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Abstract

In this paper, a novel, effective meta-heuristic, population-based Hybrid Firefly Particle

Swarm Optimization (HFPSO) algorithm is applied to solve different non-linear and convex

optimal power flow (OPF) problems. The HFPSO algorithm is a hybridization of the Firefly

Optimization (FFO) and the Particle Swarm Optimization (PSO) technique, to enhance

the exploration, exploitation strategies, and to speed up the convergence rate. In this work,

five objective functions of OPF problems are studied to prove the strength of the proposed

method: total generation cost minimization, voltage profile improvement, voltage stability

enhancement, the transmission lines active power loss reductions, and the transmission

lines reactive power loss reductions. The particular fitness function is chosen as a single

objective based on control parameters. The proposed HFPSO technique is coded using

MATLAB software and its effectiveness is tested on the standard IEEE 30-bus test system.

The obtained results of the proposed algorithm are compared to simulated results of the

original Particle Swarm Optimization (PSO) method and the present state-of-the-art optimi-

zation techniques. The comparison of optimum solutions reveals that the recommended

method can generate optimum, feasible, global solutions with fast convergence and can

also deal with the challenges and complexities of various OPF problems.

1 Introduction

Electric services companies are repeatedly working for generation scheduling and reasonable

operational state to optimize the generating cost based on effective security limits and power

transfer confinements. The optimal power flow (OPF) is an essential and complex optimiza-

tion technique in electrical power system operations to adjust and optimize the control settings

with various constraints sit [1] [2] [3] [4]. The earliest, various conventional optimization

techniques have been used to solve the OPF problems. Main objective of the OPF problem to

obtain the optimize scheduling of particular control variables based on limitation of system

constraints sit [5] [6] [7]. These constraints consists of equality and inequality constraints.

Equality constrains includes power flow or balance equations, whereas the inequality con-

strains sphere the dependent and decision variables within its limits.
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Newly, single and multiple objective OPF techniques have been developed to obtain opti-

mized solutions based on technical and economic interests. Many developers applied conven-

tional and recent optimization techniques to deal with the OPF problems. there conventional

optimization algorithms are: non-linear programming sit [8] [9], decomposition algorithms

sit [10], the Newton algorithm sit [11], and quadratic programming sit [12] to solve the OPF

problems. Linearization of constraints and specific objective function are main drawback that

effects the final solution. Many limitations of the conventional OPF are mentioned in sit [13].

Complete review of the mentioned classical optimization methods is presented in sit [14]. New

techniques with critical aspects and new advance are suggested for OPF problems sit [15].

Recently, Notable progress in the field of digital computation, artificial intelligence algo-

rithms combined with nature-inspired, meta-heuristic based optimization methods are used

to help electrical system based on economic concern. Numerous heuristic-based optimization

algorithms have been proposed and applied to handle OPF problems, such as genetic algo-

rithm (GA) sit [16] [17] [18]. In addition, many methods were developed to improve global

performance and convergence of GA method, such as adaptive genetic algorithms with adjust-

ing population size (AGA-POP) sit [19] and enhanced GA sit [19].

Newly developed search-based optimization algorithms are applied for OPF problems, like

particle swarm optimization (PSO) method sit [2], differential evolutionary technique sit [20]

[21]), improved colliding bodies optimization method sit [22], improved PSO algorithm sit

[23], biogeography-based optimization technique sit [24], imperialist competitive method sit

[25], grey wolf optimizer sit [26], hybrid algorithm of PSO and GSA algorithm sit [27], differ-

ential search technique sit [28], gravitational search method (GSM) sit [29] [30] [31], multi-

phase search optimization technique sit [32] [33], fuzzy-based hybrid PSO algorithm sit [34],

chaotic self-adaptive differential harmony search method sit [35], black-hole-based optimiza-

tion technique sit [36], harmony search technique sit [37], artificial bee colony method (4),

Jaya optimization technique sit [38], teaching-learning-optimization algorithm sit [39], bioge-

ography-based optimization (BBO) sit [40], differential evolution (DE) sit [41], artificial bee

colony (ABC) algorithm sit [42], distributed algorithm (DA) sit [43], and the Firefly algorithm

(FA) sit [44]. An analysis of a non-deterministic algorithm, which is applied to solve OPF, is

mentioned in sit [45]. Unfortunately, some of these methods are not effective for global opti-

mization of various OPF problems, through a simultaneous calculation of various points in the

search space. Such population-based, meta-heuristics algorithms are more efficient, compared

to trajectory techniques, to find local optima. On the other hand, the trajectory techniques are

good at describing global optima. Hence, hybridization of these meta-heuristic methods can

use the benefits of both methods and can deal with more complex and challenging problems

because of their robustness and flexibility sit [46].

The key goals of the hybrid meta-heuristic particle swarm optimization algorithm modifica-

tions are to create equilibrium between exploration and exploitation and to escape from pre-

mature results. Additionally, hybridization can improve the PSO’s capability and eliminate its

weakness sit [47]. The main advantages of the PSO method are fast convergence, less calculat-

ing resource necessities, and easy implementation. But when populations are near to each

other sit [48], this method suffers from being confined in local optima and by slow conver-

gence. The Firefly optimization method is also a nature-inspired optimization method that

copies the behavior of fireflies. It has some specific benefits over the PSO algorithm sit [49].

One of the benefits is that it does not have local or global best variables, so this helps it from

being caught up in local optima. The method also doesn’t have a velocity vector, so it can pre-

vent the problems that are created by the variations in velocity sit [50].

One of the recently developed hybrid meta-heuristic, population-based optimization meth-

ods entitled Hybrid Firefly Particle Swarm Optimization (HFPSO), developed by Aydilek İB
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sit [51]. Some real engineering problems have been tested on the HFPSO algorithm and the

results have been compared to present-day state-of-the-art optimization algorithms. The over-

all results confirmed that the HFPSO method has the power to provide promising results that

were not explored before sit [51]. The use of the HFPSO method to solve the OPF problems

had not been studied. Hence, applying a robust optimization method can efficiently overcome

the OPF problems.

This article proposed using the Hybrid Firefly Particle Swarm Optimization (HFPSO)

method first, to contribute and solve various OPF problems in the power-engineering field.

An expanded set of variables is used in the suggested OPF formulations. The set consists of

actual power and voltages of generating units, transformer turn ratios, and reactive power of

Shunt VAR compensators.

Five single-objective functions are considered in this article to show the efficiency of the

proposed method considering optimum results of OPF problems: total generation cost mini-

mization, voltage profile improvement, voltage stability enhancement, active and reactive

power transmission loss reduction.

The improved performance is shown by comparing the results of the proposed HFPSO

algorithm with the state-of-the-art algorithms chosen from the current literature for OPF

problems. The proposed algorithm is also compared with its mother PSO algorithm, from

which it is derived. The same single-objective OPF problems were used in the above-men-

tioned algorithms for the comparison. The standard IEEE 30-bus test scheme is applied to

observe, authenticate, and show the effectiveness of the HFPSO algorithm.

The key contributions of this paper are as follows:

1. This work proposes an already developed HFPSO algorithm to tackle the OPF problems.

2. The algorithm is applied to five single-objective functions of OPF problems.

3. Various objective functions of OPF problems are considered, such as total fuel cost minimi-

zation, voltage profile improvement, voltage stability enhancement, active and reactive

power losses reduction.

4. Results of the proposed algorithm are compared with simulated results of PSO and current

literature work. So, these compressions prove supremacy of the algorithm in terms of con-

vergence ratio and optimal results based on OPF problems.

5. Statistical analysis showed that HFPSO algorithm is a robust and reliable optimization

method to solve OPF problems.

The rest of this paper is organized as follows: Mathematical formulation of OPF issues is

given in Part 2. Part 3, 4, and 5 briefly explain PSO, FOA, and HFPSO algorithms, respectively.

Part 6 summarizes application of the proposed HFPSO algorithm to the OPF problems.

Results, comparison, and discussion are explained in Part 7. Conclusions about the application

of the HFPSO algorithm are mentioned in Part 8.

2 Problem formulation

Five cases, with five objectives, are considered in this study to verify the efficiency of the pro-

posed HFPSO technique regarding optimum results of OPF problems. The objectives are total

fuel cost minimization of the power network, voltage profile improvement, reduction of the

active power losses of transmission lines, reduction of reactive power losses of transmission

lines and voltage stability enhancement. Fuel cost f1 of a particular electrical power system is
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characterized by subsequent functions sit [39]:

f1 ¼
XNG

i¼1

fi ð1Þ

Where NG represents the number of power generating units and the fuel cost of the i − th
power-generating unit is denoted by fi, the quadratic function fi is formulated as follows:

fi ¼ biðPGiÞ þ ciðPGiÞ þ ciðPGiÞ
2
ð$=hrÞ ð2Þ

Where ai,bi, and ci are coefficients of fuel price of the i − th power generating unit and PGi out-

put active power of the i − th generator unit. The bus voltage is one of the key indicators for

security and service quality indices sit [41]. To avoid the infeasibility, a double objective func-

tion, such as improvement of voltage profile and reduced fuel cost are considered as a single-

objective function in the OPF issue. The objective task f2 is stated as sit [52]:

f2 ¼
XNG

i¼1

fi þ c
X

i¼NL

jVi � 1:0j ð3Þ

Where c is used as a weight factor for the stability between the objectives to avoid the domi-

nance of one function over the other.

Due to economic reasons, a transmission network of a power system is mandatory to func-

tion near its security boundaries. The stability of a power system is one of the very important

domains, to limit the bus voltage at every single point below standard working conditions

during the load surge. The disturbance leads to changes in the system’s configuration. Conse-

quently, an unavoidable voltage collapse accrues sit [39]. Voltage balance of a specific power

network can be indicated by using L − index, that is Lmax sit [53].

Lmax ¼ max½La�; a ¼ 1; 2; 3; . . . . . . ;NL ð4Þ

Where La denotes the Lmax of a − th demand bus and NL is the integer of PQ (demand) buses,

the objective function f3 of the case is represented as follows sit [39]:

f3 ¼
XNG

i¼1

fi þ wjLmaxj ð5Þ

Active power line transmission losses are a very important factor to optimize in a power

network. The objective work f4 is denoted by the power balance equation in this case sit [36].

f4 ¼
XNLB

i¼1

Pi ¼
XNLB

i¼1

PGi �
XNLB

i¼1

PDi ð6Þ

Where Pi is the active transmission line power loss, PGi is the active power of a generating unit

and PDi the active power of the request (demand) of the i − th load line.

The availability of reactive power is an important factor in consideration of the voltage bal-

ance margin of a static power network, to reinforce the conduction of active power from the

generator to the load. Thus, the optimization of reactive power losses can be stated by the fol-

lowing equation sit [36]:

f5 ¼
XNLB

i¼1

Qi ¼
XNLB

i¼1

QGi �
XNLB

i¼1

QDi ð7Þ

PLOS ONE Optimal power flow using an algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0235668 August 10, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0235668


Where Qi is the reactive transmission line power loss, QGi is the reactive power of source and

QDi the reactive power of demand of the i − th load line.

As aforementioned, OPF provides optimal tuning of the control variables of demand or

load to minimize a preset objective task, such as the total cost of a power system or active and

reactive transmission line power losses. Most of the OPF detail may be characterized by the

standard method sit [14]:

Minimize x ¼ ðg; hÞ ð8Þ

Subjected to uðg; hÞ ¼ 0 ð9Þ

And zðg; hÞ x2264; 0 ð10Þ

Where h denotes the vector of control variables and g denotes the vector of stated variables,

x(g, h) states the system’s objective function. u(g, h) and z(g, h) indicates the sets of equality

and inequality constraints. Also, the dependent h and the independent g variables of the OPF

problems are detailed in (11) and (12) separately. The control variable h can be stated as sit

[54] [39]:

h ¼ ½PG2; . . . . . . PNGGG
;T1; . . . . . .TNTT

;VG1; . . . . . .VNGG
;QC1; . . . . . .QNCC

�
T

ð11Þ

Where PG stands for the active power generation at the PV (generator) buses apart from the

swing bus, T represents the tapping ratio of the transformer. VG refers to the voltage value

at generator buses, QC denotes the reactive power injection by shunt capacitor respectively.

Moreover, NGG, NTT, and NCC represent the number of generator units, regulating transformer

units and shunt capacitor units. The state of an electrical network can be represented by OPF

formulations sit [10]. The most common, dependent variables for OPF issue are formulated

along these lines sit [54] [39]:

g ¼ ½PSlack;VL1; . . . . . .VLNL
;QG1; . . . . . .QGNG

; Sln1; . . . . . . SlnN
�
T

ð12Þ

Where PSlack shows the active power generation of the swing bus, VL1 denotes the voltage value

at PQ or load buses. QG symbolizes the reactive power of generators, and Sln denotes the line

flow and line loading, respectively. Furthermore, NL and N are the integers of PQ buses and

power lines, correspondingly.

OPF constraints can be categorized into two types: 1) equality and 2) inequality constraints.

The equality constraints of the OPF show the physical condition of a power network sit [54]

[39]:

PGi � PDi ¼ Vi

XN

i¼1

VjðGijcosijÞ þ ðBijsinijÞ ð13Þ

QGi � QDi ¼ Vi

XN

i¼1

VjðGijsinijÞ þ ðBijcosijÞ ð14Þ

Where PGi and QGi represent the real and imaginary parts of the creation of a power network,

PDi and QDi are the real and imaginary parts of the network demands on the i − th bus. More-

over, Bij and Gij reflect the susceptance and conductance between the node i and j. δij = δi − δj
denotes a change in voltage angle. N represents the number of buses. More details of power

flow formulas are discussed in sit [55].
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The inequality constraints, confines the physical devices to certain limits, to assure the secu-

rity of the power network. Furthermore, active power outputs, reactive power outputs, Shunt

VAR compensators, transformer turn ratios, the voltage of all the generator units as well as

slack should be limited by their upper and lower limits as formulated sit [39] [41]:

Pmn
Gi � PGi � Pmx

Gi i ¼ 1; 2; 3; . . . . . . . . .NG � 1 ð15Þ

Tmn
i � Ti � Tmx

i i ¼ 1; 2; 3; . . . . . . . . .NT ð16Þ

Vmn
Gi � VGi � Vmx

Gi i ¼ 1; 2; 3; . . . . . . . . .NG ð17Þ

Qmn
Gi � QGi � Qmx

Gi i ¼ 1; 2; 3; . . . . . . . . .NG ð18Þ

Qmn
ci � Qci � Qmx

ci i ¼ 1; 2; 3; . . . . . . . . .Nc ð19Þ

Security constraints, such as the voltage values of PQ buses and voltage of transmission line

should be limited within the boundaries of its capacity. Which can be formulated as follows sit

[36]:

Vmn
li � Vli � Vmx

li i ¼ 1; 2; 3; . . . . . . . . .NL ð20Þ

Slinei � Smx
lineii ¼ 1; 2; 3; . . . . . . . . .Nl ð21Þ

Similarly, the inequality constraints of the control variables, like voltage magnitude of PV
bus, real and reactive power output at swing bus and generation, and loading of the transmis-

sion line can be combined into one objective part in the form of quadratic penalty expressions.

Furthermore, a particular penalty factor is multiplied with the square of the control variable

and then is added to the objective function sit [36]. Mathematical formula of the penalty func-

tion is stated as follows:

JAvg ¼ J þ apðPGi
� Plim

Gi
Þ

2
þ av

XNL

i¼1

ðVLi
� Vlim

Li
Þ

2
þ aq

XNG

i¼1

þ as

Xnl

i¼1

ðSli
� Smax

li
Þ

2
ð22Þ

Where αp,αv, αq and αs represent the penalty factors, xlim is the boundary of the control vari-

able. If x value crosses the upper limit, then it automatically brings x to the xlim, similarly, if x
crosses the lower limit, then it brings to the xlim sit [36]. Limits of the control variable can be

expressed mathematically as follows:

xlim ¼

( xmax; x > xmax

xmin; x < xmin
ð23Þ

3 Particle swarm optimization (PSO) algorithm

The particle swarm optimization is a meta-heuristic population-based algorithm originally

designed by Kennedy and Eberhart sit [56]. The technique is based on the combined behavior

of living organisms such as a swarm of fish or a flock of birds. The PSO algorithm consists

of two expressions Pbest and Gbest Its position (X) and velocity (V) updates in every iteration.

PLOS ONE Optimal power flow using an algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0235668 August 10, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0235668


These parameters can be expressed mathematically as follows:

Viðt þ 1Þ ¼ wViðtÞ þ c1r1ðPbesti
ðtÞ � XiðtÞ þ c2r2ðgbestiðtÞ � XiðtÞ ð24Þ

Xiðt þ 1Þ ¼ Xi þ Viðt þ 1Þ ð25Þ

Where w, c1, and c2 are the inertia weight and acceleration coefficients, r1 and r2 denotes two

random values within the range of [1, 0]. Inertia weight is calculated on linearly decreasing

order based on number of iterations. Inertia weight can be calculated mathematically as fol-

lows sit [57] [58]:

w ¼ wmax �
ðwmax � wminÞ � iteration

Max � iteration
ð26Þ

The PSO algorithm can be studied in detail at sit [59].

4 Firefly optimization algorithm (FOA)

The firefly optimization algorithm is based on fireflies. These fireflies emit unique flashing

light for their survival sit [49] [60]. The algorithm based on the intensity of flashing light and

medium’s absorption. As stated by the inverse square law, the light strength decreases from a

light source as distance increases. Moreover, the medium between light source and destination

also absorbs the light. The method can be studied in more detail with the mathematical formu-

lation in sit [61]

5 Hybrid firefly and particle swarm optimization (HFPSO) technique

The hybrid firefly and particle swarm optimization has been designed by Ibrahim Berkan

Aydilek sit [51]. Hybrid equilibrium is maintained between exploration (localoptima) and

exploitation (globaloptima) to take the strengths and advantages of both firefly and particle

swarm methods sit [62] [63]. There are no velocity (V) and personal best location (pbest) terms

in the firefly algorithm. In a global search, The PSO method offers fast convergence in terms of

exploration. Moreover, the firefly algorithm is beneficial in local region search or it gives fine

exploitation. The flowchart of the HFPSO method is shown in Fig 1.

Initially, input parameters are inserted. Then these parameters are used step by step by

both population-based methods. Afterward, constant swarm vectors are initiated in the search

space and velocity ranges. Global best (gbest) and individual best (pbest) swarms are mathemati-

cally considered and allocated. The calculated values are compared in the final alternation.

Moreover, the present location is saved and then new velocity and location are calculated as

follows sit [51]:

f ði; tÞ ¼

(
true; iffitness � valueðparticleti � gbestt� 1

Þ

false; iffitness � valueðparticleti � gbestt� 1

Þ

ð27Þ

Xiðt þ 1Þ ¼ XiBoerr
2 ij � ðXÞi � gbestt� 1

Þ þ a� ð28Þ

Viðt þ 1Þ ¼ Xiðt þ 1Þ � Xitemp ð29Þ

If a particle’s fitness value is equal to or better than the preceding global best, then the parti-

cle will be picked up by the firefly part according to the Eqs (28) and (29); otherwise, it will be

carried by the PSO part according to the Eqs (24) and (25).
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6 Application of the HFPSO method to optimal load flow problems

The subsequent steps show the application procedure of the proposed HFPSO algorithm to

deal with the optimal power flow problem.

Step 1 Define the system data, real power limits, reactive power limits, generators’ data,

state the primary values of real power and the voltage level of generator buses, reactive power

of shunt capacitors, and the turn ratio of transformers.

Step 2 Execute the base case power flow. Evaluate the initial values of the objective func-

tions that include the generation cost, voltage profile improvement, voltage stability enhance-

ment, and real and reactive power transmission line loss reduction, by applying Eqs (1), (3),

(4), (6), and (7).

Fig 1. Flowchart demonstrates the optimization procedure of the basic HFPSO method sit [51].

https://doi.org/10.1371/journal.pone.0235668.g001
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Step 3 State the i − th goal function fi to evaluate as described in section 2. Define the

designed variables (X) and its limits (Xmin, Xmax), initial population (Pop), dimensions (D),

maximum iterations (Iterationmax), and algorithm specified parameters(C, w and V).

Step 4 Generate prime random positions of swarm particles (population) within specified

limits of controlled variables. The position of the particles are formulated in such a way:

Swerm � population ¼

X11 . . . X1n

..

. . .
. ..

.

Xm1 � � � Xmn

0

B
B
B
B
@

1

C
C
C
C
A

ð30Þ

k = 1, 2, 3. . . m and j = 1, 2, 3. . . n.

Where the control variables and the number of various solutions are denoted by n and m.

The estimation of the j − th designed variable X(k,j) and k − th applicant solution can be calcu-

lated as follows:

Xk;j ¼ Xmin
j þ randð:Þ½Xmax

j � Xmin
j � ð31Þ

Where XðmaxÞ
j and XðminÞ

j are the limits of the j − th designed variables and rand(.) denotes the

random number within limits of (0 − 1). For more clarification, the physical components of

X(k, j) can be formulated as follow:

Swerm � population

¼

PG1;2; . . . . . . PG1;NGG
;T1;1; . . . . . .T1;NTT

;VG1;1; . . . . . .V1;NGG
;QC1;1; . . . . . .Q1;NCC

PG2;2; . . . . . . PG2;NGG
;T2;1; . . . . . .T2;NTT

;VG2;1; . . . . . .V2;NGG
;QC2;1; . . . . . .Q2;NCC

..

.

PGm;2; . . . . . . PGm;NGG
;Tm;1; . . . . . .Tm;NTT

;VGm;1; . . . . . .Vm;NGG
;QCm;1; . . . . . .Qm;NCC

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð32Þ

Step 5 Execute the load flow for every single solution and compute the value of the particu-

lar objective function that relates to the solution.

Step 6 Evaluate the fitness value and find the personal best (pbest) and global best (gbest)
solutions in the group of calculated values.

Step 7 Examine the improvement in the calculated objective function values in the final

iteration as stated by Eq (27).

Step 8 Calculate the dispatch in view of the changed vector of controlled variables. Com-

pute the fresh values of the objective functions. Include the allocated penalty(s) to the goal

function, if it violates the limits, according to Eq (22).

Step 9 Compare the goal function fi values. If the values are superior to previous ones, then

execute the Eqs (28) and (29); otherwise, use the Eqs (24) and (25), respectively.

Step 10 If the termination standard is achieved, then stop and print the results of the opti-

mal values. Otherwise, come back to step 7.

For more clarification, the flowchart of the suggested application of the HFPSO method to

solve optimal load flow is presented in Fig 2.

7 Results and discussion

Standard IEEE − 30 bus test network is used as a benchmark function for single-objective OPF

problems to examine the efficiency of the proposed HFPSO and original PSO algorithms. Both

algorithms were initialized with a population of 30 and executed for a maximum iteration of
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100. The algorithms are coded and executed in MATLAB R2016asitbib [64] andtheresultsare
carriedoutonaPCwith8GBRAManda4GHzIntelCorei7CPU.

7.1 IEEE 30-Bus test network

In this research work, the IEEE30 − bus test scheme is applied for the suggested HFPSO and

the original PSO algorithms to investigate the effectiveness of the suggested HFPSO method.

Fig 2. The flowchart demonstrates the application of the HFPSO method for OPF problems.

https://doi.org/10.1371/journal.pone.0235668.g002
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Fig 3 shows one-line diagram of the IEEE 30-bus test system with the following characteristics

sit [36] [5]: The system has 6 generator units at buses 1, 2, 5, 8, 11, and 13 of the network. Also,

four tap-controlled transformers are connected between the transmission lines 6 to 9, 6 to 10,

4 to 12, and 27 28, in voltage limits of (0.9 − 1.1). Reactive power sources in MVAR(0 − 5)

are installed at the 10, 12, 15, 17, 20, 21, 23, 24, and 29 load buses. Moreover, the voltage mag-

nitudes of PV buses are limited from 0.95 to 1.1(p.u.). Operating limits of the load buses are

subjected from 0.95 to 1.05(p.u.). In addition, the bus data, line data, and generator cost coeffi-

cients are detailed in sit [5].

To validate the usefulness and robustness of the proposed method, several cases with diverse

goal functions, such as total fuel cost reduction, voltage deviation, voltage profile enhancement

Lmax, real power losses, and reactive power losses have been simulated as follows:

7.1.1 Case 1: Fuel cost minimization. In this section, the minimization of the total fuel

cost of generation is considered as a goal function during the execution of the HFPSO and the

original PSO method. As we see, from the graphs (a) and (b) in Fig 4, the proposed algorithm

Fig 3. One-line diagram of standard IEEE 30-bus test network.

https://doi.org/10.1371/journal.pone.0235668.g003

Fig 4. Convergence curves of total fuel cost minimization based on (a) the HFPSO algorithm and (b) the PSO

algorithm.

https://doi.org/10.1371/journal.pone.0235668.g004
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requires only 25 iterations while the original PSO method needs 40 iterations to reach the opti-

mal solution. The proposed algorithm also achieves a fine convergence rate as compared to the

original PSO method. Optimum solutions and values of the control variables of the methods

are shown in Tables 1 and 2. In addition, the fuel cost value calculated by the proposed method

11.4% decreased from the base value 902.0207 $/h sit [36] to the optimized value of 799.123

$/h with an average execution time of a single repetition of 0.821s. Table 3 illustrates the

improved performance of the HFPSO method over the current heuristic optimization methods

in terms of an optimum solution. The minimum values achieved by the proposed algorithm

are 799.132, as compared to the best value achieved by the MVO algorithm is 799.242. Conse-

quently, these results showed the dominance of the HFPSO heuristic algorithm over the cur-

rent heuristic methods in terms of optimality and convergence.

7.1.2 Case 2: Voltage profile improvement. The objective of this section is to minimize

the total fuel cost ($/h) of the system and to improve the voltage profile simultaneously by

Table 1. Optimum tuning of the dependent variables for various cases using the HFPSO technique (standard IEEE 30-bus test network).

Control Variable Limits Initial Status HFPSO Algorithm

Min Max Case 1 Case 2 Case 3 Case 4 Case 5

PG1(MW) 50 200 99.248 176.838 176.3094 173.1729 51.2668 51.3085

PG2(MW) 20 80 80 49.1003 49.5793 48.0205 80 80

PG5(MW) 15 50 50 21.2822 20.715 19.7516 50 35

PG8(MW) 10 35 20 20.9561 21.8718 20.5156 35 50

PG11(MW) 10 30 20 11.8619 12.7804 18.4118 30 35

PG13(MW) 12 40 20 12 12 12.0041 40 40

VG1(p.u) 0.95 1.1 1.05 1.1 1.0434 1.1 1.1 1.1

VG2(p.u) 0.95 1.1 1.04 1.0876 1.0259 1.089 1.1 1.1

VG5(p.u) 0.95 1.1 1.01 1.0585 1.0106 1.0474 1.082 1.0919

VG8(p.u) 0.95 1.1 1.01 1.0708 1.008 1.0702 1.089 1.1

VG11(p.u) 0.95 1.1 1.05 1.1 1.0128 1.0682 1.1 1.1

VG13(p.u) 0.95 1.1 1.05 1.1 0.9944 1.1 1.1 1.1

T6,9 0.9 1.1 1.078 1.0344 1.0217 0.9848 1.0538 1.0018

T6,10 0.9 1.1 1.069 0.9216 0.9 0.9 0.9 0.9657

T4,12 0.9 1.1 1.032 0.9994 0.957 0.967 0.9809 0.9949

T28,27 0.9 1.1 1.068 0.9726 0.9685 0.9578 0.9727 0.9863

QC10(Mvar) 0 5 0 3.457 4.4104 4.263 5 5

QC12(Mvar) 0 5 0 2.8844 3.8688 4.9858 5 5

QC15(Mvar) 0 5 0 3.8167 5 5 5 5

QC17(Mvar) 0 5 0 4.7886 2.0503 5 5 5

QC20(Mvar) 0 5 0 4.8039 2.071 5 5 5

QC21(Mvar) 0 5 0 5 4.0697 2.9266 5 5

QC23(Mvar) 0 5 0 3.6471 5 5 5 5

QC24(Mvar) 0 5 0 5 5 4.351 5 5

QC29(Mvar) 0 5 0 2.6582 2.4285 4.8809 2.6549 3.3162

Cost(($/h) - - 902.0207 799.123 803.6002 800.8403 999.81 967.2057

PLoss (MW) - - 5.8482 8.6375 9.8538 8.4762 2.8652 2.9101

QLoss(Mvar) - - -3.1221 5.3669 -3.1991 -24.491 -25.204

TVD - - 1.7216 0.1163 1.9787 2.04 2.1318

Lmax - - 0.1186 0.137 0.144 0.1156 0.1142

The boldface values describe optimized values

https://doi.org/10.1371/journal.pone.0235668.t001
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limiting the voltage deviation (p.u.) of the load buses (PQ buses) from the reference of 1.0p.u.

during the execution of the proposed HFPSO and original PSO algorithms. Fig 5(a) and 5(b)

describe the convergence curves of fuel cost ($/h) and voltage deviation (p.u.) minimization

based on current methods. The graphical representation shows that the proposed algorithm

Table 2. Optimum solutions and tuning of the dependent variables for various cases based on the PSO technique (standard IEEE 30-bus test network).

Control Variable Limits Initial Status PSO Algorithm

Min Max Case 1 Case 2 Case 3 Case 4 Case 5

PG1(MW) 50 200 99.248 176.385 168.9926 164.4909 51.4181 52.0175

PG2(MW) 20 80 80 49.4459 48.2497 46.7857 80.0000 79.8978

PG5(MW) 15 50 50 21.8773 20.2761 23.3709 49.9872 49.9998

PG8(MW) 10 35 20 21.6395 24.1536 16.5316 30.0000 29.8163

PG11(MW) 10 30 20 11.2976 18.9398 13.0738 30.0000 29.8163

PG13(MW) 12 40 20 12.2698 12.0265 27.4438 39.9944 40.0000

VG1(p.u) 0.95 1.1 1.05 1.0541 1.0380 1.0999 1.0999 1.1000

VG2(p.u) 0.95 1.1 1.04 1.0342 1.0276 1.0942 1.0981 1.1000

VG5(p.u) 0.95 1.1 1.01 1.0014 1.0037 1.0478 1.0815 1.0858

VG8(p.u) 0.95 1.1 1.01 1.0057 1.0108 1.0625 1.0899 1.1000

VG11(p.u) 0.95 1.1 1.05 1.0291 0.9984 1.0904 1.0987 1.0376

VG13(p.u) 0.95 1.1 1.05 1.0484 1.0162 1.0819 1.1000 1.0688

T6,9 0.9 1.1 1.078 0.9429 0.9624 0.9757 1.1000 1.0603

T6,10 0.9 1.1 1.069 1.0539 0.9047 0.9402 0.9001 1.0391

T4,12 0.9 1.1 1.032 0.9959 0.9776 0.9071 1.0331 1.0241

T28,27 0.9 1.1 1.068 0.9692 0.9716 0.9414 1.0089 1.0363

QC10(Mvar) 0 5 0 2.0825 3.5950 0.0926 4.9997 0.3746

QC12(Mvar) 0 5 0 1.7209 0.3615 1.0002 0.0122 4.9986

QC15(Mvar) 0 5 0 4.0925 2.4505 3.7573 0.2437 4.9999

QC17(Mvar) 0 5 0 1.2855 1.3195 1.0310 0.0375 1.3503

QC20(Mvar) 0 5 0 3.2046 2.9503 3.1403 4.9997 4.9548

QC21(Mvar) 0 5 0 4.1781 0.0876 3.2247 0.1737 0.6480

QC23(Mvar) 0 5 0 1.7577 3.2800 4.2165 4.9961 2.7229

QC24(Mvar) 0 5 0 1.6139 3.5760 0.5942 0.2291 4.9995

QC29(Mvar) 0 5 0 3.9931 3.5271 4.7442 4.9967 1.4439

Cost(($/h) - - 902.0207 799.5433 805.0754 807.8701 967.287 966.95

PLoss(MW) - - 5.8482 8.7158 9.3298 9.5863 2.9473 2.9101

QLoss(Mvar) - - 5.3430 9.9265 9.2386 -21.329 -23.756

TVD - - 1.2340 0.1467 1.3401 1.8220 0.9126

Lmax - - 0.1256 0.1389 0.1170 0.1179 0.1323

The boldface values describe optimized values

https://doi.org/10.1371/journal.pone.0235668.t002

Table 3. Assessment of the solutions achieved for total fuel cost reduction (Standard IEEE 30-bus test system).

Method Fuel Cost ($/h) Algorithm Description

MVO sit [65] 799.242 Multi-verse Optimizer

Jaya sit [38] 800.479 Jaya Algorithm

PSO 799.543 Particle Swarm Optimization

DE sit [41] 799.289 Differential Evolution

BHBO sit [36] 799.921 Black Hole Based Optimization

HFPSO 799.123 Hybrid Firefly Particle Swarm Optimization

https://doi.org/10.1371/journal.pone.0235668.t003
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achieves a good convergence rate. Also, the proposed method needs only 20 and 91 iterations,

for the fuel cost and voltage deviation, while the original PSO method requires 100 iterations

to achieve the optimal solution. The optimum solutions and control variables for the case

obtained by the proposed and the original PSO algorithms are tabulated in Tables 1 and 2.

Table 1 shows that the voltage deviation is significantly minimized as related to the base value

sit [36]. The deviation 89.85% decreased from the base value 1.1469 p.u. to an optimum value

of 0.1163 p.u. based on the proposed technique, while the deviation decreased only 59.28%

from the base value of 1.1469 (p.u) to the global value of 0.467 (p.u) based on the original PSO

method.

To further verify the effectiveness of the suggested algorithm, the optimum solution of the

algorithm is also compared with the various natural-inspired-heuristic algorithms in the pres-

ent research work, as shown in Table 4. Consequently, optimum solutions to the fuel cost and

voltage deviation obtained from the proposed HFPSO technique are better than the original

PSO and most of the heuristic methods.

7.1.3 Case 3: Voltage stability enhancement. In this section, fuel cost and voltage stability

enhancement are chosen as a single-objective function to be improved based on the proposed

HFPSO and the original PSO algorithms as shown in Fig 6. The proposed algorithm achieves

a very good convergence rate again, as compared to the original PSO method as illustrated in

Fig 6(a) and 6(b).

It is important to note that the voltage stability index is strengthened by 33.94% from the

base value of 0.1723 sit [36] to the optimum value of 0.1144, by the proposed algorithm.

It is evident from Fig 6(b) that the original PSO algorithm acquired an abrupt and very

weak convergence ratio. Furthermore, the stability index is reinforced by 32.09% from the

base value 0.1723 to the improved value 0.1170. Table 5 compares the results of the previous

Fig 5. Convergence curves of the voltage profile improvement by using (a) the HFPSO algorithm and (b) the PSO

algorithm.

https://doi.org/10.1371/journal.pone.0235668.g005

Table 4. Examination of the solutions gained for voltage profile improvement (Standard IEEE 30-bus test system).

Algorithm Voltage Deviation Algorithm Description

MVO sit [65] 0.1056 Multi-verse Optimizer

FA 0.1474 Firefly Algorithm

PSO 0.1467 Particle Swarm Optimization

DE sit [41] 0.1357 Differential Evolution

BHBO sit [36] 0.1262 Black Hole Based Optimization

HFPSO 0.1163 Hybrid Firefly Particle Swarm Optimization

https://doi.org/10.1371/journal.pone.0235668.t004
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population-based methods with the optimal value achieved by the application of the proposed

HFPSO technique. It is obvious from Table 5 that the minimum value obtained by the pro-

posed algorithm is 0.1144, as compared to the best minimum value obtained by the MVO algo-

rithm 0.1146 from the current literature work. So, it is clear from the results and comparisons

that the proposed algorithm is very efficient to solve the OPF problems.

7.1.4 Case 4: Active power transmission Losses reduction. This section explains the

active power loss optimization as a single-objective function by using the proposed HFPSO

and original PSO algorithms. Fig 7 illustrates the sketched graphs of the objective function

over repetitions. Fig 7(a) shows that the proposed algorithm achieved an optimal solution

Fig 6. Convergence curves of voltage stability enhancement based on (a) the HFPSO algorithm and (b) the PSO

algorithm.

https://doi.org/10.1371/journal.pone.0235668.g006

Table 5. Evaluation of the solutions gained for voltage stability enhancement (Standard IEEE 30-bus test system).

Algorithm Lmex Algorithm Description

MVO sit [65] 0.1146 Multi-verse Optimizer

Jaya sit [38] 0.1243 Jaya Algorithm

PSO 0.1170 Particle Swarm Optimization

DE sit [41] 0.1219 Differential Evolution

BHBO sit [36] 0.1167 Black Hole Based Optimization

HFPSO 0.1144 Hybrid Firefly Particle Swarm Optimization

https://doi.org/10.1371/journal.pone.0235668.t005

Fig 7. Convergence curve of real power transmission line loss minimization by using (a) the HFPSO algorithm

and (b) the PSO algorithm.

https://doi.org/10.1371/journal.pone.0235668.g007
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in 40 iterations and has fast convergence compared to the 60 iterations of the PSO. Table 1

arranges optimum solutions and control variables achieved by using the HFPSO algorithm.

The active power transmission line losses are reduced 50.78% from the base value of 5.821

MW sit [36] to the optimal value of 2.865MW. Optimum solutions and control variables of the

PSO algorithm are tabulated in Table 2. Real power losses are minimized by only 49.37% from

the base case 5.821 MW to the best value of 2.947 MW. The real power losses from the previous

heuristic techniques in Table 6 are also matched with the proposed HFPSO method to demon-

strate its effectiveness. The minimum value of the proposed algorithm is 2.865, as compared to

the global minimum value by MVO algorithm 2.881 from the current literature work.

7.1.5 Case 5: Minimization of reactive power transmission losses. The main goal of this

section is to reduce the reactive power losses of the transmission lines based on the proposed

HFPSO technique and compare the optimum solution with the original PSO algorithm. Fig 8

shows the convergence curves of the reactive power losses as an objective function in this

case. It is observed from Fig 8(a) and 8(b) that the proposed algorithm achieved an optimum

solution in only 22 iterations with a fine convergence ratio as compared to the original PSO

method. The control variables and optimal solutions obtained by using the HFPSO and PSO

algorithms are mentioned in Tables 1 and 2. The reactive power losses are minimized from the

base case value of -4.6066 MVAR sit [36] to the optimal value of -25.204 MVAR by using the

HFPSO technique. But the same losses are only reduced to -21.329 MVAR after applying the

PSO method. Table 7 compares the optimal values of the same losses of the population-based

techniques from the current research work with the proposed method to further validate the

usefulness of the proposed algorithm. As we see, the value of the MVO algorithm is -25.038

and is only more optimized as compared to the optimum value of the proposed algorithm.

7.2 Statistical results and complexity

To check the robustness of the algorithm, 40 independent trials are performed with initial

populations and iterations of 50 and 100. Table 8 shows the best, average, worst, and standard

Table 6. Comparison of the results obtained for active power losses reduction (Standard IEEE 30-bus test system).

Algorithm Real Power Losses (MW) Algorithm Description

MVO sit [65] 2.881 Multi-verse Optimizer

Jaya sit [38] 3.101 Jaya Algorithm

PSO 2.947 Particle Swarm Optimization

BHBO sit [36] 3.503 Black Hole Based Optimization

HFPSO 2.865 Hybrid Firefly Particle Swarm Optimization

https://doi.org/10.1371/journal.pone.0235668.t006

Fig 8. Convergence curve of reactive power transmission line loss minimization based on (a) the HFPSO

algorithm and (b) the PSO algorithm.

https://doi.org/10.1371/journal.pone.0235668.g008
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deviation values. It can be observed from the table that best, the mean, and the worst values

are very close to each other and the standard deviation value is the minimum, which concludes

the robustness of the HFPSO algorithm.

We are interested in computing the computational complexity of the algorithm. More pre-

cisely, we compute the temporal (or time) complexity which indicates how the computational

time of the algorithm changes with a change in input parameters.

FA and PSO techniques have two inside loops, when passing over the population of size

n and one outside loop for t cycles. Both techniques have time complexity of O(n2 t) in the

extreme case. When n is relatively large, we can rank the selecting parameters for all particles

by applying sorting technique to decrease the complexity to O(ntlog(n)) sit [66] [67].

These two algorithm have the same order of complexity and are applied in HFPSO simulta-

neously. The overall complexity in the extreme case (resp. when n is relatively large) of the

algorithm is therefore O(MaxFESn2 t) (resp. O(MaxFESntlog(n))) since the algorithm runs

until the maximum number of function evaluations (MaxFES) is reached.

8 Conclusions

In this article, a novel meta-historic optimization algorithm called HFPSO has been effectively

applied to handle the OPF issues in power systems. Equilibrium is maintained between explo-

rations and exploitation to take the advantages of both FOA and PSO methods. Various objec-

tive functions of OPF problems were considered: total fuel cost reduction, voltage stability

enhancement, voltage profile improvement, active power transmission line loss minimization,

and reactive power transmission line loss minimization. A standard IEEE 30-bus test network

was tested to authenticate the validity of the HFPSO to solve the OPF problems. The results of

the HFPSO algorithm were compared with the standard PSO algorithm and other optimiza-

tion techniques. Results revealed that optimal solution for each considered case could be pre-

sented by the HFPSO algorithm. The new suggested idea of the HFPSO technique led to fast

finding of a global solution (that is, supported the exploration and exploitation property). Fur-

thermore, results showed the effectiveness of HFPSO technique concerning the satisfactory

convergence rate. Statistical analysis showed that HFPSO algorithm is a robust and reliable

Table 7. Comparison of the solutions obtained for reactive power losses minimization (Standard IEEE 30-bus test

system).

Algorithm Reactive Power Losses (MWAR) Algorithm Description

MVO sit [65] -25.038 Multi-verse Optimizer

FA -20.464 Firefly Algorithm

PSO -21.329 Particle Swarm Optimization

BHBO sit [36] -20.152 Black Hole Based Optimization

HFPSO -25.204 Hybrid Firefly Particle Swarm Optimization

https://doi.org/10.1371/journal.pone.0235668.t007

Table 8. Statistcal calculations over 40 independent triels of HFPSO algorithm.

Cases Best Average Worse Standard Deviation Average CPU Time (s)

Case 1 799.1133 799.1232 799.535 0.0064 24.2

Case 2 0.11433 0.11636 0.11848 0.0075 25.3

Case 3 0.11345 0.11443 0.11539 0.0468 43.8

Case 4 2.8344 0.8657 2.8834 0.0084 43.8

Case 5 -25.2235 -25.2042 -25.1863 0.00186 42.4

https://doi.org/10.1371/journal.pone.0235668.t008
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optimization method to solve OPF problems. In conclusion, based on the applicability, and

performance of the HFPSO, it can be said that this method offers an excellent tool to solve

OPF issues of power networks.
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