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Abstract

We constructed an electric multi-rotor autonomous unmanned aerial system (UAS) to per-

form mosquito control activities. The UAS can be equipped with any of four modules for

spraying larvicides, dropping larvicide tablets, spreading larvicide granules, and ultra-low

volume spraying of adulticides. The larvicide module sprayed 124 μm drops at 591 mL/min

over a 14 m swath for a total application rate of 1.6 L/ha. The tablet module was able to

repeatedly deliver 40-gram larvicide tablets within 1.1 m of the target site. The granular

spreader covered a 6 m swath and treated 0.76 ha in 13 min at an average rate of 1.8 kg/ha.

The adulticide module produced 16 μm drops with an average deposition of 2.6 drops/mm2.

UAS pesticide applications were made at rates prescribed for conventional aircraft, limited

only by the payload capacity and flight time. Despite those limitations, this system can

deliver pesticides with much greater precision than conventional aircraft, potentially reduc-

ing pesticide use. In smaller, congested environments or in programs with limited resources,

UAS may be a preferable alternative to conventional aircraft.

Introduction

In 1972, a team from the University of Delaware constructed and flew a radio controlled (RC)

plane equipped with a miniaturized ultra-low volume (ULV) spray system [1]. While this

marked the first time a remotely piloted aircraft was fitted with an insecticide spray system, it

was developed solely for studying spray drift. Eight years later another team from the Univer-

sity of Delaware used a large RC airplane to apply the mosquito adulticides dibrom and mala-

thion to a salt marsh to study the toxicity to killifish [2]. The first serious attempt to use

remotely piloted aircraft for insect management occurred just a few years later when scientists

from the US Department of Agriculture utilized an RC biplane with an eight-foot wingspan to

control fall webworms and walnut caterpillars [3]. While the results were comparable to con-

ventional aircraft, the technology remained impractical, noting “piloting a plane this size from

the ground with any precision is more complicated than flying a real airplane” [4].

In 1980, Japanese researchers initiated a program to develop remotely piloted helicopters

for agricultural spraying [5]. This program eventually led to the development of the gasoline-
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powered RMAX1 (Yamaha1Motor Co., Ltd., Shizuoka-ken, Japan), an RC helicopter pur-

pose-built for spraying rice fields. The Department of Defense explored the use of the RMAX

for mosquito control spraying to protect soldiers overseas from biting insects [6]. Unfortu-

nately, the RMAX was expensive ($86,000 - $1,000,000 US depending on configuration) and

required extensive training to fly [7]. Those factors, combined with prohibitive regulations

and technical difficulties, caused the military to transfer the project to the US Department of

Agriculture in 2004 [8]. Researchers made significant improvements to the application tech-

nologies [9, 10] but unmanned aircraft systems (UAS) remained too expensive and difficult to

fly to be practical for mosquito management.

In 2010 the AR Drone1 (Parrot1 SA, Parris, France) was released. This was the first mass-

produced multirotor aircraft aimed at the consumer market. The AR Drone’s electric power

and advanced onboard sensors made the machine relatively easy to fly without specialized RC

flight training. This single product was revolutionary, launching a frenzy of multirotor aircraft

development and more importantly advanced flight control systems. That rudimentary toy

demonstrated the immense potential of unmanned aircraft to mosquito programs and

launched our research and development of UAS for mosquito management.

Conventional aircraft require large areas to operate effectively and the low altitude maneu-

vers required by many mosquito management applications are difficult in congested environ-

ments. Urbanization around wetlands, power lines, cell phone towers, and wind turbines

make it increasingly difficult for aircraft to apply pesticides to these areas. Unmanned aircraft

can fly at very low altitudes, can use sonar, radar or laser sensors to follow changes in terrain

altitude. Some come equipped with obstacle detection sensors which prevent collisions and

permit autonomous maneuvers around obstacles. In smaller, fragmented environments, UAS

may be preferable to conventional aircraft. Cost has become an important issue for public

agencies in recent years as budgets have shrunk or stagnated [11]. For mosquito management

programs with limited budgets, a small fleet of UAS would cost the equivalent of one day of

contracted aerial application service, making aerial applications available to any size mosquito

control program in any type of environment.

Nearly four decades have passed since those first flights over the wetlands of Delaware and

the technology has advanced exponentially. Today, UAS are in common use in agriculture

[12], but adoption by professional mosquito control programs has lagged [13]. This project

was conducted to develop novel aerial application technology by constructing interchangeable

modules for dispensing mosquito control products and to determine the feasibility of UAS in

comparison to conventional aircraft. Utilizing a commercial heavy lift multirotor aircraft, we

developed several modular systems for conducting mosquito management activities. Each

module was developed to be completely autonomous so that all flights could be programmed

and executed by novice pilots with no additional input from the user during a mission. Swap-

pable modules were constructed for larval surveillance, larval collection, adult collection, larval

control with liquid and solid products, and adult control. We describe the design and testing

of our larval and adult control modules as well as perspectives on the future development of

UAS in mosquito management.

Materials and methods

Aircraft

A Spreading Wings S1000+1 octocopter (DJI1 Science and Technology Co., Ltd., Shenzhen,

China) was the UAS platform selected for development (Fig 1A). The UAS was equipped with

a Pixhawk1 (3D Robotics1, Inc., Berkeley, CA) flight control system (FCS) because it offered

flexibility in programming and controlling peripheral devices. The FCS included a global
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positioning system (GPS) receiver for navigation. A custom 3D-printed acrylonitrile butadiene

styrene (ABS) plastic quick-detach dovetail shoe was affixed to the bottom of the UAS for

mounting accessory modules such as spray systems. Accessory modules were controlled using

digital or analog signals from the FCS through the auxiliary output pins.

Manual flights were conducted with a Taranis1 2.4 GHz radio transmitter and receiver

(FrSky1 Electronic Co., Ltd., Jiangsu, China) allowing a range of over 1.5 km. Autonomous

flight was accomplished by programming missions through a ground station consisting of

Mission Planner1 flight control software [14] on a personal computer or the QGroundCon-

trol1 application [15] on a smart phone or tablet. The complete system cost approximately

$5,800 US with two batteries, but not including the cost of a smartphone, tablet, or laptop com-

puter for the ground station. The price of battery charging systems varied greatly but will add

$100 to $500 US to the overall cost.

Fig 1. A. DJI S1000+ UAS and spray module (arrow) for dispensing liquid larvicides. B. Dispenser module for dropping Natular XRT tablets from a

UAS. C. Modified hand spreader module for the application of larvicidal granules from a UAS. D. Longray ultra-low volume spray module for

mosquito adulticide application from a UAS.

https://doi.org/10.1371/journal.pone.0235548.g001
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Insecticide sprayer

A spray system (Fig 1A) was constructed to dispense liquid larvicides by adapting the design of

Huang et al. [10]. A 1-L polyethylene tank held the spray material. The liquid was pumped

with a 12V miniature gear pump (EW-07012-20, Cole-Parmer1, Vernon Hills, IL) through

9.5 mm vinyl tubing to a pair of QJ100 series Quick TeeJet1 nozzles (Spraying Systems1 Co.,

Wheaton, IL). The nozzles were attached to the ends of 1.2 x 106 cm carbon fiber tube that

extended to either side of the UAS. The supply tubing was routed through the boom. Flow rate

was controlled by a motor controller (18v7, Pololu1 Corp., Las Vegas, NV) which used pulse

width modulation to control pump speed. The motor controller was connected to the FCS

through an auxiliary output pin which was configured through the flight control software to

control the speed of the spray pump. Flow rate could be configured to be constant or propor-

tionately linked to the speed of the aircraft. All components were mounted to a carbon fiber

plate with a 3D-printed ABS dovetail that slid into the octocopter shoe. The pump produced a

maximum pressure of 2 bar, flowed up to 2 L/min and could run continuously for a minimum

of 45 min on a 3 cell 2,200 mAh rechargeable LiPo battery. Empty weight of the spray system

was 0.71 kg. The nozzles were compatible with most TeeJet spray tips, permitting a multiplicity

of flow rates, spray patterns and droplet sizes simply by swapping the nozzles. The spray sys-

tem cost under $200 US to construct.

Eight TeeJet XR extended range flat fan nozzles (Spraying Systems Co., Wheaton, IL) were

selected for evaluation. Maximum flow rates were determined by running the pump at 12 v

and discharging the nozzles into a container for 1 min with either BVA 131 oil (Trident

Industrial1, New Hudson, MI) or water. The liquid was collected and the volume that was dis-

pensed was measured using a precision balance (model PX523, Ohaus Corp., Parsippany, NJ)

(n = 3 replicates each).

Based on the flow rate tests, XR11001 nozzles were selected for further testing. Aerial appli-

cations were made over an open field to establish application rates and droplet sizes. Twenty-

one 5.08 x 7.62 cm Kromekote1 spray cards (Smart Papers1, Hamilton, OH) were staked 1 m

above the ground and 1 m apart in a 20 m line. Three card lines were set out perpendicular to

the wind with 9 m between each line for a total of 63 cards per test. The sprayer was calibrated

to dispense BVA 13 oil at 591 mL/min. The oil was mixed with FD&C Red 40 Granular DM

food dye (Glanbia Nutritionals1, Carlsbad, CA) at a ratio of 20 g/L so that droplets were visi-

ble on the cards. The UAS was programmed to take off 50 m downwind of the first card line,

activate the sprayer, make one application pass over the center of the plot at an altitude of 10

m at 4.4 m/sec, continue 50 m beyond the last card line, shut off the sprayer, return to the

launch site, and land. The entire mission was conducted autonomously; the only input from

the pilot was to start the mission. Cards were collected 10 min post-flight and replaced for a

total of three replicates. The cards were scanned and analyzed using the DropVision1 Ag

image analysis software (Leading Edge Associates1, Waynesville, NC) to measure effective

swath width and droplet sizes. Droplet spectra were described as the Sauter mean diameter,

DV0.1, DV0.5 and DV0.9, which define the proportion of spray volume (10%, 50% and 90%,

respectively) contained in droplets of the specified size or less.

Tablet dropper

We constructed a dropper module (Fig 1B) to dispense solid larvicide tablets (Natular1 XRT,

Clarke Mosquito Control Products, Roselle, IL). The module was 3D-printed in ABS and con-

sists of an outer shell and an inner carousel holding eight tablets, weighing 410 g empty and

730 g full. Tablets were loaded through a port in the top of the housing. To release a tablet, a

servomechanism (Hitec1 RCD USA, Inc., Powa, CA) advanced a ratchet-and-pawl
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mechanism to rotate the carousel one position, moving a tablet over an opening in the base of

the housing. A Servo Trigger1 (Sparkfun1 Electronics, Niwot, CO) controled the motion of

the servomechanism and was activated by the FCS which output a 3.3V relay signal. The sys-

tem was powered by a 2 cell 1,500 mAh rechargeable LiPo battery regulated to 6V which was

sufficient for over 8 hrs of run time. The module was attached by a dovetail that mates with a

shoe on the UAS. The module could autonomously drop a tablet via the flight control software

by setting the output pin to trigger the relay signal at predetermined locations or it could be

manually triggered with the radio transmitter. The construction cost was approximately $75

US.

The accuracy of the UAS’s ability to autonomously drop tablets was tested over a 15 x 30 m

plot. The UAS was centered on a marker at each of the four corners to record accurate GPS

locations in the flight control software. The UAS was programed to autonomously take off, fly

at 2.2 m/sec and 4 m altitude, drop a tablet at each of the four target locations and then return

to the launch site and land. The aircraft paused for five seconds at each drop site to stabilize.

As the tablets were dropped, a spotter immediately placed flags where the tablets impacted the

ground to differentiate the impact point from any bounce of the tablets. The distance and

direction between each corner marker and the impact point was recorded (n = 3 replicates).

Wind speed and direction were recorded with a weather meter (model 2500, Kestrel Instru-

ments1, Boothwyn, PA) to measure any influence on the tablet trajectories.

Granular spreader

We developed a module to distribute larvicidal granules by modifying a hand spreader

(LB6306, Vigoro1 Corp., Lake Forest, IL) (Fig 1C). The hand crank which turns the impeller

was replaced with a 12V, 160 RPM right angle gear motor (DongGuan Tsiny Motor Industrial

Co.1, Guangdong, China) using a 3D-printed ABS adapter to mate the motor shaft to the

impeller gear for a final impeller speed of 617 rpm. Motor speed was regulated by a motor con-

troller (Pololu Corp., Las Vegas, NV), and a servomechanism (Hitec RCD USA, Inc., Powa,

CA) was used to actuate the trigger controlling the hopper flow gate. The motor controller and

servomechanism were plugged into separate ports on the FCS so that impeller speed and hop-

per flow could be controlled independently. The flight control software could regulate the

impeller speed and hopper flow to maintain a constant application rate based on the speed of

the aircraft. A 3-cell 460 mAh LiPo battery provided direct power to the motor and 5V to the

servomechanism through a voltage regulator with enough capacity to run the spreader for

over an hour. The lid was constructed of clear acrylic to view the hopper contents and pro-

vided a location to attach the dovetail mount. The module had an empty weight of 1.2 kg. The

hopper had a volume of 2.9 L and could hold 1.1 kg VectoBac1G (Valent Biosciences1 Corp.,

Libertyville, IL), 1.7 kg VectoLex1 FG (Valent Biosciences Corp., Libertyville, IL), or 2.8 kg

Altosid1 Pellets (Wellmark1 International, Schaumburg, IL), enough to treat 0.4, 0.3, and 1

ha respectively at the minimum application rates. The cost of constructing the granule

spreader module was approximately $145 US.

Static flow rates were calculated for VectoBac G (5/8 mesh) and VectoLex FG (10/14 mesh)

by activating the spreader on the ground for 30 sec and collecting the granules in a bucket with

the hopper gate set at 4, 10, and 20 mm open. The larger Altosid pellets were tested with the

gate at 7, 10, and 20 mm open. After each collection, the granules were weighed to calculate

the flow rate (n = 3 replicates each). To establish optimal application altitude, the UAS hovered

at altitudes of 3, 6, and 9 m and VectoBac G and VectoLex FG were dispensed individually at a

rate of 136 g/min. An observer marked the swath extremes with flags while the granules were

being dispensed to measure the swath width and offset from the UAS. Once the optimal
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altitude was determined, aerial swath width and application rate tests were conducted with

VectoPrime1 FG (Valent Biosciences Corp., Libertyville, IL) at 136 g/min. A line of 68-L plas-

tic containers was set up in a field perpendicular to the prevailing winds. The containers had

an opening of 0.42 x 0.57 m and were spaced 0.6 m apart over 9.8 m for a total of 16 containers

in the row. The UAS was programmed to autonomously take off 15 m downwind of the con-

tainer line, activate the spreader, make one application pass over the center of the line at 3.3

m/sec and an altitude of 6 m, continue 15 m beyond the line, shut off the spreader, return to

the launch site, and land. After each flight, the granules in each container were collected,

weighed with a precision balance (model PX523, Ohaus Corp., Parsippany, NJ) and used to

calculate the swath width.

Adulticide ULV sprayer

We modified an electric handheld ULV sprayer (Shenzhen Longray1 Technology Co., Ltd.,

Shenzhen, China) to control adult mosquitoes, (Fig 1D). The sprayer used pressurized air to

atomize liquids as they exited the nozzle. Air from the fan pressurized the tank and forced liq-

uid to the nozzle. The sprayer was disassembled, and the housing and spray tank were dis-

carded to reduce weight to 1.75 kg. New housings and mounts were 3D-printed in ABS plastic

and the 2.5-L tank was replaced with a lighter 600 mL tank. The module received power from

the flight battery and was activated by the FCS which sent a 3.3V signal to the sprayer activa-

tion button. Blower speed was 18 m/sec and the flow rates ranged from 40 to 325 mL/min.

Flow rates were adjusted manually, and flight speeds were matched to the flow rate during

spraying for accurate application rates. Droplet sizes were directly proportional to flow rate

and ranged from 23 to 58 μm. The original cost of the ULV spray unit was $1000 US with an

additional $20 US in parts for the housing, tank, and shut-off valve. Laboratory calibration of

the sprayer was performed at a flow rate of 50 mL/min with the Army Insecticide Measuring

System (AIMS) [16].

For aerial ULV trials, nine rotating impactors [17] were staked 1.5 m above the ground in a

3 x 3 square pattern with 15 m separating each. Impactors were activated before each applica-

tion and stopped 10 min after the application to collect aerosolized droplets on two 3 x 3 x 75

mm acrylic rods coated with Teflon1 tape. BVA 13 oil marked with a fluorescent tracer dye

(Tinopal1OB, Ciba Corporation, Newport, DE) was applied at a rate of 50 mL/min. The UAS

was programmed to autonomously take off 30 m downwind of the plot, turn on the sprayer,

and fly a back and forth pattern over the plot (6 m altitude at 3.3 m/sec) with 6 m between

each flight line. The flight paths were extended 10 m beyond the plot in all directions to ensure

total coverage. Following the application, the UAS shut off the sprayer, returned home, and

landed autonomously (n = 3 replicates). All droplet diameter measurements and density calcu-

lations were performed under a fluorescent compound microscope using DropVision FL

image analysis software (Leading Edge Associates, Waynesville, NC).

Statistics and modeling

All statistical analyses were performed in SAS1 Studiosoftware, version 3.8 of the SAS system

for Windows [18]. Means and standard errors were calculated using the Summary Statistics

task and the Linear Regression task was used to calculate r-square values. Computer-aided

design was conducted in Fusion 360™ version 2.0 for Windows (Autodesk1, San Rafael, CA).

Three dimensional models were prepared for printing in Ultimaker Cura software and printed

on an Ultimaker 2+ (Ultimaker North America, Waltham, MA). All STL models are available

for download (S1–S4 Files).
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Results & discussion

Insecticide sprayer

At maximum power (12 v), laboratory flow rates for nozzle pairs ranged from 620 to 2040 mL/

min with water and 590 to 1740 mL/min with BVA 13 oil (Fig 2A). Analysis of spray cards

Fig 2. A. Average flow rate for two XR TeeJet nozzles applying water or BVA 13 oil at a pressure of 2 bar ± SEM. B.

Swath width and droplet diameter (left axis) and droplet density (right axis) of BVA 13 oil (± SEM) applied at a rate of

591 mL/min from DJI s1000+ UAS flying 4.4 m/sec at an altitude of 10 m.

https://doi.org/10.1371/journal.pone.0235548.g002
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confirmed median droplet sizes ranging from 91.90–169.48 μm across a maximum swath of 14

m with a slight propensity for larger droplets closer to the aircraft flight line (Fig 2B). Median

droplet size across all replicates was 123.68 μm (DV0.1 = 59.02 μm, DV0.9 = 179.42 μm). Droplet

density averaged 2.58 drops/cm2 (range = 0.32–5.05 drops/cm2) with decreased density

directly below the aircraft likely due to propeller vortices forcing drops away from the aircraft

(Fig 2B). The flow rate of 591 mL/min, 4.4 m/sec flight speed and a 14 m swath resulted in a

final application rate of 1.6 L/ha; a rate suitable for high application rate larvicides such as Vec-

toBac 12AS (label rate: 0.29–2.34 L/ha). Based on our calculations, VectoBac WDG (label rate:

2.4–93.5 L/ha) can also be applied if flight speed is reduced to 3 m/sec. Reducing the flow rate

to 107 mL/min by lowering the pump voltage would result in an application rate of 0.29 L/ha,

appropriate for low application rate larvicides such as Natular 2EC (label rate: 0.08–0.46 L/ha)

or Altosid SR5 (label rate: 0.22–0.29 L/ha). Based on our flight tests, the UAS can fly for

approximately 23 minutes with the spray system attached. With a 14 m swath and flying at 4.4

m/sec, this system should cover 8.5 ha in a single battery.

The Huang et al. [10] system employed four rotary atomizers to deliver small droplets (37–

66 μm), whereas we deployed two flat fan nozzles delivering much larger 124 μm drops. There

is a wider variety of flat fan nozzles which are lighter and use less power than the rotary atom-

izers. Huang et al. [9] recovered material up to 42 m downwind of the release point with their

system while our tests yielded a swath of 14 m. This discrepancy is likely due to the more sensi-

tive collection method used and the fact that the spray system was run from a pole mounted

on a truck, not from a running helicopter. The vortices created by the helicopter will push

material down, reducing the total swath [19]. Finally, the smaller droplets of their system will

drift farther [20]. To produce smaller droplets, we have tested the system with 203 μm misting

nozzles (AeroMist1, Inc. Phoenix, AZ) which produced DV0.5 43–65 μm droplets depending

on altitude at a flow rate of 55 mL/min. The advantage of the larger nozzles is that our system

pumped nearly six times the amount of material compared to Huang et al. [9] making it com-

patible with higher application rate larvicides and faster application speeds.

Kimball and Reynolds [21] also used rotary atomizers for their larvicide system. Although

swath and droplet deposition were not reported, they achieved 99.2% mortality of caged Culex
tarsalis Coquillett in an open water site using a tank mix of VectoBac and VectoLex WDG at

0.29 and 0.88 L/ha, respectively. While we did not conduct bioassays, the droplet deposition

data were comparable to droplet and bioassay results from truck-mounted sprayers [22] which

indicate that our system can distribute larvicides at the proper application rate for common

mosquito larvicides and should result in excellent efficacy.

Tablet dropper

The tablets landed an average of 1.1, 95% CI [0.93, 1.35] from the target site (Fig 3). At each

site, the tablets landed in the same general location demonstrating good repeatability

(range = 0.66–1.38 m). Due to the low altitude of the UAS and 40 g weight of the tablets, the

gusting 1.6–3.4 m/sec wind had no effect on accuracy (average distance of group from the tar-

get) as most tablets landed northeast of the target despite a northerly wind. Errors can be

attributed to the resolution of the GPS unit. Overall, accuracy and precision (farthest distance

between replicates at a site) increased as the mission progressed with the smallest and closest

group occurring at the last drop location (R2 = 0.94 & 0.87 respectively).

Accuracy relied on the GPS module and the ability of the UAS to fly to the correct location

and hold position under varying environmental conditions. Overall, the UAS performed

extremely well during the autonomous tests. While the manufacturer’s reported accuracy of

the GPS module was 2.5 m [23], the UAS was able to repeatedly drop tablets within 1.1 m of
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the target. Accuracy improved as flights progressed because the UAS had more time to collect

and correct for GPS data as indicated by the number of GPS satellites available and signal

strength data recoded by the flight controller (S1 Fig). With a maximum distance of 2.9 m

between all drops, the UAS can accurately deliver a tablet to any target at least that radius. In

our UAS, the GPS unit only received signals from the US GPS system, but accuracy can be

enhanced to< 1 m by using newer navigation modules having access to multiple satellite net-

works (GLONASS, Galileo, BeiDou, etc.) [24]. Further, adding a second ground-based GPS

unit for real time kinematic (RTK) navigation would increase accuracy to several centimeters

[25].

The tablet dropper was designed around the Natular XRT tablet because the heavy mass

and streamlined shape helped it fall straight down when released. However, the large size of

the tablets limits the number that can be carried and requires a larger airframe. The tablet

module can be easily redesigned and 3D-printed for any size, shape, or number of tablets.

This novel technology offers distinct advantages over the hand application of larvicide tab-

lets in certain environments. At one of our research sites, hand application of tablets to 12

pockets of Ae. sollicitans on a Spartina patens marsh takes approximately 45 minutes not

Fig 3. Placement accuracy of Natular XRT tablets autonomously dropped from a UAS. Distance (m) and position

(degrees) of each tablet in relation to intended center target (0,0). Target sites are represented by color and replicates

are designated by shape.

https://doi.org/10.1371/journal.pone.0235548.g003
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including the 10-minute off-road drive to reach the site. The hike on the marsh is difficult and

can only be accomplished during low tide, whereas the UAS can take off from a parking lot

900 m away, treat the sites under any tidal conditions, and return in under 9 minutes, an 80%

improvement in efficiency. Newer, smaller tablet formulations such as Natular DT greatly

increase payload capacity and would be ideal for micro sized UAS.

Granule spreader

The static flow rate ranges for the spreader were (min-max ± STDDV): VectoBac G

(2.58 ± 0.47–661.86 ± 56.65 g/min), VectoLex FG (5.28 ± 1.92–1,587.62 ± 81.49 g/min), and

Altosid Pellets (42.35 ± 21.37–1,292.82 ± 43.57 g/min). The widest and most consistent distri-

bution occurred at an altitude of 6 m (Fig 4). At 3 m altitude the swath was too narrow and at

9 m the larger, heavier VectoBac larvicidal granules had a swath of only 2 m. VectoPrime was

selected for final testing because the low application rate of 1.4 kg/ha maximizes the treatment

area per flight. Swath trials with VectoPrime yielded an average rate of 1.1 kg/ha over the 5.5

m swath with effective label rates (>1.4 kg/ha) occurring over a 1.8 m swath (Fig 5 –gray bars).

When applying granules, the UAS flies over the plot, moves over for the next pass, turns 180

degrees, and flies over the next section in the opposite direction. The low application rates at

the swath tails can be overlapped during each opposing pass to increase the application rate

along the edges. Overlapping each application by 1.8 m (Fig 5 –blue bars) results in an average

field application rate of 1.8 kg/ha, well within the recommended range for VectoPrime FG.

With the existing hopper size, we can treat approximately 0.76 ha in 12.7 min at the minimum

label rate before needing to reload the hopper. The flight battery can support at least two mis-

sions for a total application area of 1.52 ha per battery.

Previous studies have focused on applying liquid larvicides [9, 10, 21]. Most liquid larvi-

cides are applied at a lower weight per area than granular products. This is especially important

Fig 4. Effect of altitude on swath width of VectoLex FG and VectoBac G larvicidal granules applied from a

UAS ± SEM.

https://doi.org/10.1371/journal.pone.0235548.g004
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considering the limited flight times and payload capacities of currently available UAS. How-

ever, preliminary salt marsh field trials with VectoBac 12AS exhibited inconsistent larval mor-

tality despite excellent droplet distribution presumably because much of the product was

caught in the marsh grasses (S2 Fig). Based on conventional aerial applications, granular prod-

ucts penetrate vegetation better and yield greater mortality in coastal marsh habitats [26]. The

US Air Force experimented with a granular applicator on the RMAX but determined that

the flow rates were too high even at the lowest settings of the spreader, dispensing 16 kg of

material in 20–30 min (533–800 g/min) [6]. Our system can flow VectoBac G at 2.6–661.9 g/

min offering a greater range of application rates at various flight speeds. We encourage pesti-

cide manufacturers to develop lighter granules with a higher concentration of active ingredient

specifically for UAS.

Adulticide ULV sprayer

Laboratory droplet tests with the AIMS produced a DV0.5 of 22.74 μm (1,526 droplets

counted), a DV0.1 of 14.06 μm, and a Dv0.9 of 119.25 μm. Fluorescent droplet analysis of the 54

acrylic rods measured an average of 3,629 drops with a DV0.5 of 16.15 μm (DV0.1 = 2.86 μm,

DV0.9 = 43.2 μm) and an average density of 2.6 drops/mm2. The difference in median droplet

size between the laboratory and field trials is likely due to the different measurement methods

with the rotary impactor known to underestimate median droplet diameter [27]. The droplet

diameter and density were consistent with mosquito adulticide label requirements and similar

measurements have resulted in nearly 100% mortality in caged mosquito bioassays following

ground-based ULV applications [28, 29]. Zhai et al. [30] applied deltamethrin from a UAS and

achieved 100% mortality against caged mosquitoes with half the droplet density found in this

study. The additional weight of the sprayer and power consumption of the blower reduced

Fig 5. Swath width and application rate test of VectoPrime FG applied at a rate of 136 g/min from a DJI S1000

+ UAS at 6 m altitude over a line of containers ± SEM. Each bar represents one container. Horizontal line signifies

the minimum recommended application rate for VectoPrime of 1.4 kg/ha (maximum rate = 22.4 kg/ha). Gray bars

illustrate one pass of the UAS. Blue bars illustrate a second pass in the opposite direction with a 1.8 m overlap. Average

application rate for the plot = 1.8 kg/ha.

https://doi.org/10.1371/journal.pone.0235548.g005
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flight time to 16 min. Given the same 6 m altitude and 6 m spacing between flight paths, these

direct overhead applications can treat a maximum of 1.8 ha per battery. However, applying

31–50 μm droplets at an altitude of 15 m, Zhai et al. [30] achieved 100% mortality against

caged mosquitoes with their UAS over a 137 m swath. Based on Stoke’s law, a 150% increase in

droplet size results in an 82% decrease in horizontal distance traveled [31]. Therefore, our

smaller droplets should cover at least a 137 m swath. That would raise our maximum treatment

area to 33 ha, limited by the amount of pesticide in the tank, not battery life.

The alternating back and forth flight pattern resulted in complete coverage across the plot

with droplet densities ranging from 1.6–4.0 drops/mm2. Truck-mounted applications are lim-

ited to navigable roads, occasionally far from the intended target site, and rely on the prevailing

wind to carry the pesticide in the proper direction [32]. This poses a problem in densely popu-

lated cities where row home construction limits access to backyards and in rural areas where

trucks are unable to reach the target site. Conventional aircraft can overcome these issues but

have their own limitations. They are expensive to own or contract, have minimum treatment

areas for economic reasons, often fly in dangerous low light conditions to coincide with peak

mosquito activity and require carefully planned offsets to ensure the spray reaches the

intended target [31]. Unmanned aircraft allow for adulticide applications directly to the target

site which guarantees coverage, reduces the amount of pesticide required, minimizes drift, and

eliminates the requirement for optimal wind conditions. They are also comparatively inexpen-

sive and offer autonomous capabilities that reduce risk during low light operations. Unfortu-

nately, current aerial application modeling software cannot account for the unique vortices

created by multirotor UAS [19]. While upwind ULV applications are possible from UAS,

more work is needed to determine optimal altitudes, droplet sizes, and offsets under various

environmental conditions.

Ultra-low volume applications from a UAS pose a unique problem for pesticide labels.

Adulticide labels typically categorize applications as ground-based or aerial. Equipment cali-

bration for those two scenarios differ. Small droplets (< 30 μm) that will drift are preferred

when applied from the ground, whereas larger droplets (<60 μm) that will fall with minimal

drift and survive evaporation are preferred when applied from conventional aircraft [31]. UAS

applications fall between the two extremes. Our applications were made at low altitude (6 m),

therefore smaller droplets were appropriate. Higher altitude applications would require larger

droplets but likely still smaller than conventional aircraft. More research is needed to establish

optimal droplet sizes for UAS and in the future, we expect to see additional language on pesti-

cide labels pertaining to UAS applications.

Conclusions

The small size and limited flight time of most UAS translate into smaller areas treated com-

pared to conventional aircraft. This is offset by the greater precision UAS offer. Conventional

aircraft generally blanket mosquito habitat with larvicide even though larval distribution tends

to be confined to smaller pools within the marsh [33, 34]. Relatively little product reaches the

intended targets [35, 36]. Unmanned aircraft can precisely apply pesticides to much smaller

areas than conventional aircraft, resulting in major reductions in insecticide use [37]. Further,

in urban areas, buildings, cell phone towers and power lines create dangerous obstacles for

conventional aircraft. UAS have little problem navigating in these crowded environments and

in these areas, UAS may be the only option.

The combined payload capacity afforded through swarm technology will soon render the

limited payload and limited swath of single UAS irrelevant. A swarm of 50 UAS flew in unison

using the same flight control system we used in our octocopter [38]. That same technology
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could be used to fly a swarm of multirotor aircraft, each with a small payload of pesticide,

thereby achieving the application area of conventional aircraft. Landing pads with integrated

battery charging capability already exist (Skysense, Inc., San Francisco, CA) and could be com-

bined with automated pesticide filling stations [39] ensuring the swarms are always ready with

little intervention. UAS can also be used for mosquito surveillance. Simple aerial images can

identify sources of water while multi-spectral images can measure water quality and identify

potential mosquito habitat [40, 41].

The risk involved with UAS operations is low. Although conventional aircraft are reliable,

accidents do occur, sometimes with fatal results [42, 43]. With limited weight and speed, the

risk of injury from UAS is low [44]. As UAS technology continues to improve, reliability and

safety will increase further. Features such as obstacle avoidance (Skydio, Inc., Redwood City,

CA) and redundant flight control systems (ZeroTech, Beijing, China; MicroPilot, Manitoba,

Canada) are now standard features on many UAS. Geofencing creates virtual boundaries

which prevent UAS from flying beyond a specified area or altitude. Loss of radio signal triggers

the UAS to autonomously return home or land. Onboard aviation Automatic Dependent Sur-

veillance-Broadcast (ADS-B) sensors and remote identification signals currently allow UAS to

detect other aircraft [45].

When our project began, the only options for a UAS were to spend hundreds of thousands

of dollars on a giant scale remote control helicopter, purchase a toy that could do little more

than hover precariously in place or construct one using parts scavenged from hobby aircraft.

Today, UAS are widely available with an estimated 6.4 million consumer units sold in 2015

alone [46]. Although most agricultural UAS are focused on aerial imaging and analysis, com-

mercial manufacturers are developing UAS specifically designed for pesticide applications

[47]. Less than ten years since the introduction of the first mass-produced consumer UAS,

many mosquito control programs have embraced the technology. A recent survey of mosquito

control programs found that 16% of respondents currently use UAS while 64% anticipated

using UAS in the future [13]. We anticipate in the next several years, with the rapid advance-

ment of UAS technology, most mosquito programs in the country will use UAS for some

aspect of mosquito control, be it mapping, sampling, surveillance, or pesticide delivery. It is

plausible that mosquito management will soon be conducted from a computer screen. Mos-

quito control professionals will trade in their dippers and boots for computers and virtual real-

ity goggles. Already beginning in agriculture [48], teams of mosquito control UAS will soon

work in unison. A simple keystroke will launch autonomous swarms of UAS. Sensor UAS will

measure environmental conditions and map out potential habitat using advanced algorithms

to predict mosquito populations, surveillance UAS will confirm mosquito activity, and control

UAS will treat the infested microhabitats. Much of this work will happen at night when mos-

quitoes are most active, and people are indoors. After their work is complete, the UAS will

land on special pads to automatically recharge the batteries and refill the pesticides, patiently

awaiting their next mission. Just as the public once welcomed the sight of our spray trucks so

will they welcome the sight of our UAS, knowing they will be just a little safer and more

comfortable.

Supporting information

S1 File. STL files for UAS insecticide sprayer.

(ZIP)

S2 File. STL files for UAS tablet dropper.

(ZIP)
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S3 File. STL files for UAS granule spreader.

(ZIP)

S4 File. STL files for UAS adulticide ULV sprayer.

(ZIP)

S1 Fig. GPS data logged by flight controller. Total number of satellites broadcasting to GPS

unit (NSats, top) and the horizontal dilution of precision (HDop, bottom). Lower HDop value

indicates better GPS signal. Number of satellites increased and HDop decreased as flight time

progressed.

(TIF)

S2 Fig. Bioassay results of UAS application at 2.3 L/ha of VectoBac 12AS over a salt marsh.

Average (n = 10) 72 hr larval mortality in cups placed out in open and cups placed beneath

partial cover of Spartina patens grass.

(TIF)

S1 Data.

(RAR)

Acknowledgments

The authors thank Scott Crans for assistance conducting field trials, Shaun Kenny for help

with engineering and troubleshooting, and Rafael Valentin for help designing early

prototypes.

Author Contributions

Conceptualization: Gregory M. Williams, Yi Wang, Randy Gaugler.

Data curation: Gregory M. Williams.

Formal analysis: Gregory M. Williams.

Funding acquisition: Gregory M. Williams, Randy Gaugler.

Investigation: Gregory M. Williams, Yi Wang, Devi S. Suman, Isik Unlu, Randy Gaugler.

Methodology: Gregory M. Williams, Yi Wang, Devi S. Suman, Isik Unlu, Randy Gaugler.

Project administration: Gregory M. Williams, Randy Gaugler.

Resources: Gregory M. Williams, Randy Gaugler.

Supervision: Gregory M. Williams, Randy Gaugler.

Visualization: Gregory M. Williams.

Writing – original draft: Gregory M. Williams.

Writing – review & editing: Gregory M. Williams, Yi Wang, Devi S. Suman, Isik Unlu, Randy

Gaugler.

References
1. Whitmyre G, Murphey FJ. Ultra low volume aerial application from a radio controlled model airplane. In:

Proceedings of the 60th Annual meeting of the New Jersey Mosquito Control Association; 1973 March

14–16; Atlantic City (NJ). New Brunswick, NJ: New Jersey Mosquito Control Association; 1973. p. 44–

51.

PLOS ONE UAS for mosquito control

PLOS ONE | https://doi.org/10.1371/journal.pone.0235548 September 18, 2020 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235548.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235548.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235548.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235548.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235548.s007
https://doi.org/10.1371/journal.pone.0235548


2. Benzon GL. ULV application by remote-piloted miniature aircraft. Proceedings of the 26th Annual meet-

ing of the Northeastern Mosquito Control Association; 1980 Oct 29–31; Sturbridge, MA. Massachusetts:

Northeastern Mosquito Control Association; 1980.

3. Tedders WL, Gottwald TR. Evaluation of an insect collecting system and an ultra-low-volume spray sys-

tem on a remotely piloted vehicle. J Econ Entomol. 1986; 79: 709–13.

4. Kaniuka R. Biocontrol takes off in a pilotless miniplane. Agric Res. 1985; 33: 8–9.

5. Miyahara M. Utilization of helicopter for agriculture in Japan. Korean J Weed Sci. 1993; 13: 185–194.

6. Miller JW. Report on the development and operation of an unmanned aerial vehicle for an experiment

on unmanned application of pesticides. Youngstown, (OH): United States Airforce, Airforce Research

Laboratory; 2005.

7. Hanlon M. Yamaha’s RMAX–the world’s most advanced non-military UAV. New Atlas. 04 June 2004

[Cited 21 Dec 2019]. https://newatlas.com/yamahas-rmax-the-worlds-most-advanced-non-military-uav/

2440/

8. Cope SE, Strickman DA, White GB. The deployed warfighter protection research program: finding new

methods to vanquish old foes. Army Med Dept J. 2008; April-June: 9–20. PMID: 20084729

9. Huang Y, Hoffmann WC, Lan Y, Fritz BK, Thomson S. Development of a low-volume sprayer for an

unmanned autonomous helicopter. J Agric Sci. 2014; 7: 148–153.

10. Huang Y, Hoffmann WC, Lan Y, Wu W, Fritz BK. Development of a spray system for an unmanned

aerial vehicle platform. Appl Eng Agric. 2009; 25: 803–809.

11. Hadler JL, Patel D, Nasci RS, Petersen LR, Hughes JM, Bradley K, et al. Assessment of arbovirus sur-

veillance 13 years after introduction of West Nile virus, United States. Emerg Infect Dis. 2015; 21:

1159. https://doi.org/10.3201/eid2107.140858 PMID: 26079471

12. Iost Filho FH, Heldens WB, Kong Z, de Lange ES. Drones: Innovative technology for use in precision

pest management. J Econ Entomol. 2019; Dec: 1–25. https://doi.org/10.1093/jee/toz268 PMID:

31811713

13. Buettner J. AMCA legislative and regulatory subcommittee on unmanned aerial systems (UAS) report:

UAS in mosquito control survey results. [Internet]. American Mosquito Control Association 2018. [Cited

19 Dec 2019]. http://files.constantcontact.com/1f433099001/36fa88d0-1a63-4bef-b868-c876bbf3e66b.

pdf

14. Oborne M. Mission Planner. [Software]. Ardupilot Development Team. 2019 [Cited 21 Dec 2019]. http://

ardupilot.org/planner/docs/mission-planner-installation.html

15. Agar D. QGroundControl. [Software]. 2019 [Cited 21 Dec 2019]. https://play.google.com/store/apps/

details?id=org.mavlink.qgroundcontrol

16. Brown JR, Dukes JC, Beidler EJ, Chew V, Ruff J. A comparison of Teflon® slides and the Army Insecti-

cide Measuring System for sampling aerosol clouds. J Am Mosq Control Assoc. 1993; 9: 32–35. PMID:

8468572

17. Clayson PJ, Latham M, Bonds JAS, Healy SP, Crans SC, Farajollahi A. A droplet collection device and

support system for ultra-low volume adulticide trials. J Am Mosq Control Assoc. 2010; 26: 229–232.

https://doi.org/10.2987/10-5999.1 PMID: 20649136

18. SAS institute Inc. SAS/STAT 15.1® User’s Guide. Cary, NC: SAS Institute Inc.; 2020.

19. Yang F, Xue X, Cai C, Sun Z, Zhou Q. Numerical simulation and analysis on spray drift movement of

multirotor plant protection unmanned aerial vehicle. Energies. 2018; 11:en11092399.

20. Zhu H, Reichard DL, Fox RD, Brazee RD, Ozkan HE. Simulation of drift of discrete sizes of water drop-

lets from field sprayers. Trans ASAE. 1994; 37: 1401–1407.

21. Kimball P, Reynolds B. Remote piloted systems: Precision, performance, & public health. Wing Beats.

2016; 27: 23–31.

22. Williams GM, Faraji A, Unlu I, Healy SP, Farooq M, Gaugler R, et al. Area-wide ground applications of

Bacillus thuringiensis var. israelensis for the control of Aedes albopictus in residential neighborhoods:

from optimization to operation. PLOS ONE. 2014; 9(10):e110035. https://doi.org/10.1371/journal.pone.

0110035 PMID: 25329314

23. U-Blox AG. LEA-6 series product summary. [Internet]. Thalwil, Switzerland: u-blox AG; 2012 [Cited Dec

21, 2019]. https://www.u-blox.com/sites/default/files/products/documents/LEA-6_ProductSummary_%

28GPS.G6-HW-09002%29.pdf

24. Swift Navigation. Piksi Multi product summary. [Internet]. San Francisco (CA): Swift Navigation; 2019

(Cited Dec 21, 2019). https://www.swiftnav.com/sites/default/files/piksi_multi_product_summary.pdf

25. Lee J-O, Sung S-M. Assessment of positioning accuracy of UAV photogrammetry based on RTK-GPS.

J Korean Acad Ind Soc. 2018; 19: 63–68.

PLOS ONE UAS for mosquito control

PLOS ONE | https://doi.org/10.1371/journal.pone.0235548 September 18, 2020 15 / 16

https://newatlas.com/yamahas-rmax-the-worlds-most-advanced-non-military-uav/2440/
https://newatlas.com/yamahas-rmax-the-worlds-most-advanced-non-military-uav/2440/
http://www.ncbi.nlm.nih.gov/pubmed/20084729
https://doi.org/10.3201/eid2107.140858
http://www.ncbi.nlm.nih.gov/pubmed/26079471
https://doi.org/10.1093/jee/toz268
http://www.ncbi.nlm.nih.gov/pubmed/31811713
http://files.constantcontact.com/1f433099001/36fa88d0-1a63-4bef-b868-c876bbf3e66b.pdf
http://files.constantcontact.com/1f433099001/36fa88d0-1a63-4bef-b868-c876bbf3e66b.pdf
http://ardupilot.org/planner/docs/mission-planner-installation.html
http://ardupilot.org/planner/docs/mission-planner-installation.html
https://play.google.com/store/apps/details?id=org.mavlink.qgroundcontrol
https://play.google.com/store/apps/details?id=org.mavlink.qgroundcontrol
http://www.ncbi.nlm.nih.gov/pubmed/8468572
https://doi.org/10.2987/10-5999.1
http://www.ncbi.nlm.nih.gov/pubmed/20649136
https://doi.org/10.1371/journal.pone.0110035
https://doi.org/10.1371/journal.pone.0110035
http://www.ncbi.nlm.nih.gov/pubmed/25329314
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_ProductSummary_%28GPS.G6-HW-09002%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_ProductSummary_%28GPS.G6-HW-09002%29.pdf
https://www.swiftnav.com/sites/default/files/piksi_multi_product_summary.pdf
https://doi.org/10.1371/journal.pone.0235548


26. Feng J, Sidhu S. Distribution of blank hexazinone granules from aerial and ground applicators. Weed

Technol. 1989; 3: 275–281. https://doi.org/10.1017/S0890037X00031808

27. Fritz BK, Hoffmann WC, Bonds JAS, Farooq M. Volumetric collection efficiency and droplet sizing accu-

racy of rotary impactors. T Am Soc Agr Biol Eng. 2011; 54: 57–63.

28. Faraji A, Unlu I, Crepeau T, Healy S, Crans S, Lizarrago G, et al. Droplet characterization and penetra-

tion of an ultra-low volume mosquito adulticide spray targeting the Asian tiger mosquito, Aedes albopic-

tus, within urban and suburban environments of Northeastern USA. PLOS ONE. 2016; 11(4):

e0152069. https://doi.org/10.1371/journal.pone.0152069 PMID: 27116103

29. Farajollahi A, Williams GM. An open-field efficacy trial using Aquaduet™ via an ultra-low volume cold

aerosol sprayer against caged Aedes albopictus. J Am Mosq Control Assoc. 2013; 29: 304–308.

https://doi.org/10.2987/13-6334R.1 PMID: 24199509

30. Zhai J, Reynolds B, Huang MH. Unmanned aerial system–new vector control technology. Int Pest

Contr. 2019; 61: 152–154.

31. Bonds JA. Ultra-low volume space sprays in mosquito control: a critical review. Med Vet Entomol. 2012;

26: 121–130. https://doi.org/10.1111/j.1365-2915.2011.00992.x PMID: 22235908

32. Mount GA. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted gen-

erators for adult mosquito control. J Am Mosquito Contr Assoc. 1998; 14: 305–334. PMID: 9813829

33. O’Meara GF. Saltmarsh mosquitoes (Diptera: Culicidae). In: Cheng L, editors. Marine insects. North

Holland, Amsterdam: North Holland Publishing Company; 1976. pp. 303–333.

34. Carroll MK. Ovipositional site preference of Aedes sollicitans (Walker) for select marsh plants [Ph.D.

dissertation]. Louisiana State University. 1979. https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?

article=4384&context=gradschool_disstheses

35. Pimentel D. Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agr Envi-

ron Ethic. 1995; 8: 17–29.

36. Bird SL, Esterly DM, Perry SG. Off-target deposition of pesticides from agricultural aerial spray applica-

tions. J Environ Qual. 1996; 25: 1095–1104.
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