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Abstract

The impacts of urbanization, such as urban heat island (UHI) and nutrient loads, can influ-

ence tree function through altered physiology and metabolism and stress response, which

has implications for urban forest health in cities across the world. Our goal was to compare

growth-stimulating and stress-mitigating acclimation patterns of red maple (Acer rubrum)

trees in deciduous forests embedded in a small (Newark, DE, US) and a large (Philadelphia,

PA, US) city. The study was conducted in a long-term urban forest network on seventy-nine

mature red maple trees spanning ten forests across Newark and Philadelphia. We hypothe-

sized that red maples in Philadelphia forests compared to Newark forests will be healthier

and more acclimated to warmer temperatures, elevated CO2 concentrations and reactive

nitrogen (Nr) deposition, and higher nutrient/heavy metal loads. Therefore, these red maples

will have higher foliar pigments, nutrients, and stress-indicating elements, enriched δ15N

isotopes and increased free polyamines and amino acids to support a growth-stimulating

and stress-induced response to urbanization. Our results indicate red maples are potentially

growth-stimulated and stress-acclimated in Philadelphia forests experiencing a greater

magnitude of urban intensity. Red maples in Philadelphia forests contained higher concen-

trations of foliar chlorophyll, %N, δ15N, and nutrients than those in Newark forests. Similarly,

lower foliar magnesium and manganese, and higher foliar zinc, cadmium, lead, and alumi-

num reflected the difference in soil biogeochemistry in Philadelphia forests. Accumulation

patterns of foliar free amino acids, polyamines, phosphorous, and potassium ions in red

maples in Philadelphia forests shows a reallocation in cellular metabolism and nutrient

uptake pathways responsible for physiological acclimation. Our results suggest the

approach used here can serve as a model for investigating ‘plant physiology’ and the use of

urban trees as a biomonitor of the impacts of ‘urban pollution’ on urban forests. The results

suggest that cellular oxidative stress in trees caused by pollutant uptake is mitigated by the

accumulation of free amino acids, polyamines, and nutrients in a larger city. Our study pro-

vides a framework for determining whether trees respond to complex urban environments

through stress memory and/or acclimation.
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Introduction

The magnitude of urbanization across cities alters abiotic conditions that can influence tree

physiology and metabolism, which has global implications for urban forest health [1–3] as cit-

ies across the world continue to experience greater human impacts and expansion [4]. Cities

are an ideal ‘natural experiment’ for assessing the cumulative impacts of current global envi-

ronmental changes [5–7]. Forest trees are subjected to increased atmospheric reactive nitrogen

deposition inputs [8–10], greater CO2 concentrations [11,12], and higher temperatures [13,14]

that have the potential to stimulate growth. However, increased soil heavy metal concentra-

tions [15,16] and reduced soil moisture [17] due to UHI have the potential to stress trees in

urban forests. Krämer [18] reported many stress-inducing metals have no reported threshold

deficiency levels, yet critical toxicity levels have been identified. Foliar physio-biochemical

response patterns to above- and below-ground conditions in urban landscapes can provide

valuable insights into the regulation of tree growth [3,19–21].

Trees in cities experience a wide range of environmental pressures that create both growth

stimulating and stress inducing conditions. For example, UHI can stimulate plant growth

[13,17,21] or alternatively lead to drought stress and dampened plant growth [22,23]. In addi-

tion, elevated atmospheric Nr deposition can stimulate plant growth or induce nutrient defi-

ciencies depending upon the initial N status (land use history) of a site [8,24–27]. Similarly,

storm run-off, wet and dry deposition, and environmental legacies can exacerbate soil nutrient

and toxin levels that can either negatively or positively impact plant growth [16,28,29].

Within individual tree species and genotypes, foliar pigments and biochemical traits may

be a summation of the response to long-term and current above- and below-ground site condi-

tions that dictate tolerance limits for elements present in the environment [30–33]. Therefore,

above- and below-ground conditions in an urban environment can simultaneously impact the

physiology and biochemistry of trees that might create a tight coupling of patterns in soil and

foliar biochemistry. Plant species that grow in adverse environmental conditions can exhibit

biochemical and physiological change brought on by abiotic stressors [34–39]. The physiologi-

cal relationship between abiotic stress and nitrogen-utilizing amino acids and polyamines, as

well as some exchangeable ions in plants, has been explored and proposed as a suite of poten-

tial physio-biochemical indicators of persistent environmental stresses [40–42]. Observed

increases in tolerance to abiotic stress when cellular polyamines, amino acids, and nutrients

are elevated is indicative of a protective role (antioxidation, osmoprotection, intracellular sig-

naling and metal-chelation) to cellular organelles such as chloroplasts and mitochondria. This

results in the establishment of new cellular reactive oxygen/nitrogen species (ROS, RNS)

homeostasis in trees in which phenotypic symptoms of stress are not yet evident [36,41,43,44].

Thus, foliar pigments, amino acids, polyamines, and nutrient ions can act as a suite of com-

bined physiological biomarkers of changes in soil biogeochemistry and atmospheric condi-

tions in cities.

Many studies have focused on drivers of plant physiological and metabolic traits (net pho-

tosynthesis rate, chlorophyll content, C/N ratio, polyamine and amino acid content, and nutri-

ents [25,45,46] in contrasting environments and experimental forests. However, there is

difficulty in conducting long-term manipulated experiments in situ that mimic global change

impacts (urbanization) on physio-biochemical plant traits [5]. Cities are experimentally under-

utilized and can serve as a surrogate for such purpose. The magnitude of urban intensity varies

with city size and is unique to each city. Thus, different above- and below-ground controls

related to city size (urban heat island intensity) can influence plant physiology in different

pathways, and trees in urban forests can be biomonitors of these variable environmental con-

ditions and impacts. Research that exploits this fact with an interdisciplinary approach will
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provide baseline scientific data on ‘urban tree physiology’ and will develop this field further.

Previous work on tree response to urban conditions utilized a gradient approach of urbaniza-

tion intensity from one large city [10,12,29,46–49], yet the majority of cities in the U.S. have

low-intensity land cover and more open-area developed spaces. Thus, to build collective

understanding of how multiple environmental changes influence tree physiology, we need

research that focuses on tree response in multiple size cities with differing magnitudes of

urban intensities (metro-scale impacts). Furthermore, a comparison of tree physiology and

biochemistry in cities with different sizes can help isolate the controls (metro-scale versus site-

scale) on tree response to urban environmental conditions.

To understand the impacts of different magnitudes of urbanization intensity on the physi-

ology and stress mitigating-acclimating response (i.e., effects on pigments and free metabo-

lites) in cities, we investigated mature native red maples in small deciduous forests embedded

in two cities (i.e., Newark, DE and Philadelphia, PA). These cities differ in total population,

developed land area, and impervious surface cover, and provide a natural experiment for dis-

cerning urban impacts on tree physiology and biochemistry response to urbanization. This

research utilized the long-term urban forest ecology network, FRAME (FoRests Among Man-

aged Ecosystems), to study how red maples respond to urbanization in a small city (Newark,

DE) and a large city (Philadelphia, PA). We measured the concentrations of foliar pigments

(chlorophyll and carotenoids), foliar nitrogen (%N and δ15N isotope), nutrient elements (Ca,

Mg, P, K, S, Fe, Mn), stress-inducing elements (Ni, Zn, Al, Na, Cd, Cu, Co, Cr, Se, Pb), stress

mitigating and signaling free polyamines (putrescine, spermidine and spermine), and free

amino acids (arginine [Arg], threonine [Thr], proline [Pro], gamma-amino butyric acid

[GABA], ornithine [Orn], glycine [Gly], glutamine [Gln], and glutamic acid [Glu]) in red

maple trees. We also measured multiple soil attributes; sub-canopy nutrient elements, stress-

inducing elements, bulk density, organic matter, and pH. We posed the following questions: 1)

Do red maple foliar chlorophyll, carotenoids, chlorophyll/carotenoid ratio, nitrogen, nutrient,

and stress-inducing metal concentrations in urban forests differ with city size; and 2) Do

observed differences in foliar and soil chemistry between cities indicate differing metabolic

responses? We hypothesized that red maples growing in forests in Philadelphia as compared to

those in Newark will have higher foliar pigments, nutrients, and stress-inducing elements, and

more enriched δ15N isotope due to greater nutrient and metal inputs, urban heat island, and

elevated atmospheric CO2 that create stronger above- and below-ground controls with respect

to city size leading to stress acclimation. We also hypothesized that higher foliar polyamines,

some amino acids, and nutrients in trees in Philadelphia forests relative to Newark forests

would indicate greater stress tolerance to a greater magnitude of urban intensity impacts

(UHI, Nr deposition inputs, anthropogenic CO2, nutrient/toxic metal loads) of a larger city.

The results from this study provide valuable insight into how above- and below-ground condi-

tions in cities drive differing patterns in tree physiological response based on the magnitude of

the (city size as a proxy for) urbanization intensity.

Materials and methods

Study species and geographic region

In the present study, we focused on mature red maples (Acer rubrum L.) in ten forests in the

long-term urban forest ecology network, FRAME (FoRest Among Managed Ecosystems); five

in Newark, DE and five in Philadelphia, PA, U.S (Fig 1). In 2009, researchers at the USDA For-

est Service and University of Delaware selected forest sites located on public lands across the

Coastal Plain and Piedmont region of the Mid-Atlantic for long-term establishment and

research. The FRAME traverses an urban gradient extending across Newark, DE and
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Philadelphia, PA into nearby rural areas. Newark has a population of 31,454 and a mean den-

sity of 1,403 people km-2. Philadelphia has a population of 1,526,006 people and density of

4,405 people km-2 [50]. In both cities, the forest canopy is dominated by red maple (Acer
rubrum), tulip poplar (Liriodendron tulipifera), American beech (Fagus grandifolia), black

gum (Nyssa sylvatica), sweetgum (Liquidambar styraciflua), and red oak (Quercus rubra). The

forest understory is dominated by a mix of non-native and native species including multiflora

rose (Rosa multiflora), spicebush (Lindera benzoin), greenbrier (Smilax rotundifolia), Japanese

honeysuckle (Lonicera japonica), southern arrowwood (Viburnum dentatum), autumn olive

(Elaegnus umbellata), and sweet pepperbush (Clethra alnifolia).

Experimental design, tree selection, and sample collection

For this study, we selected five small forests experiencing high levels of urbanization in New-

ark, DE (forest size: 4.0–16.3 ha) and in Philadelphia, PA (forest size: 3.5–7.0 ha); therefore,

focusing this study on the impact of large-scale urbanization pressures associated with city size

on tree physiology and metabolism. The urban context surrounding forests in Newark and

Philadelphia was similar in land use/land cover, impervious surface area, and population den-

sity (see Trammell et al. 2020 for details on landscape metrics and spatial analyses). We ran-

domly selected 5 or 10 red maple trees in five forests in Newark (n = 39) and Philadelphia

(n = 40) depending upon availability and proximity to each other. Seventy-nine mature, native

red maple trees (diameter at breast height [dbh]: 7.6–23 cm) were randomly sampled at mid-

to upper-canopy in August 2017. Red maples in Newark (dbh: 13.7 ± 0.5 cm) and Philadelphia

Fig 1. Map of the study area. Map shows the east coast of the U.S. and the location of Newark, DE and Philadelphia, PA. A total of

79 red maple trees from ten forests were sampled in August 2017.

https://doi.org/10.1371/journal.pone.0236313.g001
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(dbh: 12.2 ± 0.5 cm) forests did not differ significantly in mean dbh (p = 0.06) and were

assumed to be similar in age. The trees were located at least 10 m from the forest edge, and

many trees were near a creek and/or close to a trail. The trees sampled experienced sub-canopy

shade as they were not tall enough to reach the upper forest canopy. No specific permissions

were required for locations/activities as these forest fragments because they are part of our

FRAME network. The FRAME is open to graduate and undergraduate students and postdoc-

toral scholars to carry out long- and short-term experimental studies that do not involve

endangered species.

Leaf sampling was conducted at mid-upper canopy using a pole pruner, a slingshot, or by

climbing the tree in August 2017. Light-exposed leaf samples were stored on ice during collec-

tion in the field and transport to the laboratory. Foliar samples were stored at -20˚C for pig-

ment analysis, and a portion was oven dried at 55˚C for analyses of nutrients, stress-inducing

metals, %N, and natural abundance δ15N isotope. Leaf disks from three to five fresh clean

leaves were collected in the field with a paper puncher to obtain ~100 mg of tissue. The sample

was placed into a pre-weighed microfuge tube and 1 ml of 5% perchloric acid (PCA; stops bio-

chemical reactions instantly) was added. Samples were stored and transported on ice and were

placed at -20˚C until analyses of polyamines, amino acids, and exchangeable ions.

Under each red maple tree, a composite of four soil cores (0–10 cm) were collected at the

mid-point between the tree trunk and canopy edge for elemental analysis. One intact soil core

(diameter = 5 cm, depth = 15 cm) was also collected under each tree for bulk density (BD),

organic matter (SOM) and pH measurements. Soil samples measured for BD measurements

were oven dried at 105˚C.

Foliar %N and natural abundance δ15N isotope measurement

All leaves were oven-dried at 55˚C for 48 h and subsamples (~ 3500 μg) were ground to a fine

powder using a Retsch Ball Mixer Mill (MM200, Haan, Germany). Nitrogen (N) concentra-

tions (%) and δ15N values (‰) were measured using an Elemental Combustion System (ECS)

4010 CHNSO analyzer, Costech Analytical (Costech Valencia, CA, USA) connected to a

Thermo Delta V spectrometer (Thermo, Bremen, Germany) interfaced with an elemental ana-

lyzer. Two USGS standards (external) and one secondary standard (acetanilide, internal) were

used, with precision less than 0.02‰ [51]. The natural abundance stable isotope values were

expressed relative to the international standard (atmospheric N2) in the conventional δ-nota-

tion [51]:

δ15N ¼ ½ð15Nsample=
14NsampleÞ=ð

15Nstandard=
14NstandardÞ � 1� � 1000‰ ð1Þ

Foliar chlorophyll and carotenoid concentration

Freshly frozen leaf samples were brought to room temperature and a paper puncher used to

remove three discs (~ 8.5–11.5 mg). One ml of Dimethylformamide (DMF) was added to the

leaf discs and shaken for 24 h in the dark, then transferred to a refrigerator at 4˚C for 48 h for

complete pigment extraction. The extracts were filtered and further diluted with DMF to attain

absorbance values below 1 absorbance in accordance with Beer’s Law. Absorbance were mea-

sured in triplicate at wavelengths of 480, 647 and 664 nm using a spectrophotometer (Thermo

Evolution 60S UV-Visible, Waltham, MA, USA). Total chlorophyll (a + b) and carotenoid

concentrations were calculated according to equations by Porra et al. [52] and Minocha et al.
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[53]:

½Chlorophyll a� equation ¼ ð12 � A664Þ � ð3:11 � A647Þ � dilution factor ð2Þ

½Chlorophyll b� equation ¼ ð20:78 � A647Þ � ð4:88 � A664Þ � dilution factor ð3Þ

½Total chlorophyll ða þ bÞ� equations ¼ ½Chlorophyll a� þ ½Chlorophyll b� ð4Þ

½Total carotenoids� equation ¼ ð1000A480 � 1:12Ca � 34:07CbÞ= 245 � dilution factor ð5Þ

Foliar polyamine, amino acid, and exchangeable ion measurement

To extract 5% PCA soluble polyamines and amino acids, samples were thawed and frozen

(-20˚C) three times and then centrifuged at 13 000 × g for 10 min [54]. The supernatants were

dansylated for the simultaneous analysis of polyamines and amino acids according to the pro-

cedure described in Minocha and Long [55] with minor modifications described here. In

short, the changes include a 30 min incubation time, termination of the dansylation process

with 45 μl of glacial acetic acid, and final volume of 2 ml. Following this protocol, the separa-

tion of Arginine (Arg) and Threonine (Thr) was not always complete. For quantitation a com-

bined calibration curve of Arg+Thr was used; when both AAs are present in equal

concentration, the area of Arg is a much larger percentage of the combined peak area. Detec-

tion limits, recovery, linear ranges, precision and error for this method are all described in

[55]. Exchangeable inorganic ions (soluble in 5% PCA) were quantified from the same PCA

extracts using a simultaneous axial inductively coupled plasma optical emission spectropho-

tometer (ICP-OES) (Vista CCD, Varian Inc., Palo Alto, CA, USA) and Vista Pro software

(Version 4.0), following 100 × dilutions of the PCA extracts with deionized water [56]. ICP

analysis was done in accordance with EPA SW-846 compendium, method 6010.

Foliar and soil nutrient and heavy/toxic metal concentrations

Leaf samples (~ 0.5 g) were oven-dried at 55˚C for 48 h and ground to fine powder prior to

digestion with a CEM MARs5 microwave digestion system (CEM, Matthews, NC, USA) using

concentrated nitric acid and 30% hydrogen peroxide. The supernatants were analyzed for the

contents of Boron (B), Ca, Mg, K, P, S, Mn and Fe by inductively coupled plasma optical emis-

sion spectroscopy (ICAP; 7600 Duo view Inductively Coupled Plasma–Optical Emission Spec-

trometer [ICP-OES], Thermo Elemental, Madison, WI, USA) and other elements (Na, Al, Cu,

Cr, Co, Ni, Zn, Cd, As, Se and Pb) by Inductively Coupled Plasma Mass Spectrophotometer

(ICP-MS; Agilent 7500cx, Wilmington, DE, USA). Helium gas was introduced into the octo-

pole reaction cell for the analysis of Cr, Co, Ni, As and Se [57].

Composite soil samples collected at 0–10 cm depth were dried at 105˚C for 48 h, sieved

with a 2 mm pore sieve, and ground to fine powder (Retsch MM200, Haan, Germany). Soils

(0.5 g) were extracted using the Mehlich 3 soil test extractant protocol [58]. The supernatants

were analyzed for the contents of B, P, K, Ca, Mg, Mn, Fe, and S by ICP-OES and other ele-

ments (Na, Al, Zn, Cr, Co, Cu, Ni, As, Se, Cd and Pb) using ICP-MS using the same protocol

described for foliar samples above.

Measurements of soil bulk density, organic matter content and pH

Soil samples were oven-dried at 105˚C prior to analysis. Intact soil core dried mass to total vol-

ume ratios were calculated to determine the soil BD. SOM content was analyzed by the
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combustion method, loss on ignition (LOI) and carried out at 350˚C [59]. Soil pH (1:1; was

determined on sub-samples according to Eckert and Sims [60]).

Statistical analysis

All data analyses were conducted in R (Version 3.3.3 and x64 3.6.1; R Core Team, 2016). Statis-

tical significance is reported at the critical level (α = 0.05). Analyses of differences in foliar

chlorophyll (mg g-1 FW), carotenoid (mg g-1 FW), % N, δ15N (‰), amino acids, and poly-

amines between the cities were analyzed using a one-way analysis of variance (ANOVA) for

data that met the assumptions of normality and homoscedasticity, followed by post-hoc Tukey

HSD tests. Additionally, the Kruskal-wallis non-parametric analysis of variance was performed

when the assumptions of normality and homoscedasticity were not met. Principal component

analysis (PCA) was used to determine whether patterns in foliar chemistry (nutrients and

stress inducing metals; mg kg-1 DW, μg kg-1 DW or μmol g-1 FW) and metabolism (amino

acids and polyamines; nmol g-1 FW), and soil chemistry (nutrients and stress inducing metals;

mg kg-1 DW or μg kg-1 DW) were discernible among trees (Version 3.3.3; R Core Team,

2016). PCAs were conducted separately for foliar metabolites and soil chemistry to explore

potential differences in foliar pigments, elements, and metabolites in response to soil

chemistry.

Results

Foliar chlorophyll, carotenoid, N, and δ15N

Total foliar chlorophyll concentrations were significantly greater in red maples in Philadelphia

forests than in Newark forests (p = 0.004; Table 1). Similarly, mean total chlorophyll-a

Table 1. Total chlorophyll, chlorophyll-a, carotenoids, chlorophyll:carotenoid (Chl:Car) ratio, N content, and natural abundance δ15N for red maple trees in five

forests each in Newark, DE (n = 39) and Philadelphia, PA (n = 38).

Forest Chlorophyll Chlorophyll-a Carotenoids Chl:Car N (%) δ 15N (‰)

Newark

FO 3.40 ± 0.18 2.40 ± 0.13 1.22 ± 0.05 2.79 ±0.04 1.47 ± 0.07 -2.44 ± 0.4

EW 3.12 ± 0.18 2.20 ± 0.06 1.16 ± 0.06 2.69 ±0.03 1.58 ± 0.05 -10.60 ± 1.2

CW 3.10 ± 0.15 2.16 ± 0.11 1.10 ± 0.05 2.88 ±0.10 1.53 ± 0.03 -11.51 ± 0.7

RH 3.23 ± 0.20 2.03 ± 0.16 1.21 ± 0.06 2.65 ±0.08 1.61 ± 0.11 -8.79 ± 0.8

WF 3.12 ± 0.14 2.20 ± 0.11 1.17 ± 0.51 2.66 ±0.03 1.68 ± 0.05 -11.62 ± 0.3

Average 3.17 ± 0.08a 2.25 ± 0.07a 1.16 ± 0.03n.s. 2.74 ±0.04a 1.57 ± 0.03a -9.6 ± 0.6a

Philadelphia

PL 3.60 ± 0.40 2.57 ± 0.30 1.30 ± 0.16 2.79 ±0.05 1.71 ± 0.06 -11.68 ± 0.4

SM 3.60 ± 0.22 2.58 ± 0.20 1.24 ± 0.09 2.97 ±0.18 1.79 ± 0.05 -6.87 ± 0.7

WR 3.16 ± 0.12 2.30 ± 0.10 1.15 ± 0.33 2.74 ±0.04 1.58 ± 0.04 -8.59 ± 0.5

PP 3.71 ± 0.22 2.70 ± 0.15 1.35 ± 0.08 2.76 ±0.02 1.52 ± 0.05 -7.24 ± 1.5

CHX 3.72 ± 0.14 2.69 ± 0.10 1.24 ± 0.06 3.03 ±0.11 1.93 ± 0.05 -9.87 ± 0.3

Average 3.53 ± 0.09b 2.54 ±0.07b 1.24 ± 0.03n.s. 2.88 ±0.06b 1.72 ± 0.03b -8.43 ± 0.4b

Forest: FO, Folk; EW, Ecology Woods; CW, Chrysler Woods; RH, Rittenhouse; WF, Webb Farm; PL, Park Line Dr; SM, Smith Memorial; WR, Walton’s Run; PP,

Pennypack Dr; CHX, Chamounix.

Letters ‘a’ and ‘b’ represent significant differences between means when α = 0.05.

Bold values represent significantly greater concentrations.
n.s. denotes ‘not significant.’

Concentrations of pigments are in mg g-1 FW.

https://doi.org/10.1371/journal.pone.0236313.t001
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(p = 0.002) and chlorophyll:carotenoid ratios (p = 0.044) were also significantly higher in

foliage of red maples in Philadelphia forests compared to those in Newark forests (Table 1).

There were no significant differences in total carotenoid concentration in red maples between

Philadelphia and Newark forests (p = 0.08). Mean foliar %N and naturally abundant δ15N were

both significantly higher in Philadelphia forests compared to Newark forests (p< 0.001 and

p< 0.02, respectively; Table 1).

Total and exchangeable foliar nutrients, and stress-inducing metals

Foliar total concentrations of P, K, and S were significantly higher, but Mg and Mn were signif-

icantly lower in red maples in Philadelphia forests compared to red maples in Newark forests

(p< 0.05; Table 2). Similarly, exchangeable P and K concentrations were also significantly

higher, and Mg and Mn were significantly lower in red maples in Philadelphia forests com-

pared to red maples in Newark forests (p< 0.05; Table 3). Red maples in Newark forests had

significantly greater foliar concentrations of total Ni (p = 0.012), Cr (p = 0.02), and Co

(p = 0.006), whereas in Philadelphia forests they had significantly greater foliar total concentra-

tions Pb (p = 0.03) and Cd (p = 0.04; Table 2). Although foliar total concentrations of Al and

Zn in red maples were not significantly different between cities (Table 2), concentrations of

exchangeable Al (p = 0.04) and Zn (p = 0.003) were significantly higher in Philadelphia forests

compared to Newark forests (Table 3).

Principle component analysis (PCA) was used to characterize the relationship of foliar ele-

ments in red maples in Newark and Philadelphia forests. The first two principle components

for the foliar total ion chemistry described 36.8% of the variation among the elements (Fig 2A)

which was not very high likely due to substantial variation and/or little separation. PCA1 and

Table 2. Concentrations of total foliar elements in red maples from five forests each in Newark, DE (n = 39) and Philadelphia, PA (n = 38).

Total Element Newark, DE forests (n = 5) Philadelphia, PA (n = 5) Unit

Ca 8330 ± 349n.s. 7907 ± 332.6n.s. mg kg-1 DW

K 6610 ± 211.5a 8234 ± 305b mg kg-1 DW

Mg 2355 ± 120a 2089 ± 102b mg kg-1 DW

P 1198 ± 45a 1369 ± 63b mg kg-1 DW

S 1019 ± 18a 1099 ± 18b mg kg-1 DW

Fe 64.5 ± 2n.s. 67.8 ± 1.7n.s. mg kg-1 DW

Mn 714 ± 45a 425 ± 33b mg kg-1 DW

Zn 38 ± 0.12n.s. 41 ± 0.12n.s. mg kg-1 DW

Cu 8.5 ± 0.4n.s. 8.7 ± 0.5n.s. mg kg-1 DW

Na 14 ± 3n.s. 13 ± 1n.s. mg kg-1 DW

Al 32 ± 1n.s. 30.9 ± 1n.s. mg kg-1 DW

Cr 14 ± 1.2a 9.2 ± 0.8b μg kg-1 DW

Co 3.6 ± 1.1a 0.6 ± 0.08b μg kg-1 DW

Ni 25 ± 4.4a 14.6 ± 1.2b μg kg-1 DW

Cd 2.3 ± 0.3a 3.3 ± 0.4b μg kg-1 DW

As 0.55 ± 0.04n.s. 0.27 ± 0.03n.s. μg kg-1 DW

Se 2.9 ± 0.18n.s. 2.8 ± 0.14n.s. μg kg-1 DW

Pb 4.9 ± 0.5a 8.2 ± 1b μg kg-1 DW

Letters ‘a’ and ‘b’ represent significance at α = 0.05.

Bold values represent significantly greater concentrations.
n.s. denotes ‘not significant.’

https://doi.org/10.1371/journal.pone.0236313.t002
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PCA2 variables explained 19.1% and 17.7%, respectively, of the variation in correlation in the

foliar elements of the red maple trees in both cities (Fig 2A). The variables having the strongest

Table 3. Concentrations of exchangeable foliar elements (μmol g-1 FW) in red maples from five forests each in Newark, DE (n = 39) and Philadelphia, PA (n = 38).

Exchangeable Elements Newark, DE Philadelphia, PA

K 35.9 ± 1.4a 48.5 ± 3b

Mg 26.8 ± 1.9a 23.1 ± 1.4b

P 7.7 ± 0.3a 9.3 ± 0.7b

Mn 2.7 ± 0.3a 1.6 ± 0.2b

Al 0.1 ± 0.01a 0.2 ± 0.02b

Zn 0.2 ± 0.01a 0.3 ± 0.04b

Ca 44.7 ± 2.3n.s. 46.4 ± 3.7n.s.

Fe 0.16 ± 0.013n.s. 0.2 ± 0.017n.s.

S 1.6 ± 0.07n.s. 1.7 ± 0.1n.s.

Cu 0.1 ± 0.024n.s. 0.1 ± 0.033n.s.

Ni 0.01 ± 0.002n.s. 0.01 ± 0.003n.s.

Se 0.003 ± 0.001n.s. 0.003 ± 0.001n.s.

Co 0.004 ± 0.0005n.s. 0.003 ± 0.0004n.s.

As 0.006 ± 0.0001n.s. 0.01 ± 0.0001n.s.

Cd 0.025 ± 0.01n.s. 0.03 ± 0.02n.s.

Pb 0.003 ± 0.001n.s. 0.002 ± 0.001n.s.

Letters ‘a’ and ‘b’ represents significant differences between means when α = 0.05.

Bold values represent significantly greater concentrations.
n.s. denotes ‘not significant’.

https://doi.org/10.1371/journal.pone.0236313.t003

Fig 2. Principal component analysis of foliage of 77 mature native red maples for total (a) and exchangeable (b) elemental

composition in ten urban deciduous forests in Newark, DE and Philadelphia, PA. Elements that most strongly loaded on each

axis are listed next to their respective axis in order of strongest to weakest. (+) represents values that are positive and strongly

loaded on the axis; (-) represents values that are negative and strongly correlated to the axis. The ellipses represent the group

mean for each city.

https://doi.org/10.1371/journal.pone.0236313.g002

PLOS ONE Deciduous forest red maples acclimate to urban conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236313 July 24, 2020 9 / 23

https://doi.org/10.1371/journal.pone.0236313.t003
https://doi.org/10.1371/journal.pone.0236313.g002
https://doi.org/10.1371/journal.pone.0236313


correlation with PCA1 were Co and Ni (negative), and Zn (positive) in the order of strongest

to weakest. The variables most significantly correlated on PCA2 were Ca and Mg (in the order

of strongest to weakest) and all had strong, positive loadings. As for exchangeable foliar ele-

ments, principle component analyses explained 63.5% of the variation in foliar exchangeable

ions across the cities (Fig 2B; PCA1, 43.8% and PCA2, 19.8%). The exchangeable ions having

the strongest positive correlation with PCA1 were Al, P, K and Zn (Fig 2B). The foliar

exchangeable ion with strongest loading on PCA2 was Mn (positive; Fig 2B). The patterns of

both total and exchangeable foliar chemistry of red maple trees in Newark and Philadelphia

forests formed two ellipses that represent the group mean for each city (Fig 2A and 2B).

Soil bulk density, organic matter and pH

There was little variation in soil BD among forests within Newark and Philadelphia. The mean

soil BD was significantly lower in Philadelphia (1.01 ± 0.04 g cm-3; p = 0.0027) compared to

Newark forests (1.14 ± 0.02 g cm-3). However, the percent SOM was significantly higher in

Philadelphia forests (13.8 ± 2.4%) compared to Newark forests (7.7% ± 0.6%; p = 0.016). Aque-

ous soil pH (1:1) was not significantly different between Philadelphia forests (4.7 ± 0.1) and

Newark forests (4.5 ± 0.1; p = 0.11).

Soil nutrients and stress-inducing metals

Mean concentrations of Ca, K, Mg, P, S in soils collected below red maple trees were 1.5 to

2.5-fold higher in Philadelphia forests compared to Newark forests (p< 0.001, Table 4). Soil

Cr, Co, Ni, and Se concentrations were significantly greater in Newark forests than in Philadel-

phia forests (p< 0.001; Table 4). In contrast, soil concentrations of Al, Zn, Cu, Pb, and Cd

Table 4. Sub-canopy soil total element concentrations for the upper 0–10 cm soil horizon of 77 red maples in ten forests in Newark, DE and Philadelphia, PA.

Total soil element Newark, DE Philadelphia, PA Unit

Ca 1153 ± 125a 1821 ± 132b mg kg-1 DW

K 1312 ± 61a 3216 ± 236.5b mg kg-1 DW

Mg 1647 ± 94a 4073 ± 364.2b mg kg-1 DW

P 448 ± 35a 691 ± 33b mg kg-1 DW

S 420 ± 49a 638 ± 77b mg kg-1 DW

Fe 18799 ± 1634a 26606 ± 1577b mg kg-1 DW

Mn 370 ± 54n.s. 416 ± 39n.s. mg kg-1 DW

Zn 58 ± 6a 92 ± 5b mg kg-1 DW

Cu 19 ± 2a 36 ± 2b mg kg-1 DW

Al 20619 ± 1159a 24006 ± 1388b mg kg-1 DW

Na 167 ± 7a 184 ± 9b mg kg-1 DW

Pb 973 ± 0.6a 1007 ± 91b μg kg-1 DW

Cd 1.0 ± 0.1a 2 ± 0.1b μg kg-1 DW

Cr 1165 ± 15a 396 ± 0.4b μg kg-1 DW

Co 146 ± 23a 46 ± 0.2b μg kg-1 DW

Ni 351 ± 74a 120 ± 15b μg kg-1 DW

As 39 ± 1.5a 35 ± 2b μg kg-1 DW

Se 82 ± 4a 36 ± 2b μg kg-1 DW

Letters ‘a’ and ‘b’ represent significant differences when α< 0.05.

Bold values represent significantly greater concentrations.

https://doi.org/10.1371/journal.pone.0236313.t004
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were significantly greater in Philadelphia forests compared to Newark forests (p< 0.05;

Table 4).

Urban conditions can reveal soil elements unique to city pressures, and PCA can reveal

relationships among soil elements across the two cities. PCA was used to characterize the vari-

ability in soil elements across forests in Newark and Philadelphia. The first two axes in the

PCA explained 54.9% of the variation in total soil elements. The variables with the strongest

positive (Zn, K, Cd, P, Cu, Ca) loadings on the first principle component (PCA1) explained

35.0% of the variation. The variables with the strongest positive (Co, Fe, Ni, Mn) loadings on

PCA2 explained 19.9% of the variation in the soil chemistry (Fig 3). These strongly correlated

soil variables of PCA1 and PCA2 (Fig 3A) formed two ellipses that represent the group mean

of soil chemistry for Newark and Philadelphia.

Amino acid and polyamine accumulation

There were greater concentrations of foliar free amino acids and free polyamines in the foliage

of red maples in Philadelphia forests as compared to those in Newark forests. Foliar serine

(Ser), Arginine + Threonine, (Arg+Thr, unseparated), proline (Pro), glutamic acid (Glu), glu-

tamine (Gln), ornithine (Orn), and glycine (Gly) were significantly higher in red maple trees

in Philadelphia forests compared to Newark forests (p< 0.05; Table 5). In addition, concentra-

tions of methionine (Met) and γ-aminobutyric acid (GABA) were marginally higher in Phila-

delphia forests (p< 0.1). There were no differences in the levels of foliar Putrescine (Put) or

Spermidine (Spd) between cities. Spermine (Spm) was the only free polyamine that was mar-

ginally higher in the foliage of red maples in Philadelphia (p = 0.08).

PCA was used to characterize the relationship of foliar metabolites (free polyamines and

amino acids) in red maple trees between Newark and Philadelphia forests (Fig 3B). The first

two principle components explained 66.7% of the variation in amino acids and polyamines.

Fig 3. Principal component analysis for total soil elements (a) in the top 10 cm of soil and foliar free amino acids and

polyamines (b) from 77 mature, native red maple trees in ten urban deciduous forests in Newark, DE and Philadelphia. PCA

components that most strongly loaded on each axis are listed next to their respective axis in order of strongest to weakest.

(+/-) represents values that indicate variables are positive/negative and strongly loaded on the axis. Ellipses represent group

means.

https://doi.org/10.1371/journal.pone.0236313.g003
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PCA1 and PCA2 explained 54.7% and 11.9% of the variation, respectively. Metabolites with

the strongest correlation on PCA1 were Ser, GABA, Pro, Leu, Ala, Ile, and Arg+Thr (in order

of strength), and all of the variables had significant positive loadings on PCA1 (Fig 3B). The

variable with the strongest correlation on PCA2 was the Spd/Put ratio, which had a signifi-

cantly positive loading. The two ellipses represent the group means of foliar free polyamines

and amino acids in red maple growing in Newark and Philadelphia forests (Fig 3B).

Amino acid and polyamine correlations with foliar and soil nutrients

Foliar amino acids and polyamines had significant correlations with foliar and soil nutrients

and metals. Red maple trees had significant positive correlations between foliar metabolites

(i.e., Ser, GABA, Pro, Leu, Ala, and Arg+Thr) and foliar B, S, and Pb (p < 0.05; S1 Table),

and trees in Philadelphia had greater concentrations of these foliar metabolites and ele-

ments (Tables 2 and 5 and Figs 2A and 3b). Alternatively, red maples had significant nega-

tive correlations between foliar metabolites and foliar Mg, Mn, Cr, Co, Ni, and As

(p < 0.05; S1 Table), and trees in Newark had lower concentrations of the foliar metabolites

yet greater concentrations of the foliar elements (Tables 2 and 5 and Figs 2A and 3B). Simi-

lar trends were observed between foliar metabolites and soil nutrients and metals. Red

maples had significant positive correlations between foliar metabolites (i.e., Gln, Arg+Thr,

Orn, and Ser) and soil Ca, K, P, Mg, Zn, and Cu (p < 0.05, S2 Table), and red maples in

Philadelphia forests had greater concentrations in these foliar metabolites and soil elements

(Tables 4 and 5 and Fig 3A and 3B). Red maples had significant negative correlations

between foliar metabolites and soil Cr, Co, Ni, and Se (p < 0.05, S2 Table), and trees in

Newark had lower foliar metabolite concentrations yet greater soil Cr, Co, Ni, and Se con-

centrations (Tables 4 and 5 and Fig 3A and 3B).

Table 5. Free amino acid and polyamine concentrations (nmol g-1 FW) in the foliage of 76 red maples in ten forests in Newark, DE and Philadelphia, PA.

Metabolites Newark, DE Philadelphia, PA p-value

Glu 127.6 ± 6.1a 151.92 ± 8.2b P = 0.020

Gln 134.2 ± 12.7a 185.28 ± 9.7b P = 0.002

Arg-Thr§ 46.8 ± 2a 122.4 ± 5.5b P < 0.001

Gly 28.9 ± 1.5a 35.4 ± 1.9b P = 0.008

Pro 37.3 ± 2.39a 45.86 ± 3.5b P = 0.046

GABA 339.8 ± 15.4 405.21 ± 31 P = 0.059

Orn 0.3 ± 0.33a 6.95 ± 0.6b P < 0.001

Ser 112.8 ± 7.3a 204.6 ± 12b P < 0.001

Met 147 ± 30 214.7 ± 38.6 P = 0.090

Put 24.5 ± 22n.s. 30.52 ± 3.7n.s. P > 0.050

Spd 25.3 ± 1.76n.s. 29.73 ± 2.6n.s. P > 0.050

Spd/Put 1.2 ± 0.1n.s. 1.42 ± 0.2n.s. P > 0.050

Spm 16.2 ± 0.86 19 ± 1.4 P = 0.080

Amino acids: Glu, Glutamic acid; Gln, Glutamine; Arg, Arginine; Thr, Threonine; Gly, Glycine; Pro, Proline; GABA, gamma Amino Butyric Acid; Orn, Ornithine; Ser,

Serine; Met, Methionine; Put, Putrescine; Spd, Spermidine; Spm, Spermine.

Letters ‘a’ and ‘b’ represent significant difference in means when α = 0.05.

Bold values represent significantly greater concentrations.
n.s. denotes ‘not significant.’

§Hplc system incapable of separation of these amino acids.

https://doi.org/10.1371/journal.pone.0236313.t005

PLOS ONE Deciduous forest red maples acclimate to urban conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0236313 July 24, 2020 12 / 23

https://doi.org/10.1371/journal.pone.0236313.t005
https://doi.org/10.1371/journal.pone.0236313


Discussion

Foliar physio-biochemistry of red maple trees in Philadelphia forests

significantly differed from Newark forests

Our findings supported our expectation that red maples growing in Philadelphia forests com-

pared to those in Newark forests would demonstrate stress mitigating-acclimating responses.

We found that red maples in Philadelphia forests had higher pigment, free amino acids, nutri-

ent, and metal concentrations than red maple trees growing in Newark forests. Soils in Phila-

delphia were biogeochemically different and contained greater levels of magnesium which

caused an imbalance in the calcium: magnesium ratio and subsequently plant uptake of cal-

cium, magnesium and manganese. Red maple trees growing in Newark forests had higher con-

centrations of foliar total Mg, stress-inducing Mn, Cr, Co, and Ni, and exchangeable Mg and

Mn most likely due to surface-geology-related (Cr, Co, Ni, Se) soils disturbed by previous land

use (i.e., agricultural practices). Increased total chlorophyll concentration (and chlorophyll-a)

and nutrients (N, P, K) in red maples in Philadelphia suggests a net adaptive effect on plastids

(chloroplasts, mitochondria) in response to a simultaneous increase in soil nutrient availability

(Ca, Mg, K, P, S, Fe, Zn, Cu; positive effects) and elevated stress-inducing metals (Na, Al, Mn,

Cd, Pb; negative effects). Elevated amino acids and marginally higher spermidine in red maple

trees in Philadelphia forests further suggests a possible protective, inter/intracellular signaling,

and antioxidative role of the N-containing and N-storage secondary metabolites that support

chloroplasts ability to biosynthesize more chlorophyll from elevated Nr inputs to these forests.

Overall, these findings suggest that it is the magnitude of urban intensity that determines

the relative impact on foliar chemistry (chlorophyll, amino acids, polyamines, macro- and

micro-nutrients, stress-inducing elements), soil physical properties (SOM, pH, BD), and the

interaction of between soil and trees in Newark and Philadelphia area forests. The accumula-

tion of amino acids, spermine, carotenoids and nutrients were all likely responsible for the

detoxification of reactive oxygen/nitrogen species (ROS/RNS), ion homeostasis, and osmotic

adjustment that are all important factors in physiological acclimation in red maples in Phila-

delphia forests [31,38,46,47,61–63]. Similar to findings of Vallano and Sparks [10] on a study

of δ15N patterns in the foliage of red maples along a N deposition gradient, we found enriched

foliar δ15N in red maple trees growing in Philadelphia relative to Newark. According to previ-

ously published literature, more enriched foliar δ15N and elevated foliar %N suggest differ-

ences in atmospheric Nr deposition and N sources, differences in soil N cycling rates and

associated 14N losses, and/or within plant N allocation differences in forests between the two

cities [8,14,24,26,27,61,64,65]. Elevated chlorophyll and marginally higher carotenoids

observed in red maple trees in nutrient-rich soils in Philadelphia forests relative to Newark for-

ests were strongly correlated with an accumulation of Pro, Gln, Arg, Gly, spermine, and nutri-

ents (Ca, K, P). This is consistent with a response to excess N availability as previously

reported by Minocha et al. [27,28] for chronic N addition studies conducted at the Harvard

Forest, MA and Bear Brook Watershed, ME. Lahr et al. [61] reported that wildtype red maples

had higher water-use efficiency (WUE), stomatal conductance and photosynthetic rates as air

temperature increased in urban settings; the extent of this increase was attributed to their

genetic background and local adaptation.

In the present study, red maple trees growing in urban environments with urban-influ-

enced biogeochemistry, heavy metal-contaminated, low pH soils are likely to have responded

to combined salt and heavy metal (osmotic and oxidative) stresses by triggering the accumula-

tion of arginine, ornithine, and proline [42,44,63,66,67]. Multiple cumulative stresses (low soil

pH, high N input, drought, high temperature) also associated with an accumulation of poly-

amines and amino acids [32,36,41]. Furthermore, these trees may have exploited novel
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epigenetic strategies (new genotypes) to respond to different environments that are known to

regulate cell physiology [68]. In response to differing environmental gradients, gene up-regula-

tion can result in the biosynthesis and accumulation of soluble proteins and sugars, increased

ions, and increased enzymes activity (Rubisco, nitrate reductase, arginase, ornithine amino-

transferase), leading to osmotic adjustment using a network of free C and N interactions to

achieve ROS/RNS homeostasis [32,36,69–72]. Several studies have reported adaptive stress

response traits in other plant species that were similar to those observed in red maple trees in

Newark and to a greater degree in Philadelphia forests [22,73–75]. Previous reports have

shown an accumulation of cellular K+ with salt stress [76], cellular Zn2+ with altered Na+ and

K+ homeostasis [72], free amino acids with heavy metals exposure [33,35,77], and spermine

under drought, heavy metal, and temperature stress [63,78,79]. Cellular free polyamines,

amino acids, and nutrient ions likely play a significant role in cellular oxidative stress protec-

tion, signaling, and antioxidation for physiological acclimation in low pH, altered nutrient bio-

geochemistry, and heavy metal contaminated soils.

The accumulation of foliar chlorophyll, nitrogen, nutrients, stress metals, amino acids and

spermidine in Philadelphia forests (Tables 2, 3 and 5) is evidence of a possible shift in C and N

metabolic pathways via interconversions and biosynthesis of various metabolites in response

to elevated N (e.g., N-containing Arg, Orn, Gln, Glu), stress-inducing metals (e.g., Pro, Ser

and Gly signaling, phytochelatins (not analyzed in the present study), temperature (e.g., sper-

mine, thermospermine (not analyzed in the present study)), and salt (e.g., spermine, K, P, Zn).

The cumulative metro-scale (elevated UHI, N deposition and CO2) impacts and the resulting

coordinated physio-metabolic shifts suggest enhanced productivity and physiological stress

acclimation in Philadelphia red maples, which was observed to a lesser extent in Newark

(Table 5 and Fig 3). Here, we have demonstrated that in the larger (higher population density),

warmer (UHI and dryer soils), city (metro-scale impacts) with nutrient-rich soil (higher inputs

of Mg, Ca, P, and K and N-S deposition) the urban conditions appear to be stimulating chloro-

phyll biosynthesis and inducing stress mitigating and/or acclimation responses for increased

growth rate in red maples [1–3,21]. Our research provides evidence that nutrient-rich urban

environments [64,72,76,80] may compensate for environmental perturbations on forest trees

growing in a large city.

Urban soil-tree interactions indicate differing above- and below-ground

impacts in Newark and Philadelphia forests

We hypothesized that higher concentrations of foliar polyamines, some amino acids and nutri-

ents in trees in Philadelphia forests relative to Newark forests would indicate more tolerance of

stress of a greater magnitude of urban impacts from a large city. Forest trees in cities are sub-

jected to multiple simultaneous above- and below-ground pressures that influence physiology,

biochemistry, and stress mitigation-acclimation patterns that are unique to soil type, local

environmental conditions, and metro-scale impacts [3,23,45,64]. Soil-tree interactions possibly

initiate a network of molecular cross-talk with other signaling compounds within cells to allow

plants to persist under stressful conditions and effectively respond to growth-modulating con-

ditions [33,36,45,62,69,80,81]. Sub-canopy soil and foliar elements showed evidence of traffic-

related sources (Zn, Cu, Pb) in Philadelphia forests as supported by red maple leaf enriched

δ15N signature [65], and land use/land cover legacy-associated sources (Cr, Co, Se) in Newark

forests, and geology-related origin (Al and Mn) in both Newark and Philadelphia forests

[16,65,82–85]. Concentrations of elements reported in these forest floor soils were variable yet

comparable to concentrations reported for soil in other metropolitan regions (i.e., New York,

NY, Baltimore, MD, or Louisville, KY [16,85,86]).
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An increase in soil acidity results in increased mobilization of Al3+ that can lead to plant

toxicity [28,86,87]. In acidic soils with low Ca and SOM, mobile Al3+ competes with Ca in

plant root hair channels for uptake [88]. However, Philadelphia forests had significantly

greater soil Ca, P, K, Mg, S (Table 4) and SOM than Newark forests (Table 3) suggesting that

plant uptake of Al, likely as AlPO4, was not detrimental to red maple trees in Philadelphia for-

ests [31]. Higher amounts of SOM observed in Philadelphia forest soils may be due to more

recalcitrant leaf litter containing higher levels of stress acclimating compounds (spermine and

several amino acids) observed in trees (Table 5) [89] and/or these systems may have achieved

steady-states where SOM decay rates would be similar to litter production rates. Higher

amounts of soil N has also been linked to increased litter accumulation [90]. Alternatively,

lower SOM in Newark forests might have been due to previous land use practices such as

intensive agriculture that has long-term negative impacts on SOC, N and BD [90]. According

to Scharenbroch et al. [91], urban landscapes are altered differently over time. These authors

also suggested that the impact of site disturbance decreased rapidly over time, therefore an

older city (e.g., Philadelphia, PA in the present study) is closer to a steady-state condition rela-

tive to a younger urban landscape (e.g., Newark, DE).

Soils in Philadelphia forests had similar pH (4.7) to Newark forest soil (pH = 4.5). However,

the pH of soil in both of these urban forests is reflective of northeastern temperate forests that

have suffered from many decades of acidic deposition and is lower than the average natural

soil pH of 5.6 [92,93]. Soil acidification is reported to be exacerbated under elevated N inputs

(N saturation) which may lead to an increase in leaching of base elements and possibly an

increase in the solubility and plant uptake of soil Al [92,94,95]. In addition, plants may be chal-

lenged with other nutrient imbalances and possible metal toxicity (altered soil biogeochem-

istry: Mn, Al) in acidic soils making them more vulnerable to multiple abiotic and biotic

stresses [35,56,86,92,93]. The elemental interactions between soils and trees stemming from

altered edaphic properties in urban environments are likely to dictate urban tree physiology

and stress mitigating/acclimation strategies at the city scale. As compared to Philadelphia, the

red maples sampled in Newark forests were exposed to lower overall temperature, higher soil

acidity and soil moisture from summer rainfall, all of which can increase the bioavailability of

Mn2+ [93,96,97] which was found to be higher in red maple trees in Newark (Tables 2 and 3).

Cellular sequestration of Mn and Mg in red maple suggests Mn and Mg were possibly co-

linked during accumulation [35]. Significantly higher concentrations of total and exchangeable

foliar Mn and Mg were observed in red maples in Newark forests relative to Philadelphia for-

ests although soil concentrations of Mg, P and Fe were much higher in Philadelphia. Gransee

and Führs [98] reported that an increase in soil Mg reduces Mn toxicity not only by reducing

Mn uptake (cation antagonism) but also by increasing the tolerance to Mn in plant tissues.

Similarly, greater soil Fe concentrations have been shown to ameliorate Mn toxicity through

reduced Mn uptake and translocation to leaf tissues. The reported higher foliar concentration

of Mn in red maples in Newark forests may be driven in part by lower concentrations of soil

Mg, P and Fe that would otherwise reduce or ameliorate foliar Mn effects compared to Phila-

delphia forests. Lower ratios of soil Ca/Mg (0.4) and Mn/Fe (0.16) due to different biogeo-

chemistry in Philadelphia than in Newark forests likely influence lower plant Mn uptake and

translocation to tissues (Tables 2 and 3) reducing red maples Mn sensitivity compared to more

sensitive red maples in Newark forests.

The findings further suggest that the red maple trees growing in Philadelphia and Newark

forests were subjected to similar anthropogenic (Zn, Cu, Pb; [84]) and surface geology-related

(Al, Mn; [85]) sources of stress-inducing metals. However, the differences in the magnitude of

the urban intensity between the two cities influenced the soil biogeochemistry and leaf-soil

interactions differently [99]. This along with additional disparities such as reactive nitrogen
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deposition and air temperatures in the intensity of above-ground stressors appear to have

resulted in very different foliar metabolic responses in red maples in forests in Philadelphia

and Newark. The differences in total values of foliar and soil elements, foliar exchangeable

ions, metabolites, soil element ratios, leaf/soil element relationships, SOM, and BD between

Newark and Philadelphia forests suggest very complex but dominant metro-scale and site-spe-

cific impacts on soil-tree interactions and tree health. These findings help discern potential

drivers of tree physiology and acclimation and may be useful in understanding the importance

of balanced nutrient supply for plant productivity and oxidative stress mitigation for the

growth and survival of urban trees.

Red maple trees in Philadelphia forests demonstrate physiological

acclimation to urban conditions

Co-occurring metro-scale and site-specific impacts influenced soil factors and plant traits dif-

ferently between Newark and Philadelphia forests resulting in distinct city-specific patterns of

alterations in physiology and levels of acclimation in red maple trees in the forests of each city.

Similar to previously published reports on other plant species, foliar free polyamines and

amino acids, and specific nutrients appear to be important players in stress-signaling, stress-

mitigating, and N storage in red maple experiencing high soil N, heavy/toxic metals, salt,

drought, acidity and heat stresses [27,36,42,61–63,72,76,79,93,98]. Higher levels of metal-che-

lating amino acids (proline, glycine), N-storing arginine and glutamine, and intermediate lev-

els of ornithine, the driving force behind changes in N metabolites, likely accumulated in

response to greater levels of cellular ROS and RNS caused by elevated heavy/toxic metals, salt

ions, and N [32,33,36,67,100]. In addition, the accumulation of spermine (Table 5) with only

an insignificant increase in putrescine and spermidine was likely a response to broad spectrum

stresses such as salt, heat, N, and drought [36,62,63,67,78,98]. Greater metro-scale impacts of

stress-inducing metals in soil (e.g., Zn, Al, Se, Cr), altered soil biogeochemistry (e.g., Ca:Mg),

UHI, elevated N inputs and their combined effects in the larger city (Philadelphia) possibly

result in more tightly coupled root-leaf communication. Significant positive correlations

observed between several metabolites and foliar as well as soil elements in larger Philadelphia

city forests but negative ones in case of smaller Newark city forests indicate not only a tight

coupling between these metabolites and elemental concentrations but also different mecha-

nisms functioning in the two ecosystems (S1 and S2 Tables). This root-leaf connection

appeared to have caused higher levels of accumulation of amino acids and polyamines that are

needed for physiological acclimation relative to trees in Newark forests. These metabolites are

known to play an important role in cell functions like signaling, ROS homeostasis, heavy metal

chelation and storage of excess N for osmotic adjustment[36,101–103].

The dynamic shift in cellular metabolites and nutrients as heavy/toxic metals and N accu-

mulated in red maple leaves in Philadelphia forests suggests a unique shift in the C and N met-

abolic pathways under stressful conditions that was at least partially, if not fully, regulated by

cellular nutrient concentrations [36,69,72]. It can be hypothesized that such shifts in C and N

reallocation may possibly require the enzyme ornithine aminotransferase for the increased

biosynthesis of arginine and subsequent production of more proline and spermine from the

arginine metabolic pathway using arginase [42,44,66]. Higher foliar free amino acids and sper-

midine further suggests tight physiologically regulated ROS/RNS homeostasis that may be

responsible for a higher level of physiological acclimation in trees in Philadelphia forests that

experience multiple cumulative abiotic/biotic stress complexities relative to Newark forests.

The present study demonstrates evidence of physiological acclimation in red maple trees in

Philadelphia forests, which experience a greater magnitude of urban intensity. Higher
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accumulations of chlorophyll, free amino acids and spermine, along with higher foliar nutri-

ents and specific stress-inducing metals suggest higher levels of stress tolerance and higher cel-

lular physiological acclimation in Philadelphia forests. Urban intensity can be a metro-scale

phenomenon that appears to override normal above- and below-ground conditions in these

forests as reflected by the altered biogeochemistry of soil, soil physical properties, soil-tree ele-

mental interrelationships, and tree physio-biochemical patterns as demonstrated in Philadel-

phia and Newark forests. Greater metro-scale impacts of below-ground conditions in forests

in Philadelphia seem to be a dominant influence causing potential acclimation in red maple

trees.

Conclusions

Our study shows that a greater magnitude of urban intensity was associated with particular dif-

ferences in leaf physiology, biochemistry and elemental composition of red maples in urban

forests of Philadelphia, which may be indicative of environmental acclimation and prolonged

tree health. In Philadelphia, higher concentrations of photosynthetic pigments, N-containing

metabolites, and nutrients demonstrate an acclimation response to increased nutrient loads,

toxic metals, UHI, increased atmospheric CO2, and higher N deposition inputs. These results

suggest that city size can be used as a proxy for evaluating different magnitudes of urban inten-

sity (metro-scale impacts) on the physiology and acclimation of trees in urban forests. The

observed acclimation of red maple trees to altered air and soil quality [104], while maintaining

higher productivity [22], supports the suitability of this tree species for biomonitoring urban

forest health and urban conditions.
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