trial. The total number of reversals was seven,

and the threshold (T) was defined as the arithmetic mean of the last four staircase reversals.

There was no absolute number of correct responses required. The subjects’ scores ranged

between 1 (lowest sensitivity or highest threshold: no odor detected) and 16 (highest sensitivity

or lowest threshold).

2.3.2 Valence and arousal. The graphical EmojiGrid affective self-reporting tool (Fig 2;

[119]) was used to measure subjective valence and arousal. The EmojiGrid is a Cartesian axes

system similar to the Affect Grid [120], but the verbal labels on the midpoints and endpoints

of the axes are replaced with emoji showing facial expressions. Also, additional emoji are

inserted between the midpoints and the endpoints of each axis (resulting in five emoji on each

side of the grid), and one (neutral) emoji is placed in the center of the grid, resulting in a total

of 17 emoji on the grid. The central emoji with a neutral expression serves as a baseline or

anchor point. The facial expressions of the emoji vary from disliking (unpleasant) via neutral

to liking (pleasant) along the horizontal (valence) axis, and gradually increase in intensity

along the vertical (arousal) axis. The facial expressions are defined by the eyebrows, eyes and

mouth configuration of the face, and are inspired by the Facial Action Coding System [121].

The arousal dimension is represented by the opening of the mouth and the shape of the eyes,

while the valence dimension is represented by the concavity of the mouth, the orientation and

curvature of the eyebrows, and the vertical position of these features in the face area (repre-

senting a slightly downward looking face for lower arousal values and a slightly upward look-

ing face for higher valence values). Users respond by clicking on a point inside the grid that

best represents their affective appraisal of the stimulus.

At the start of the experiment participants first rated their baseline affective state on the

EmojiGrid. In the rest of the experiment they used the EmojiGrid to rate their affective

appraisal of the 40 different odor stimuli. All ratings were scaled to a range between -4 and 4.

2.3.3 Odor intensity and familiarity. Familiarity (F) and intensity (I) of each odor were

measured with two single-item questions: “How intense do you perceive the scent?” and “How
familiar are you with the scent?”. Participants rated these items by dragging a slider under each
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question to a value between 0 and 100. The slider defaulted at 50. Participants could see a tool-

tip with the current slider value while rating.

2.4 Procedure

The tests were performed in a quiet, well-ventilated room to avoid the presence of any residual

odors. The experimenter wore odorless cotton gloves during the entire experiment. A

Fig 2. The EmojiGrid: An emoji labeled Affect Grid for the measurement of odor-related affective associations. The facial expressions of the emoji

vary from disliking unpleasant via neutral to liking pleasant along the horizontal valence axis, and gradually increase in intensity along the vertical

arousal axis.

https://doi.org/10.1371/journal.pone.0236468.g002
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computer was used to register all responses and to suggest a random stimulus presentation

order to the experimenter.

Fig 3 shows the timeline of the events in the experimental procedure.

Upon their arrival at the laboratory, the participants were welcomed by the experimenter

and received a verbal introduction and instructions. Then, they read and signed an informed

consent. Next, they filled in their nationality, age and gender. Then the EmojiGrid was pre-

sented on a computer screen and the participants were asked to study it carefully. They were

informed that they could respond by clicking on a point inside the grid that best represented

their emotional state.

The experiment consisted of two parts. In the first part the odor detection threshold of the

participants was determined. In the second part the participants rated the intensity, familiarity

and the subjective valence and arousal for each of the 40 different odors. Before starting the

odor measurements, the participants first rated their momentary affective state (valence and

arousal) using the computer-based EmojiGrid. Then they were blindfolded, and the odor

detection threshold test started. After finishing the threshold test, the participants took off

their blindfolds and the experimenter started the odor appraisal test. The participants were

explicitly asked not to attempt to identify the smells since knowledge of odor sources may

influence their valence, intensity and familiarity [33, 51, 63, 73, 122]. During the experiment,

the experimenter presented each of the 40 scent pens once (after removing the cap of the pen)

for about 5 seconds at a distance of about 2 cm from the edge of both nostrils of the partici-

pant. The presentation order was randomized over the participants. The participants sniffed

following a brief verbal command (natural sniffing is known to provide optimal odor percep-

tion: [123]). Immediately after sniffing the pen was removed (and its cap replaced by the exper-

imenter), and the participants were given at least 30 s to smell fresh air (to reduce potential

effects of olfactory adaptation and habituation: [124]). During this interval, participants rated

their affective appraisal (valence and arousal), intensity and familiarity of the smell. The entire

experiment lasted about an hour.

2.5 Data analysis

2.5.1 General statistics. IBM SPSS Statistics 25 (www.ibm.com) was used to inspect the

data for outliers (standardizing all ratings of intensity, familiarity, valence and arousal for each

odor and for each participant) and to compute the mean values for valence and arousal for

each odor over all participants.

Fig 3. Timeline of the events in the experimental procedure.

https://doi.org/10.1371/journal.pone.0236468.g003
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Matlab 2019a (www.mathworks.com) was used to investigate the relation between the

(mean) valence and arousal ratings and plot the data. The Curve Fitting Toolbox (version

3.5.7) in Matlab was used to compute a least-squares fit of a quadratic function to the data

points. Based on this analysis (the mean valence ratings) the odors in the stimulus set were

classified as either positive or negative.

All further data analysis was done in R version 3.6.0 (R Core Team, www.r-project.org) in

R Studio 1.2.1335 (www.rstudio.com). The exact version numbers of all R packages used are

documented in the S1 Data.

In all statistical analyses, a probability level of p< .05 was considered as statistically signifi-

cant. To attenuate interindividual variance (as this is not the main interest of this paper) while

retaining within-subject variance, we converted the valence, arousal, intensity and familiarity

scores per individual and per odor valence set (pleasant/unpleasant) to z-scores [125]. Partici-

pants with standardized values exceeding two standard deviations from the mean were consid-

ered as outliers.

2.5.2 Network estimation. The most popular method to estimate network models for

continuous and normally distributed data is the Gaussian Graphical Model (GGM: [126]). The

GGM estimates a network of regularized partial correlations, thereby controlling for spurious

relationships. When continuous data are not normally distributed, a transformation should be

applied (e.g., a nonparanormal transformation; [127], see also [104]) to Gaussianize the input

before estimating the GGM. In the resulting network, two connected variables are dependent

after controlling for all other variables in the dataset. Thus, an edge connecting two nodes rep-

resents their conditional dependence given all other nodes. The absence of an edge between

two nodes indicates that they are conditionally independent given all other nodes. The GGM

has extensively been applied to psychological data [106, 107, 110, 128].

In this study we constructed GGMs to investigate the relations between affective state, odor

sensitivity, odor intensity, odor familiarity and the affective appraisal of (positive and negative)

odors. We used the nonparanormal transformation huge.npn from the huge R package [129]

to normalize the data. Note that partial correlations can differ from zero due to sampling varia-

tion and may therefore represent false relations [130]. We therefore regularized our models

with the graphical LASSO (Least Absolute Shrinkage and Selection Operator: [131]) algorithm,

using the R packages glasso [131] and qgraph [132]. This procedure eliminates weak edges and

returns a sparse network by driving low values of partial correlations to zero [104]. A sparse

network is a parsimonious one that best accounts for the covariance among nodes while mini-

mizing the number of edges. The LASSO algorithm first generates 1000 different network

models with different degrees of sparsity (ranging from fully connected to fully disconnected),

for 1000 different values of the tuning parameter λ that controls the level of sparsity [104, 133].

Then, it selects the model with the minimal EBIC (Extended Bayesian Information Criterion:

[134]) value, given a value of the hyperparameter γ (which controls the trade-off between

including potentially true edges and eliminating potentially false edges: [112]). The hyperpara-

meter γ is usually set between zero and 0.5 [112]. As the value of γ approaches 0.5, the EBIC

will favor a simpler network with fewer edges. In this study we set γ to its recommended

default value of 0.5 [128, 135] to maximize the likelihood that the edges in the resulting net-

work models represent genuine relations. Estimating a GGM with the glasso algorithm in com-

bination with the EBIC model selection has been shown to reliably retrieve the true network

structure [135] and is currently the dominant method for estimating GGMs in psychological

network estimation [103, 104, 112].

The networks were visualized with the R package qgraph [132]. The node locations were

determined using a modified version of the Fruchterman–Reingold algorithm [136, 137] for
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weighted networks [132], to ensure that strongly connected nodes with many edges in com-

mon are placed close to one another.

2.5.3 Network analysis. Once a network has been computed, different methods can be

used to analyze its structure. Visual inspection is a useful first step that provides relevant infor-

mation with minimal effort, especially for small networks [138, 139]. A more formal analysis

of the relative importance of nodes in a network can for instance be performed by quantifying

their direct (strength centrality) or indirect (closeness centrality) connectivity with other

nodes or their mediating capacity between other nodes (betweenness centrality). When two

networks need to be compared, their layout should be constrained to allow visual comparison

(e.g. by using the averageLayout option in the qgraph R package: [132]) and permutation tests

can be used quantify their structural similarity (e.g., by using the R package NetworkCompari-

sonTest: [140]). Each of these steps will be discussed in the next sections.

2.5.3.1 Centrality indices. The importance of an individual node in a network is reflected in

the number and strength of its connections to other nodes. In network analysis this is generally

operationalized through three centrality indices: node strength (quantifying how strongly a

node is directly connected to other nodes), closeness (quantifying how strongly a node is indi-
rectly connected to other nodes), and betweenness (the number of times a node lies on the

shortest path between two other nodes [130, 141]). To investigate the extent to which the indi-

vidual variables (nodes) in our models play a mediating role in odor-evoked affect, we used the

centrality_auto function to compute their strength, closeness and betweenness indices and we

visualized the results (as z-scores to ensure comparability between networks) with the centrali-
tyPlot function, both from the R package qgraph [132]. Node strength is computed as the sum

of the absolute weights of all edges connected to a node. A strength-central node is one that

strongly affects other nodes. The closeness centrality of a node indicates the average distance

from all other nodes in the network and is computed as the inverse of the sum of the shortest

distances between the node and all other nodes. A closeness-central node is affected strongly

(either directly or indirectly) by other nodes in a network. The betweenness centrality of a

node is computed as the number of times that the node is on the shortest path between any

two other nodes. A betweenness-central node connects a large number of other nodes, serving

a bridge function. We quantified the stability of the centrality indices by their correlation sta-

bility (CS) coefficient, the value of which should preferentially exceed 0.5 [112].

2.5.3.2 Accuracy and stability. We used the R package bootnet [112] to evaluate the robust-

ness (in terms of accuracy and stability) of the estimated networks through a nonparametric

bootstrap sampling procedure [142].

First, we assessed the accuracy of the edge weights by computing and plotting the 95% con-

fidence intervals (CIs) for each edge from a distribution of edge weights generated by sampling

the data 1,000 times with replacement [107, 112, 143].

Next, we evaluated the stability of the networks by repeatedly correlating the centrality indi-

ces of the original data with the centrality indices calculated from subsamples comprising pro-

gressively fewer cases. The number of bootstraps was again set to 1,000. A centrality index is

considered less stable when its correlation value decreases with a reduction of the sample size.

This is quantified by the correlation stability coefficient (CS-coefficient), which represents the

maximum proportion of cases that can be dropped while maintaining 95% probability that the

correlation between the centrality index of the full dataset and that of the subset is at least .70

(denoted as CS(cor = .70); the value of .7 was chosen since this is typically regarded as a large

effect: [144]). CS-coefficients above .5 indicate a high stability, while a minimum CS-coeffi-

cient of .25 is recommended for sufficient stability to warrant further interpretation of the cen-

trality indices [107, 112].
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2.5.4 Network comparison. We compared the structure of the unpleasant (UOEA) and

pleasant (POEA) odor evoked affect networks in several ways.

First, we performed a visual comparison between the UOEA and POEA networks. Then,

we computed a similarity index by correlating the edge weights across the two networks (i.e.,

by correlating their regularized partial correlation matrices: [145]). This index measures the

correspondence between the strength of the network connections in both models. If the corre-

lation equals one, the connections in both networks are perfectly linearly related, meaning that

both networks essentially have the same structure; if it equals zero, the networks have no

detectable linear correspondence; if it equals minus one, the networks are exact opposites.

Next, we formally tested their difference using the R package NCT (Network Comparison

Test: [146]). The NCT is a two-tailed permutation test in which the difference between two

groups is calculated repeatedly (10,000 times) for randomly regrouped cases. This produces a

distribution of values under the null hypothesis (i.e., assuming equality between the groups)

enabling one to test whether the observed difference in global strength differs significantly

(p< .05) between two networks. The NCT can test invariance of structure and invariance of

global strength. Invariance of structure is tested by comparing the largest observed difference

(M) between corresponding edges in the two networks to that observed under permutation.

Invariance of global strength (S) is tested by comparing the value of this parameter to that

observed under permutation. Previous network research has shown that strength is typically

the most stable and reliable centrality index [128, 143].

Results

Four participants were identified as outliers (their standardized ratings exceeded two standard

deviations from the mean). Two of them gave an extremely low valence rating for the peach

odor (ID = 31, see Table 1). Two other participants gave extremely low ratings for either the

intensity of the pineapple odor (ID = 21) and the familiarity of the peppermint odor (ID = 2).

After excluding these four participants from further analysis the remaining sample consisted

of 52 participants (31 females and 21 males, with a mean age of 24.3 years, SD = 4.7).

First, we determined the mean ratings for valence, arousal, familiarity and intensity for

each odor over all participants. The results are listed in Table 1. Fig 4 shows that the overall

relation between mean valence and arousal can be described by a U-shaped (quadratic) form:

odors scoring near neutral (zero) on mean valence have the lowest mean arousal ratings, while

odors scoring either high (pleasant) or low (unpleasant) on mean valence show higher mean

arousal ratings. Hence, odors with opposite mean valence ratings may yield similar mean

arousal ratings. Because of the functional dichotomy that may exist in the relation between

valence and the other variables that are measured in this study (e.g., the relation between

valence and familiarity: [25]), we separately analyzed the results for unpleasant (odors with

negative mean valence ratings) and pleasant (odors with positive mean valence ratings) sti-

muli. We classified the 16 odors with mean valence ratings below neutral as unpleasant stimuli

(the odors with ID: 4, 7, 11, 12, 14, 15, 19, 21, 26, 27, 28, 35, 37, 38, 39, 40; see Table 1 and Fig

4) and the 24 odors with mean valence ratings above neutral as pleasant stimuli (the odors

with ID: 1, 2, 3, 5, 6, 8, 9, 10, 13, 16, 17, 18, 20, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 36). The

mean intensity ratings listed in Table 1 show that the set of odor stimuli contained no outliers

in intensity: all intensities were within about 28% of the mean intensity (which closely agrees

with the criterion of 25% set by the developers of the Sniffin’ Sticks [116]).

Next, we estimated two network models: one for pleasant odors and one for unpleasant

odors. In the following we will use the previously introduced abbreviations for the variable

names (see Fig 1) to designate each node in these networks: BV and BA indicate respectively
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the valence and arousal components of the participant’s baseline affective state (measured at

the start of the experiment), T designates the detection threshold, F represents the familiarity

of an odor, I its intensity, while V and A represent respectively the valence and arousal associ-

ated with an odor. Unpleasant and pleasant odor-evoked affect will be referred to as UOEA

and POEA respectively.

3.1 Network estimation

Fig 5 shows a graphical representation of the estimated (regularized) partial correlation net-

work models (Gaussian Graphical Models) for (Fig 5a) unpleasant odor evoked affect (UOEA)

and (Fig 5b) pleasant odor evoked affect (POEA), based on the sample of 52 participants that

evaluated 16 unpleasant and 24 pleasant odors. Table 2 lists the partial correlations between

the different variables in both networks. The resulting network structures are parsimonious

due to the LASSO estimation: the UOEA and POEA networks (each containing 7 nodes)

respectively have only 6 (3 positive and 3 negative) and 7 (5 positive and 2 negative) non-zero

edges out of the 21 (= 6�7/2) possible edges.

3.2 Network analysis

3.2.1 Centrality indices. Both resulting (UOEA and POEA) networks consist of three

independent (unconnected) components: a trivial graph consisting of one node (BA), a simple

graph consisting of two nodes (BV and T), and a connected graph consisting of the remaining

four nodes (A, F, I and V). Table 3 lists the three (standardized, z-scored) centrality indices

(strength, betweenness and closeness) for the nodes in the largest (4-node connected compo-

nent of both the UOEA (Fig 5a) and POEA (Fig 5b) network models. It appears that these

nodes differ substantially in their centrality estimates.

I is the most central node in the UOEA network, with the highest scores on all three central-

ity indices. This implies that I most significantly (directly and indirectly) contributes to the

Fig 4. Relation between mean valence and arousal ratings for the odors used in this study. The numbers

correspond to the identifiers in Table 1. Red numbers correspond to odors that received a negative mean valence

rating, while blue numbers indicate odors that received a positive mean valence rating. The gray curve represents a

quadratic fit to data points (R2 = .59).

https://doi.org/10.1371/journal.pone.0236468.g004
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affective appraisal of unpleasant odors. F scores highest on all three centrality indices in the

POEA network, indicating that this factor significantly contributes to the affective appraisal of

pleasant odors.

3.2.2 Accuracy and stability. The accuracy and stability of the centrality indices was

investigated by a case-dropping bootstrapped sampling procedure with 1,000 samples.

Fig 6 shows the bootstrapped 95% confidence intervals for the edge-weights in the esti-

mated UOEA and POEA networks. This figure shows that the confidence intervals of positive

and negative edges do not overlap, meaning that edges with opposite signs in Fig 5 are

Table 2. Partial correlations between the different variables in the estimated UOEA and POEA networks (Fig 5).

Dashes represent relations from the HOEA model that do not appear in the estimated networks.

Label Relation UOEA POEA

R1 I − V -0.36 -0.11

R2 I − A 0.25 0.24

R3 F − V 0.32 0.40

R4 F − A - 0.12

R5 F − I 0.31 0.27

R6 BV − V - -

R7 BV − A - -

R8 BA − V - -

R9 BA − A - -

R10 BV − I - -

R11 BA − I - -

R12 BV − T -0.42 -0.42

R13 T − I - -

R14 V − A -0.18 0.21

https://doi.org/10.1371/journal.pone.0236468.t002

Fig 5. Estimated partial correlation networks for unpleasant (a) and pleasant (b) odor evoked affect, based on a sample of 52 participants

that evaluated 16 unpleasant and 24 pleasant odors. Nodes represent the observed variables (for the meaning of the node labels we refer to the

text), while green and red edges represent positive and negative partial correlations. Edge labels represent the relational identifiers from Fig 1.

The width of the edges increases with the magnitude of the correlations and is scaled to the strongest edge (and therefore not comparable

between graphs in an absolute sense).

https://doi.org/10.1371/journal.pone.0236468.g005
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significantly different. However, the edge weights of some positive edges in Fig 5 (e.g., R2, R5,

R14) may not be significantly different on the population level, since their confidence intervals

show a large degree of overlap.

Fig 7 shows the stability plots for the centrality indices strength and betweenness (note that

closeness could not be evaluated because of the infinite distance between the unconnected

components) for both the unpleasant (Fig 7a) and pleasant (Fig 7b) odor evoked affect net-

work models from Fig 5. These figures show that node strength (the associations of a node

with its immediate neighbors) is highly stable for variations in sample size in both networks.

Betweenness (connecting other nodes) shows a somewhat steeper decrease in accuracy with

sample size than strength, especially in the POEA network. As a result, we cannot confidently

conclude that any node in the POEA network is significantly more central than any other.

Table 4 lists the correlation stability coefficients for the network centrality indices. Strength

centrality is the only stable network characteristic. For both networks (UPOEA and POEA),

the strength stability coefficient is 0.75, exceeding the recommended minimum value of 0.25.

This means that strength centrality induces a meaningful order on the nodes in the networks.

Table 3. Strength, closeness and betweenness centrality indices (using standardized z-scores to facilitate interpretation) for each node in the estimated networks

(see Fig 5) for unpleasant and pleasant odor evoked affect, estimated from 1,000 bootstrap replications with the adaptive LASSO algorithm. Maximal values are

printed in boldface.

Unpleasant odors Pleasant odors

Node Betweenness Closeness Strength Betweenness Closeness Strength

A -0.38 -1.17 -0.29 -0.59 -1.43 0.25

F -0.38 -0.39 0.42 1.46 0.68 1.09

I 2.27 1.14 1.27 -0.59 0.07 0.43

V -0.38 0.42 1.07 1.46 0.68 0.83

https://doi.org/10.1371/journal.pone.0236468.t003

Fig 6. Bootstrapped 95% confidence intervals gray areas for the edge-weights in the estimated networks for unpleasant (A) and pleasant (B) odor

evoked affect. The red line connects the sample values, the black line the bootstrap means. The gray area represents the CIs. Each point represents one

edge in the network, ordered from the edge with the highest weight (top) to the edge with the lowest weight (bottom). The labels along the outside of the

vertical axis indicate the relations between different variable pairs (see text for the abbreviations) while the corresponding labels on the inside

correspond to the edge labels relation numbers in the hypothetical odor evoked affect HOEA model (see Fig 1).

https://doi.org/10.1371/journal.pone.0236468.g006
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3.3 Network comparison

3.3.1 Global network structure. A visual comparison of the UOEA and POEA networks

in Fig 5 shows that their structure is very similar: six edges occur in both networks (R1, R2, R3,

R5, R12, R14). This observation is confirmed by the Pearson correlation between the adjacency

matrices of both networks, which is r = .81, indicating a high degree of similarity. Also, the

NCT revealed that the global strength of the UOEA network (1.85) does not differ significantly

from that of the POEA network (1.75; p = .56). Corresponding relations in both networks have

similar absolute partial correlation strengths (see Table 2) and the same polarity, except for the

relation R14: as expected (see section 1.3) valence and arousal are positively correlated for posi-

tive odors and negatively correlated for unpleasant odors.

The main difference between both network structures is the relation between F and A (R4):

familiarity only appears to (positively) influence the arousing quality of positive odors, but not

of negative odors.

3.3.2 Intensity. In both emerging network models, odor intensity is negatively correlated

with valence in (R1): the more intense being the more unpleasant. However, the relation is

stronger for unpleasant odors than for pleasant odors. Odor intensity is positively correlated

Fig 7. Stability of the central indices strength and betweenness of the estimated networks for unpleasant (A) and pleasant (B) odor evoked affect.

Data points represent the average correlation between the estimates based on subsamples, expressed as a percentage of original number of cases and the

entire original sample. Areas indicate the range between the 2.5th and 97.5th quantiles.

https://doi.org/10.1371/journal.pone.0236468.g007

Table 4. Correlation stability coefficients for the network centrality indices. The CScor = 0.7 coefficients represent the maximum proportion of cases that can be

dropped such that the correlation between the original centrality metric and those of the sampled subsets is 0.7 or higher with 95% probability.

Network model Strength Closeness Betweenness

UOEA 0.75 0.00 0.13

POEA 0.75 0.00 0.13

https://doi.org/10.1371/journal.pone.0236468.t004
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with subjective arousal (R2): odors that are more intense are rated as more arousing, indepen-

dent of odor valence. These results both agree with the general findings in the literature, as

embodied in both HOEA models (Fig 1).

3.3.3 Familiarity. Familiarity and valence are strongly positively correlated (R3): the

more familiar an odor, the more pleasant it is judged, independent of odor valence. Familiarity

is weakly positively correlated with odor evoked arousal for pleasant odors (R4), while no rela-

tion emerges for unpleasant odors. This is in contrast with the HOEA model, that predicts a

negative correlation between odor familiarity and odor evoked arousal, independent of odor

valence. In agreement with the HOEA model, familiarity is positively correlated with odor

intensity in both networks (R5): participants perceive familiar odors as more intense than

unfamiliar odors, independent of odor valence.

3.3.4 Affective state. The current results show no modulating effect of the arousal and

valence components of the observer’s baseline affective state on both the intensity and the

affective appraisal of odors, independent of their valence (relations R6-R11 from the HOEA

model are absent in the UOEA and POEA models).

In agreement with the HOEA model, the valence component of baseline affective state (BV)

correlates strongly and negatively with the odor detection threshold (R12). This agrees with

the finding that negative mental states reduce odor sensitivity [54, 86], whereas a positive men-

tal state can enhance odors sensitivity [86]. Contrary to our expectations, we find no negative

correlation between T and I (R13).

4 Discussion

Based on a review of the literature we identified four individual factors that can influence

odor-evoked affect as measured in term of valence and arousal: baseline affective state, odor

sensitivity (detection threshold), odor intensity and odor familiarity. However, the exact

nature of the relations between each of these variables and their influence on odor evoked

affect are still largely unknown. To investigate these relations, we first constructed a hypotheti-

cal relational model, based on the small amount of literature that is currently available. Then

we performed an observer experiment to collect data that can be used to verify this model. We

used network analysis to explore the relations between the measured variables and odor-

evoked affect through (regularized) partial correlations. This technique offers a data-driven

view of the salient relationships between the variables of interest: relations emerge as partial

correlations between the individual variables. Since the resulting GGMs are undirected net-

works it is not possible to discern causal relations. However, the absence of an edge between

two factors in these models provides strong evidence that neither factor causes the other.

Because of the functional dichotomy that may exist in the relation between valence and the

other variables that are measured in this study (e.g., the relation between valence and familiar-

ity: [25]), we investigated the results for unpleasant (odors with negative mean valence ratings)

and pleasant odors (odors with positive mean valence ratings) separately. Hence, we obtained

two models: one for unpleasant odor evoked affect (UOEA model) and one for pleasant odor

evoked affect (POEA model). It appears that both models are highly similar. The positive cor-

relations between F and V for pleasant odors [12, 51–53, 67–73], and between F and I [52, 70],

and between I and A [12, 14, 56, 57] that have been reported in the literature, also emerge in

both networks. Other known relations, such as the negative correlations between BV and T

[86, 147, 148], and between I and V [55], also consistently emerge in both models. The main

difference between both network structures is the relation between F and A (R4): familiarity

only appears to contribute to the arousing quality of positive odors, but not of negative odors.

The similarity between the UOEA and POEA networks suggests the existence of multiple
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affective modes [149]. This notion is reflected in bivariate models of valence (e.g., [150]) that

represent pleasant and unpleasant feelings along two separate unipolar dimensions [151–153].

Future studies on mixed affective responses to odors may provide more evidence about the

dual nature and characteristics of the systems mediating the affective appraisal of odors [154].

We found that the valence component of baseline affective state correlates strongly and

negatively with the odor detection threshold (R12). Although this result agrees with the find-

ings that (1) negative mental states raise odor detection thresholds [54, 86] and (2) a positive

mental state can lower detection thresholds [86], this relation has (to the best of our knowl-

edge) not been reported previously. Future studies are needed to investigate whether this rela-

tion can be replicated with different odors and populations.

In contrast to previous studies that reported no consistent relation between familiarity and

valence (R3) for unpleasant odors [25, 33, 51], we find that R3 is positive, independent of odor

valence. This discrepancy most likely arises from the fact that these earlier studies computed

the correlations at the group level, while we use individual standardizing (i.e., the data for each

individual is standardized before computing the networks, to retain a within-individual

approach to the data). Thus, it appears that at the individual level, increasing familiarity (i.e., a

reduction of uncertainty) consistently enhances valence, both for pleasant odors (valence

becomes more positive) and for unpleasant ones (valence becomes less negative). This agrees

with the general tendency to attribute more weight to affective information in conditions of

uncertainty [155]. Unpleasant odors that are unfamiliar (i.e., for which it has not yet been

established whether they are harmful) may be rated as more unpleasant than unpleasant odors

that are more familiar and known to be harmless. Our current finding also seems to agree with

the finding that the unpleasant odors of fish and garlic were rated as less unpleasant by chil-

dren who correctly identified them [122].

Contrary to our expectations, we found no negative correlation between T and I (R13).

The high degree of centrality of I in the UOEA network model suggests that I is the most

crucial factor influencing the affective appraisal of unpleasant odors. The same holds for F in

the POEA network model. T is only affected by BV and appears to have no effect on any of the

other variables.

Partial correlation networks are exploratory hypothesis-generating structures that are

merely indicative of potential causal effects [104]. With this caveat in mind, the emerging asso-

ciation between BV and T can still be interpreted as a causal relation, due to the temporality of

the associated measurements (i.e., the assessment of BV precedes the measurement of T). Inso-

far as the centrality of a node can be taken to reflect the causal connections emanating from

that node, it appears that I dominates the affective appraisal of unpleasant odors (R1, R2),

while familiarity dominates the affective appraisal of pleasant odors (R3, R4).

4.1 Limitations

Several limitations should be acknowledged for the present study.

Except for the edges connecting the baseline affective state (BV and BA), the edges in our

networks of partial correlation coefficients are undirected and therefore preclude any conclu-

sions about causal (unidirectional or reciprocal) relations. Although correlation does not

establish causation, it is consistent with it. Also, the absence of an edge between two variables

provides evidence that they are not causally related. Hence, although our exploratory models

are in no way confirmatory of causal relationships, they can serve to inspire targeted experi-

mental studies investigating possible predictive relationships. Future research could expand

network analysis with a Bayesian network approach [143, 156] to investigate the causal rela-

tionships between the different parameters involved in affective odor perception.
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In this study we measured olfactory sensitivity using the validated Sniffin’ Sticks based

threshold test (SST), which has become a popular (validated and standard) procedure in the

literature. This test was also used in several references cited in this study, allowing us to relate

our current finding to those earlier results. However, the SST is a single-molecule based gen-

eral diagnostic tool to assess olfactory functioning. Even for people with a normal sense of

smell, sensitivity can vary significantly between individual odors [157]. Hence, the SST mea-

surements cannot be translated to different odors [157] and the test cannot distinguish

between general smell dysfunction and PEA insensitivity [158]. This may be the reason why

no relation between T and I appears in our results. Future studies could investigate the rela-

tionship between threshold and intensity more closely by measuring a detection threshold for

each individual odor that is used. However, such a procedure will be very time consuming and

tiresome for the participants. Alternatively, future studies may also consider to obtain olfactory

threshold assessments that are less dependent on the individual variability in sensitivity to spe-

cific odorants by using a threshold test based on complex odor mixtures (e.g. SMELL-R: [158];

see also [159]). However, this invariance only appears to hold for specific odor mixtures [160],

and there is currently no generally accepted and validated complex-odor based threshold test

available.

The absence of connections between observed variables (nodes) in our networks can either

imply that these variables are statically independent when conditioning on all other variables,

or it can mean that there was simply insufficient power to detect a relation between these vari-

ables [161]. The betweenness centrality estimates were insufficiently stable and should be

therefore interpreted cautiously (i.e., the order induced on the nodes by betweenness is not

very meaningful). The stability of betweenness centrality might have been greater if we had

tested more participants. Future studies including a larger number of participants are required

to resolve these issues.

Using Gaussian graphical models, we implicitly assumed that the variables in our models

are linearly related. Diagnostic scatterplots show that this assumption is met within the groups

of pleasant and unpleasant odors. Although the use of a different kind of correlation estimate

(e.g., Spearman of Kendall) would allow for modelling non-linear relations (such as the one

shown in Fig 4) these models would be less optimal and new methods are needed to construct

a fitting network model.

The current study is a first attempt to construct a network representation for some the

main factors that significantly influence the affective appraisal of odors. Given that we mainly

focused on a limited set of mediators (intensity, familiarity, sensitivity and the baseline affec-

tive state of the observer), we may have missed other relevant factors. For instance, we did not

investigate the effects of other factors known to influence the affective appraisal of odors, such

as attention [19] or inter-individual variations like differences in physiological state (hunger,

satiety: [162]), sex [163], age, semantic knowledge and cultural background [73, 99]. Future

studies should investigate how these factors affect network models of odor evoked affect.

In conclusion, these limitations notwithstanding, this study demonstrates that psychomet-

ric network analysis can be an effective technique towards the construction of an integral

model for the relations between the various factors that influence the affective appraisal of

odors. Such a model may constitute the basis for implementing targeted investigations of the

way in a wide range of user characteristics determine the affective appraisal of odors.
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