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Abstract

Alternatives to antibiotics for prevention of respiratory tract infections in cattle are urgently

needed given the increasing public and regulatory pressure to reduce overall antibiotic

usage. Activation of local innate immune defenses in the upper respiratory tract is one

strategy to induce non-specific protection against infection with the diverse array of viral

and bacterial pathogens associated with bovine respiratory disease complex (BRDC), while

avoiding the use of antibiotics. Our prior studies in rodent models demonstrated that intrana-

sal administration of liposome-TLR complexes (LTC) as a non-specific immune stimulant

generated high levels of protection against lethal bacterial and viral pathogens. Therefore,

we conducted studies to assess LTC induction of local immune responses and protective

immunity to BRDC in cattle. In vitro, LTC were shown to activate peripheral blood mononu-

clear cells in cattle, which was associated with secretion of INFγ and IL-6. Macrophage acti-

vation with LTC triggered intracellular killing of Mannheimia hemolytica and several other

bacterial pathogens. In studies in cattle, intranasal administration of LTC demonstrated

dose-dependent activation of local innate immune responses in the nasopharynx, including

recruitment of monocytes and prolonged upregulation (at least 2 weeks) of innate immune

cytokine gene expression by nasopharyngeal mucosal cells. In a BRDC challenge study,

intranasal administration of LTC prior to pathogen exposure resulted in significant reduction

in both clinical signs of infection and disease-associated euthanasia rates. These findings

indicate that intranasal administration of a non-specific innate immune stimulant can be an

effective method of rapidly generating generalized protection from mixed viral and bacterial

respiratory tract infections in cattle.

Introduction

Bovine respiratory disease complex (BRDC) continues to be a major cause of economic losses

in the cattle industry, despite improvements in transportation and feedlot management [1] [2]

[3] [4] [5]. Moreover, recent government mandates and public pressure are increasingly
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restricting the use of antibiotics for prophylaxis or metaphylaxis of BRDC [6]. Given these

accelerating changes in the industry, there is a growing awareness of the need for non-antibi-

otic alternatives to generate broad-spectrum, non-specific protection from bacterial and viral

pathogens associated with BRDC in cattle. Among non-antibiotic alternatives evaluated previ-

ously with variable success for disease prevention include phage therapy, antimicrobial pep-

tides, and probiotics [7] [8] [9] [10] [11] [12] [13]. Recently, a liposome-TLR-9 agonist

immunotherapeutic (ZelnateR) originally developed in our laboratory has been approved for

parenteral administration in cattle for prevention of BRDC [14] [15] [16] [17] [18]. However,

the overall effectiveness of most of these diverse approaches for BRDC prevention has yet to be

fully demonstrated in challenge or clinical studies, though Zelnate has demonstrated modest

activity in BRDC trials [14] [19]. An immunotherapeutic consisting of a combination of TLR

and NOD-like receptor agonists (Amplimune1) has demonstrated activity in the prevention

of calf scours, but activity against BRDC has not been reported [20]. Thus, there is clearly a

need for new, non-antimicrobial approaches for prevention of BRDC.

For rapid induction of non-specific protection from bacterial and viral respiratory tract

pathogens, activation of host innate immune defenses locally at mucosal surfaces in the nasal

cavity and oropharynx has certain inherent advantages. For example, activation of upper air-

way innate immune defenses can suppress pathogen replication and invasion at the initial site

of entry and provide significant protection from mortality, as has been demonstrated previ-

ously by our group in multiple rodent bacterial and viral challenge models using a liposomal-

TLR-9 agonist immunotherapy [21] [22] [23] [24] [25] [26]. We also recently demonstrated in

a cat model of feline herpesvirus-1 (FHV-1) respiratory tract infection that intranasal adminis-

tration of L:TC (which consists of liposomes complexed to dual TLR-3 and TLR-9 agonists)

could activate mucosal innate immune responses in the upper airways and significantly sup-

press viral replication [27] [28]. Additionally, the LTC immunotherapeutic activated innate

immune responses in the oropharynx of dogs following intranasal delivery and significantly

reduced clinical signs associated with canine herpesvirus infection [29].

To assess the potential for the LTC immunotherapeutic to activate upper airway immune

defenses in cattle, we measured activation of innate immune responses using in vitro and in

vivo studies. Immune activation and induction of antimicrobial activity in vitro was assessed

using peripheral blood mononuclear cell (PBMC) and macrophage cultures. In healthy cattle,

intranasal administration of LTC at 3 different doses was evaluated for local induction of

innate immune activation in the nasal cavity and nasopharynx. Finally, the ability of intrana-

sally-delivered LTC to induce protective antiviral and antibacterial immunity was assessed in

a BRDC model of cattle exposed concurrently to bovine herpesvirus-1 (BHV-1/IBR), bovine

diarrhea virus (BVD), and M. hemolytica.

These studies revealed that LTC induced rapid cellular activation in cattle, characterized by

cytokine production and upregulated expression of immune co-stimulatory molecules. Intrana-

sal LTC delivery to cattle triggered activation of local nasopharyngeal immune responses, while

pre-treatment with LTC induced a significant reduction in clinical signs and mortality in a real-

istic BRD exposure challenge model. We concluded therefore that cattle responded immunolog-

ically to LTCs administered in the upper airways, and that LTCs have potential for use as a non-

antibiotic solution for prevention or early amelioration of infections associated with BRDC.

Materials and methods

Preparation of liposome-TLR complexes

Liposomes were prepared as described previously [27] [29]. Polyinosinic-polycytidylic acid

(InVivoGen, San Diego, CA) and plasmid DNA (non-coding commercial plasmid PCR2.1,
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Thermo Fisher Scientific, Waltham, MA) were added to pre-formed liposomes to form lipo-

some-TLR complexes (LTC). The endotoxin content of the plasmid DNA was between 0.04

and 0.25 EU/ug. Carboxy-methylcellulose (Sigma-Aldrich, St. Louis, MO) was added to the

pre-formed complexes to produce the final LTC material for study.

Cell culture medium

Peripheral blood mononuclear cells (PBMC) obtained from healthy cattle were cultured in

complete medium, which consisted of DMEM (Thermo Fisher Scientific, Watham, MA) con-

taining 15% FBS (Avanti, Alabaster, AL) and essential and non-essential amino acids and peni-

cillin and streptomycin (Gibco and Thermo Fisher Scientific, Pittsburgh, PA).

In vitro assays of immune activation

Whole blood for PBMC cultures was obtained by jugular venipuncture from healthy cattle and

collected into EDTA tubes. All studies involving blood collection from healthy animals were

approved by the Institutional Animal Care and Use Committee at Colorado State University.

For separation of PBMC, blood was diluted 1:2 with sterile PBS, then layered over a Ficoll

(GE Healthcare, Uppsala, Sweden) gradient and centrifuged. Cells were collected and washed

twice in PBS and then re-suspended in complete tissue culture medium. Cells were plated in

96-well flat bottom plates (CellTreat, Pepperell, MA) at a density of 1 X 106 cells/well in 200μl

of medium. For assays involving LTC activation of PBMC, LTCs were added at 3 different

dilutions (1 μl per well, 0.3 μl per well, and 0.1 μl per well) in triplicate wells of PBMC in 100 μl

complete medium, with careful mixing, and the cells were then incubated for an additional

48h. Cells were immunostained for detection of intracellular IFNγ expression using a mouse

anti-bovine IFNγ antibody (Bio-Rad, Hercules, CA) and the percentage of IFNγ+ cells was

determined by flow cytometry. Additionally, conditioned medium was collected for measure-

ment of IFNγ secretion by ELISA and cells were collected for flow cytometric analysis of acti-

vation markers (see below) and for analysis of cytokine gene expression by quantitative real-

time PCR (qRT-PCR) (see below). These assays were repeated at least twice, using PBMC from

different donor animals.

Analysis of cytokine gene expression by qRT-PCR

Nasopharyngeal samples collected from cattle before and after intranasal treatment with LTC

(see below for details) were analyzed for changes over time in expression of IFNγ, IL-8 and

MCP-1 using qRT-PCR. Briefly, cDNA was prepared from swabs of the nasopharynx following

isolation of RNA from recovered cells, which was subsequently reversed transcribed using a

commercial kit (Qiagen, Germantown, MD). Cellular cDNA was amplified using a qPCR

MX300p system instrument (Agilent, Santa Clara, CA). Primer sequences for bovine cytokines

were obtained from BLAST searches and qRT-PCR was used to quantify transcript levels, as

reported previously [27] [29].

Generation of monocyte-derived macrophages (MDM)

Peripheral blood mononuclear cells were isolated as described above and added to triplicate

wells of 24-well plates at a concentration of 2 X 106 cells/ml for 2h at 37˚C to allow monocyte

adherence. Non-adherent cells were then washed off gently using PBS, and the wells re-fed

with complete medium containing 10 ng/ml recombinant human M-CSF (PeproTech, Rocky

Hill, NJ). After 7 days in culture, macrophages were fully differentiated from monocytes and

then used in assays to examine the impact of LTC treatment on activation and bacterial killing.
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Bacterial strains

A clinical isolate of Staphylococcus aureus (strain 50804) was obtained from milk from a cow

with clinical mastitis and provided by the CSU Diagnostic Laboratory. Clinical BRD isolates

of Mannheimia hemolytica (strain 44168) and Pasteurella multocida (strain F180022916) were

kind gifts of Dr. Josh Daniels (CSU Diagnostic Laboratories and the Department of Microbiol-

ogy, Immunology, and Pathology). Staphylococci and pathogenic BRD strains were propa-

gated in brain heart infusion (BHI) medium (Becton Dickinson, Franklin Lakes, NJ) in short-

term culture, and bacteria were utilized in log phase of growth at a CFU density determined

by comparison to a standard optical density curve. All pathogenic strains of bacteria were cul-

tured in BHI and utilized at log phase of growth.

Assessment of macrophage phagocytosis

Macrophage phagocytosis was performed using two assays: bead phagocytosis and bacterial

phagocytosis. For analysis of polystyrene bead phagocytosis (FluroSpheres1; Thermo Fisher

Scientific, Waltham, MA), MDM were detached from culture dishes by adding ice cold PBS

containing 3 mM EDTA and allowing the plates to remain on ice for 20 min, and washed then

re-plated at 3 X 105 cells in a 24-well plate and allowed to reattach, and then incubated at 37˚C

with beads in complete DMEM, at a density of 200 beads per cell as described previously [30].

MDM were allowed to phagocytose the beads for 2 h at 37˚C followed by removal of the

medium and washing with 500 ul of 2%BSA in PBS. The bead-treated MDM were then

detached using trypsin and analyzed for bead uptake (as measured by geometric mean fluores-

cent intensity) by flow cytometry and compared to untreated MDM.

For analysis of phagocytosis of bacteria, MDM were removed and counted as described

above and re-plated and infected at a MOI = 5 with S. aureus strain Xen36 (Perkin Elmer, Wal-

tham, MA). MDM were treated for 1 h with the bacteria in antibiotic-free medium at 37˚C.

Subsequently, the macrophages were washed twice with FACS buffer (PBS with 2% FBS and

0.05% sodium azide). The cells were then washed and permeabilized with 1:1000 diluted Tri-

ton X 1000 (1 μl/ml) for 10 min at 37˚C. Cells were subsequently blocked with 10% goat serum

in PBS followed by washing 2X in PBS containing 0.05% (V/V) Tween-20. Permeabilized cells

were stained with a primary rabbit-anti-S aureus antibody for 1 h followed by washing and

stained with a secondary goat-anti-rabbit-Cy3 antibody. Uptake of the bacteria was deter-

mined by assessment of geometric mean fluorescence intensity (gMFI) of Cy3 positive events

using via flow cytometry.

Nitric oxide (NO) release assay

The Griess reagent assay system (Promega, Madison, WI) was used to measure nitric oxide

(NO) release by MDM by assessing formation of nitrite (NO2
-) using culture supernatants,

according to manufacturer’s recommendations.

Macrophage bactericidal assays

Bacterial uptake and killing by MDM was done as described previously by Drevets et al. [31].

Briefly, macrophages were incubated with LTC (1 ul per ml medium) for 24h, then cells were

washed 3 times with fresh antibiotic-free medium. The effective concentration of LTC was

determined by prior in vitro titration. Macrophage bactericidal activity was assessed by addi-

tion of S. aureus to cultured macrophages at a MOI of 5 (bacteria to macrophage). Bacteria

were incubated with macrophages for 30 min, at which time remaining bacteria in superna-

tants were removed by washing with PBS. Assessment of bactericidal activity against M.

PLOS ONE Immune protection from respiratory tract infection in cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0235422 June 25, 2020 4 / 24

https://doi.org/10.1371/journal.pone.0235422


hemolytica and P. multocida was done similarly. Following incubation with bacteria, macro-

phages were cultured an additional 1h, at which time bacteria in supernatants were removed

by washing with PBS. The macrophages were then lysed adding ice cold sterile dH20 and vig-

orous pipetting, and concentrations of viable intracellular bacteria determined by quantitative

plating of serially diluted samples on quadrant plates containing LB or BHI agar (or blood agar

for M. hemolytica). As a positive control for induction of bactericidal activity, macrophages

were incubated for 24h with 10 ng/ml bovine IFNγ (R&D Systems, Minneapolis, MN) prior

to bacterial inoculation. Experiments were repeated at least twice using MDM obtained from

unrelated animals.

Administration of LTC to healthy cattle and assessment of immune

responses

Studies in healthy cattle were completed at a stocker operation in Wheatland, Wyoming.

These studies were approved by the Veterinary Research and Consulting Services Institutional

Animal Care and Use Committee. Upon arrival at the ranch, health and welfare assessment of

the animals was determined using standard practices including visual determinations of nasal

discharge, ocular discharge, diarrhea, bloated rumen and external lesions such as skin lesion

(hairless patches, subcutaneous edema, broken tails and ocular (sclera, cornea and lens) discol-

oration. Cattle having any of these lesions were not included in the study. Stocker animals of

similar age (4–6 months) upon arrival at the ranch and were separated into groups of n = 20 to

30 animals each and then randomly assigned to treatment groups of n = 5 animals per group

for immunological studies. Animals were treated by intranasal administration (using a teat

canula) of either sterile PBS (control group, Group 1) or 1 ml LTC per nostril (Group 2), 2 ml

LTC per nostril (Group 3), or 3 ml LTC per nostril (Group 4). Test material was administered

intranasally to animals confined briefly in a head chute, using a teat canula attached to a

Henke Roux syringe. In subsequent studies (see Figs 9 and 10), LTC were administered intra-

nasally via a mucosal atomization device (MAD1 LMA Teleflex Medical, Research Triangle,

NJ) rather than a teat canula, based on studies demonstrating superior immune activation fol-

lowing MAD delivery. Animals were monitored before and after treatment, for a period of 14

days, with samples collected immediately prior to treatment, and again at 8 hours, 24 hours, 72

hours, 7 days, and 14 days after a single LTC treatment. Body temperature was evaluated at

each monitoring time point.

Nasopharyngeal mucosal cell sampling

Nasopharyngeal swabs were collected by manually inserting a sterile mare double-lumen swab

(McCullough swab, Mountain Veterinary Supply, Ft Collins, CO) into one nare to the level of

the nasopharynx, at which point the catheter was rotated against the nasopharyngeal mucosa

to collect cells, then withdrawn and immediately placed into complete tissue culture medium

on ice in a 15 ml conical tube. Any samples which contained obvious blood (< 5% of total

samples) were discarded. The procedure was repeated on the opposite nare, and the two cathe-

ters were placed into the same 15 ml conical tube. Once in the laboratory, the swabs were vor-

texed together to free attached cells, which were pooled. The pooled cells were then split and

used for flow cytometric analysis and for analysis of cytokine gene expression.

Flow cytometry to assess cellular immune responses in vitro

For in vitro analysis of cell activation by LTC, PBMC were incubated with various concentra-

tions of LTC for 48h, then were resuspended in flow cytometry buffer (PBS, 5% FBS, and

0.01% sodium azide) and immunostained using directly conjugated antibodies for flow
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cytometric analysis. The following antibodies were used to enumerate immune responses by T

cells, B cells and monocyte/macrophages: T cells: mouse anti bovine CD4-RPE (Bio-Rad, Hur-

cules, CA)/ mouse anti-bovine CD8-FITC (Bio-Rad)/ mouse anti-bovine CD5-APC (Bio-

Rad); B cells: mouse anti-bovine CD21; monocyte/macrophages: cross-reactive mouse-anti-

human CD14-PacBlue (clone Tük4; (Bio-Rad)/mouse-anti-bovine MHCII-FITC (BioRad).

After immunostaining, cells were resuspended in flow cytometry buffer, and analyzed using a

Beckman-Coulter Gallios multi-color flow cytometer. Flow cytometry data were analyzed

using FlowJo1 software (FlowJo, Ashland, OR).

Impact of mucosal immunotherapy on the local microbiome

Studies were done next to assess the impact of intranasal immunotherapy with LTC on the

endogenous nasal microbiome. For this study, nasal swab samples were collected from the

same study groups (n = 10 animals per group, PBS or LTC treated) used to assess humoral

immune responses (below). Nasal swabs (single swab per animal per collection time point)

were collected from each animal using sterile cotton tipped applicators (Puritan Medical Prod-

ucts, Guilford, ME). Swabs were collected immediately prior to treatment and again at 7 days

and 14 days after treatment. Swabs were stored in phosphate buffered saline at -20˚C until pro-

cessing for extraction. Microbial DNA extraction was performed using a MoBio Powersoil

DNA Isolation kit (Qiagen, Valencia, CA) according to manufactures’ instructions. All

samples were extracted using the same kit lot. Extracted DNA was submitted to Novogene

Corporation (Chula Vista, CA) for 16S rRNA sequencing. Negative controls were verified on

Nanodrop 1000 to have<2 ng/uL of total DNA. According to Novogene’s report of analysis,

DNA concentration and purity was monitored on 1% agarose gels.

DNA library preparation and 16S sequencing

16S rRNA genes of V4 region were amplified using V4: 515F-806R in accordance with the

Earth Microbiome project [32]. All PCR reactions were carried out with Phusion High-Fidelity

PCR Master Mix (New England Biolabs, MA). PCR products were purified with Qiagen Gel

Extraction Kit. Sequencing libraries were generated using TruSeq DNA PCR-Free Sample

Preparation Kit (Illumina, San Diego, CA) following manufacturer’s recommendations and

index codes were added. The library quality was assessed on the Qubit@ 2.0 Fluorometer and

Agilent Bioanalyzer 2100 system. The library was sequenced on an Illumina HiSeq 2500 plat-

form and 250 bp paired-end reads were generated. Sequences were demultiplexed and forward

and reverse pair-end reads were uploaded by Novogene.

16S Data analysis

Paired-end reads were merged using paired end demux [33]. Sequence quality control, adapter

trimming and feature table construction were performed according to the QIIME2 version

2018.2 Demux Summarize DADA2 [33]. Based on quality score of 30. Operational Taxonomic

Units (OTUs) were conducted at 97% sequence similarity using QIIME for taxonomically clas-

sified [34]. For genus level, the Green-Genes 16S rRNA gene database was used at 0.8 confi-

dence threshold for taxonomic assignment. OTUs abundance information was normalized

using a standard of sequence number corresponding to the sample with the least sequences

(110,000). Phylogenetic tree was constructed using Qiime2 phylogeny fast tree [35]. Alpha

diversity and beta diversity was calculated using Qiime2 diversity core metrics [36], while dif-

ferential abundance testing was performed using Analysis of Composition of Microbiomes

(ANCOM) [37]. Significance in relative abundance on Phylum, Class, Order, Family and

PLOS ONE Immune protection from respiratory tract infection in cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0235422 June 25, 2020 6 / 24

https://doi.org/10.1371/journal.pone.0235422


Genus levels was calculated using 2-way ANOVA with Bonferroni post-test. Graphical results

were plotted using Graph Pad Prism8 (GraphPad Software, La Jolla California USA).

Impact of LTC treatment on humoral immune responses to pathogenic

bacteria

Studies were done to assess the impact of non-specific induction of mucosal immune activa-

tion in cattle on humoral immune responses against common bovine pathogens (Mannheimia
spp., Pasturella spp., Histophilus spp.). There were two study groups of n = 10 animals each

(weanling beef cattle), one of which was treated once with PBS (2 ml per nostril) and the other

treated once with LTC, 2 ml per nostril. Blood was collected from each animal immediately

prior to treatment, and again 30 days later, and serum prepared and frozen at -20 C˚ prior to

analysis. For analysis of anti-bacterial antibody responses, bacteria (1.0 X 106 bacteria per well)

were added to individual wells of 96-well plates containing serum pre-diluted at a 1:100 dilu-

tion in FACS buffer. Bacteria were incubated for 30 minutes at room temperature, washed

twice in FACS buffer, incubated with pre-diluted anti-bovine IgG (FITC conjugated, BioRad,

St. Louis, MO) for 30 minutes, washed and resuspended in FACS buffer prior to analysis. Sam-

ples were analyzed using a Becton Dickenson (Franklin Lakes, NJ) Gallios flow cytometer, and

a minimum of 50,000 events were collected for analysis. Negative controls included bacteria

only and bacteria incubated with secondary antibody only, which was used to set analysis

gates. Single color histograms were generated and used to determine percentage IgG+ cells and

the geometric mean fluorescence intensity of these cells, using FlowJo software.

BRDC challenge study in cattle

Weaned 3- to 5-month-old, Holstein steers were procured from commercial vendors for the

study and underwent a 5-day acclimatization period before being enrolled in the study. To

ensure the animals experience a minimum amount of suffering and distress and are handled

by staff with special training in research animal care, the study was conducted according to the

Ag Guide 2010, and the protocol was approved by an Institutional Animal Care and Use Com-

mittee at Elanco, Inc using protocol number EIAC-0986. There were 3 groups of calves in the

study: 1) Seeder animals (used to infect calves in Treatment Groups 1 and 2); 2) Treatment

Group 1 animals (intranasal PBS administration), and 2) Treatment Group 2 animals (intrana-

sal LTC administration). Only healthy animals were used in the study. Seeder calves and treat-

ment calves were excluded from study if they were found to be BVDV positive, if they had

received an antibiotic within 21 days of study day initiation, or if they had evidence of lung

pathology via transthoracic ultrasound. All seeder calves were serologically negative for both

IBR and BVDV 1b. Contact animals had no history of being administered any antiviral or anti-

bacterial BRDC vaccines, including vaccines for IBR, BVDV, BRSV, PI-3, or common BRD

bacterial pathogens. To ensure both the health and assess the pathogen burden status of con-

tact animals prior to comingling with seeders, Elanco Inc. performed standard pathogen analy-

sis as part of their IACUC protocol (EIAC-0986). This protocol included collection of nasal

swabs that were plated on selective medium plates to enumerate bacterial pathogens. Swab

samples were also analyzed for IBV and BVDV1b template levels by qRT-PCR. No significant

growth of M. haemolytica was detected on plates from any animal prior to co-mingling with

seeders. Additionally, all pre-exposed animals were negative for either IBR or BVDV1b by

qRT-PCR.

Treatment animals were randomized to one of two treatment groups (n = 24 animals per

group) and then co-mingled with seeder animals. Four groups of seeder animals were inocu-

lated with pathogens intranasally prior to comingling with treatment animals. Seeder animals
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were intranasally challenged with BHV-1 alone, BVD alone or BHV-1 plus M. haemolytica, or

BVD plus M. haemolytica. Seeder animals were comingled with treatment animals throughout

the 24-day study period. Treatment group animals were treated 24 h before they were first co-

mingled with seeder animals. Treatment Group 1 calves were treated by intranasal injection

of PBS to both nostrils (2 ml per nostril). Treatment group 2 calves were treated by intranasal

administration of LTC (2 ml per nostril).

Animals in the two treatment groups were monitored daily for clinical signs by study per-

sonnel who were blinded to study groups. Serum samples were collected for cytokine assay

(IL-6, TNFα, using commercially available ELISA kits from R & D Systems, Minneapolis, MN)

on study days 0, 2, 4, 8, 12, 16, and 24. For study animals removed from the study after reach-

ing pre-determined euthanasia endpoints defined as displaying open-mouth breathing, mod-

erate to severe repeated coughing, no interest in approaching bunk and general moribund

appearance an behavior. Euthanasia was performed within 12 hr of reaching any of these end-

points. None of the animals died before meeting euthanasia criteria. All remaining animals

(48) were humanely euthanized on day 24 of the study and necropsies were performed and

lung pathology scoring was performed to quantify grossly visible lung lesions known to be

associated with M. haemolytica infection, including tissue consolidation, congestion and a

fibrinous pleuropneumonia. Lesion scoring was performed by a clinical veterinarian blinded

to treatment groups. In addition, at the time of necropsy, bronchial swabs were collected for

cytokine evaluation by ELISA (R & D Systems, Minneapolis, MN).

Results

In vitro cellular activation by LTC

Initial studies were done to assess the ability of LTC to activate innate immune responses

in vitro, using PBMC prepared from healthy cattle. Cells were incubated with the indicated

amounts of LTC for 48h, at which time supernatants were collected for IFNγ and IL-6 assay

by bovine specific ELISA. Cells from the same assay were collected for analysis by flow cytome-

try, as described in Methods. Addition of LTC to PBMC cultures triggered cellular innate

immune activation in a dose-dependent fashion, as evidenced by increasing production of

IFNγ with increasing doses of LTC (Fig 1A). Additionally, treatment of PBMC cultures with

LTC increased expression of MHCII on CD14+ monocytes, as assessed by flow cytometric

analysis (Fig 1B). These immune responses are similar to those observed in prior studies fol-

lowing stimulation of mouse, canine, and feline cells with LTC [22] [24] [27] [29].

LTC treatment of macrophages stimulates upregulated MHCII expression

and secretion of TNFα and IL-6

Monocyte-derived macrophages (MDM) were evaluated for induction of immune activation

via upregulation of MHCII following incubation with LTC. Following treatment, culture

supernatants were also collected for analysis of TNFα and IL-6 release by ELISA. After super-

natants were collected, treated cells were detached and immunostained for flow cytometric

analysis. As illustrated in Fig 2A, LTC treatment of MDM stimulated significant upregulation

of MHCII at LTC concentrations of 1.0 μl/ml and 5 μl/ml, and this response was observed

using MDM cultures generated from 3 individual animals. Higher concentrations of LTC

(� 10 μl/ml) led to macrophage cytotoxicity. MHCII upregulation induced by LTC was com-

parable to that elicited by treatment with 20 ng/ml bovine IFNγ (Fig 2A). Production of TNFα
and IL-6 by MDM was significantly increased when cells were treated with LTC, in a dose-

dependent fashion (Fig 2B and 2C).
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LTC treatment triggers macrophage nitric oxide (NO) release, phagocytosis

and activation of bactericidal activity

Macrophage activation is generally associated with enhanced antimicrobial activity. To deter-

mine whether TLC activation also triggers these responses in macrophages from cattle, we

assessed the response of MDM to LTC by evaluating NO release, phagocytosis, and bactericidal

Fig 1. Treatment of PBMC with LTC upregulates secretion of IFNγ and MHCII expression in a dose-dependent

manner. Peripheral blood mononuclear cells from 5 different healthy animals were cultured in vitro and treated with

increasing concentrations of LTC for 48 h, as noted in Methods. Supernatants were collected and analyzed for IFNγ
secretion by ELISA (A). Untreated or LTC-treated PBMC were collected and stained for T cells (CD3+) or monocytes

(CD14+) and CD14+ cells were analyzed for expression of MHCII (B). Similar results for MHCII expression were

obtained for three separate experiments. Untreated or Concanavalin A (ConA) treated PBMC were used as negative and

positive controls, respectively. Significant differences between either untreated animals or those either treated with ConA

or LTC were determined using an ordinary one-way ANOVA with p values of ����,<0.0001 and ��,<0.01.

https://doi.org/10.1371/journal.pone.0235422.g001

Fig 2. Treatment of monocyte derived macrophages with LTC stimulates upregulation of MHCII expression and

secretion of TNFα and IL-6. Monocytes were prepared from PBMC from 3 different animals and differentiated for 7

days in vitro in 20 ng/ml human M-CSF. Monocyte-derived macrophages (MDM) were then treated for 36 h with LPS,

INFγ, LTC, or LTC plus IFNγ at the indicated concentrations. MDM were analyzed for MHCII expression by flow

cytometry and released cytokines were measured via ELISA. To normalize the absolute differences between animals,

levels of secretion of TNFα and IL-6 were normalized to basal, unstimulated concentrations. Statistical analyses were

performed using an ordinary one-way ANOVA with �, P<0.05, ��, P<0.01, ���, P<0.005, ����, P<0.001 and ‘ns’, not

significant.

https://doi.org/10.1371/journal.pone.0235422.g002
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activity. In macrophages treated with LTC, there was a significant increase in release of NO

(Fig 3). This response is important because production of reactive nitrogen intermediates is a

key mechanism of intracellular bacterial killing. The impact of LTC treatment on macrophage

phagocytosis was determined by measuring uptake of fluorescent beads and uptake of labeled

S. aureus. LTC activated MDM exhibited significantly increased phagocytosis of both polysty-

rene FluorSpheres1 and labeled S. aureus (S1 Fig). Thus, LTC treatment was found to activate

two key functional antimicrobial properties of macrophages, namely phagocytosis and NO

production.

Common bacterial pathogens in cattle include S. aureus (mastitis), and M. haemolytica and

P. multocida (BRDC) [38] [39]. To assess the ability of LTC to activate macrophage bactericidal

activity against these important cattle bacterial pathogens, MDM were pre-treated with LTC

and induction of bactericidal was assessed. These studies revealed that LTC treatment of

MDM generated significantly increased killing of all three pathogens. For example, LTC treat-

ment increased killing of S. aureus by more than 100%, while killing of M. haemolytica and P.

multocida was enhanced by over 100% and 10,000% respectively (Fig 4) compared to untreated

macrophages. Pretreatment of MDM with the nitric oxide synthase inhibitor nitrosoguanidine

(AG) prior to bacterial infection significantly reduced the amount of LTC-induced bactericidal

activity, suggesting that NO production is an important mechanism for LTC-induced bacteri-

cidal activity (Fig 4).

Mucosal immune activation following intranasal delivery of LTC

Healthy cattle (n = 5 per group) were treated with a single intranasal administration of LTC at

3 different doses (1 ml per nostril, 2 ml per nostril, and 3 ml per nostril), and their local upper

Fig 3. LTC treatment stimulates nitric oxide release by macrophages. Monocyte derived macrophages were treated for

36 h with either LPS or LTC at the indicated concentrations. Culture supernatants were assays for NO indirectly by

measuring levels of nitrite ion (NO2
-) release into MDM culture supernatants using the Griess reagent for detection of

nitrate release. Significant differences were determined using an ordinary one-way ANOVA with; ���, P<0.005.

https://doi.org/10.1371/journal.pone.0235422.g003
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respiratory tract immune responses compared to those of a control group of animals treated

by intranasal administration of 1 ml PBS per nostril. Mucosal cell samples were harvested by

swabbing the nasal cavity and nasopharynx as described in Methods and recovered cells were

enumerated and analyzed by flow cytometry (Fig 5). We observed significant increases in over-

all upper respiratory tract cellularity in animals treated with 2 ml and 3 ml LTC per nostril at

24 h post treatment, compared to PBS treated control animals and compared to baseline pre-

treatment values (Fig 5A). Furthermore, significant increases in the percentages of CD14+

monocytes were noted in animals treated at all 3 LTC doses, and the percentage of monocytes

remained elevated at 72 h post treatment (Fig 5B). In addition, there was a concomitant

increase in levels of expression of MHCII by monocytes from treated animals, compared to

baseline values. Levels of MHCII expression peaked at 24 h post-treatment and then returned

to baseline levels at 72 h post treatment (Fig 5C). Additionally, cells from nasopharyngeal

swabs displayed significant increases in transcripts encoding IFNγ (Fig 6A), IL-8 (Fig 6B) and

Fig 4. Macrophage treatment with LTC triggers bactericidal activity. Monocyte-derived macrophages from 3 animals

were infected at a MOI = 5 for 3 h with S. aureus (A) M. hemolytica (B), or P. multocida (C), after which bactericidal

activity was determined as noted in Methods. Each symbol represents one animal. Bactericidal activity was compared

between untreated, LTC treated and aminoguanidine (AG) (10nM) pretreatment of LTC-treated macrophages.

Comparisons between untreated, treated and AG pretreated cells for each bacterial pathogen were performed using an

ordinary one-way ANOVA with �, P<0.05, ���, P<0.005.

https://doi.org/10.1371/journal.pone.0235422.g004

Fig 5. Intranasal administration of LTC elicits cellular influx into the nasopharynx in a dose-dependent fashion in

healthy cattle. Four groups of healthy cattle (n = 5 per group) were treated intranasally with PBS (no treatment) or with 3

different dosages of LTC (1 ml per nostril (blue line), 2 ml per nostril (green line), or 3 ml per nostril (red line)).

Nasopharyngeal swab samples were obtained at various intervals after treatment, and collected cells were analyzed by

flow cytometry. Pharyngeal cells were also analyzed for increases in overall cellularity (A) and numbers of CD14+

monocytes (B) and expression of MHCII (C). Comparisons of differences in percentages of the number of live cells,

CD14+ cells and mean fluorescence intensity (MFI) of MHCII between groups were evaluated as a function of time after

treatment and dosage of LTC. Analysis of variance of these parameters was evaluated using a two-way ANOVA with, ��P

<0.010; and ���P<0.005.

https://doi.org/10.1371/journal.pone.0235422.g005
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Fig 6. Pharyngeal cells from LTC treated animals show increased expression of IFNγ, IL-8 and MCP-1 gene

transcripts. RNA was purified from nasopharyngeal swab samples obtained from cattle (n = 5 per group) treated with

PBS or LTC (2 ml per nostril) at the indicated times post-treatment. cDNA was reverse transcribed and amplified by

qRT-PCR. Transcript numbers were compared after 6h, 24h, 72h, 7days, and 2 weeks of treatment and plotted

accordingly. Statistical differences in PBS-treated versus LTC-treated groups were evaluated using a two-way ANOVA

with ��P<0.010; and ���P<0.005.

https://doi.org/10.1371/journal.pone.0235422.g006
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MCP-1 (Fig 6C) as determined by quantitative reverse transcriptase PCR analyses of mRNA.

As illustrated in Fig 6, there was a significant increase in cytokine gene transcription in cattle

treated with 2 ml LTC per nostril, compared to PBS-treated control animals.

Intranasal LTC treatment increased systemic humoral immune responses

against pathogenic bacteria

To determine whether non-specific mucosal immune activation with LTC might also alter sys-

temic humoral immune responses to bacterial pathogens known to be harbored in the nasal

and pharyngeal mucosa in cattle, we evaluated humoral immune responses in cattle prior to

and 30 days following a single intranasal administration of LTC (2 ml per nostril). Two study

groups (n = 6 animals per group) of beef cattle were treated intranasally once with either PBS

or LTC. Blood samples were collected prior to treatment and again 30 days after treatment

and serum samples were analyzed for antibody responses against potential BRDC pathogens,

including M. haemolytica, P. multocida, and H. somni. The serum IgG response to bacteria was

assessed using a flow cytometric assay, as described in Methods. We found that the degree of

IgG binding to all 3 species of pathogenic bacteria in 30d post-treatment serum samples from

LTC treated animals was significantly greater than in pre-treatment samples, and also signifi-

cantly greater than in control, PBS treated animals (Fig 7). These findings suggest that local

administration of LTC complexes to the upper airways in cattle may trigger local activation of

B cells specific for pathogenic bacteria, leading to greater serum IgG concentrations. Interest-

ingly, the increased IgG response appeared to be specific for pathogenic bacteria, as we did not

observe a greater IgG response against commensal, non-pathogenic bacteria.

Nasal microbiome not significantly perturbed following LTC treatment

Activation of local innate immune responses has the potential to alter the local microbiome,

given the strong reciprocal interaction known to occur between the immune system and the

resident microbiome. To determine whether LTC administration would alter the nasal micro-

biome, we sampled nasal swabs from cattle (n = 10 animals per group) obtained prior to treat-

ment and again 7 days following treatment with 2 ml LTC per nostril or 2 ml PBS per nostril.

The composition of nasal microbiome was determined by 16S rRNA sequencing, as described

in Methods. No significant differences between pre- and post-treatment groups were observed

based on Simpson’s evenness score (Fig 8A) or other diversity indices including Faith alpha

Fig 7. Intranasal LTC treatment generates increased serum IgG binding to BRDC pathogenic bacteria. Serum

obtained from PBS treated or LTC treated (2 ml per nostril) cattle (n = 6 per groups) was incubated with BRDC bacteria

in vitro, and IgG binding determined by flow cytometry, as described in Methods. Serum IgG binding to M. hemolytica
(A), P. multocida (B) and H. somni (C) is depicted, comparing untreated versus LTC treated animals. Antibody binding

intensity was displayed as geometric mean fluorescence intensity of IgG positive bacteria. Significant differences were

detected using an unpaired t test with, �, P<0.05 and ��, P<0.01.

https://doi.org/10.1371/journal.pone.0235422.g007
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diversity (Fig 8B), [40] Chao1, Pielou’s Evenness, or Shannon or Simpson’s alpha diversity

indices. Moreover, no clear clustering of diversity differences in the nasal microbiome between

LTC-treated and PBS-treated animals was observed using Bray-Curtis distance beta diversity

analysis (Fig 8C). There was between group separation observed in Jaccard distance (Fig 8D),

though it is possible that this separation could be due to sample collection time point implied

differences rather than by LTC treatment per se. No features that were differentially abundant

across the 4 groups of samples were found by ANCOM [37]. In addition, the lack of alterations

in the nasal microbiome observed in the present study in cattle are consistent with recently

reported findings from our group regarding the lack of impact of LTC treatment on the oro-

pharyngeal microbiome of dogs [29].

Impact of LTC immunoprophylaxis on clinical signs and disease-related

euthanasia (mortality) following BRDC challenge in cattle

Finally, we evaluated the ability of LTC immunoprophylaxis to protect cattle from a realistic

3-pathogen challenge designed to mimic BRDC. Study animals (n = 24 animals per group)

were exposed by co-mingling study animals with seeder animals that had been pre-infected by

direct intranasal inoculation with either IBR, BVD, or M. hemolytica, as described in Methods.

One group of study animals (control) was treated with PBS (2 ml per nostril) 24h prior to

Fig 8. Impact of intranasal immunotherapy on the nasal microbiome. Bacteria were recovered from nasal swabs

obtained from cattle (n = 10 per group) treated by intranasal administration of PBS or LTC (2 ml per nostril). Swabs

were obtained pre-treatment and again at 7 days after treatment, bacteria were isolated and DNA extracted, and

subjected to 16S sequencing at a commercial laboratory, as described in Methods. Analysis of sequence information

revealed the following: (A) Diversity analysis of Simpson’s evenness measure depicted on x-axis, y-axis represents

phylogenic diversity (PD). Red bars represent pretreatment diversity in the LTC-treated group, orange represents 7

days after treatment in the LTC-treated group. Blue and green bars represent pre and 7 day valued in the control (PBS-

treated) group. (1B) Faith alpha diversity. (1C) Principal components analysis of Bray-Curtis distance beta diversity

(color legend in top right corner). Proportion of variance explained by each principal coordinate axis is denoted in the

corresponding axis label. (1D) principal component analysis of Jaccard beta diversity.

https://doi.org/10.1371/journal.pone.0235422.g008
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comingling with infected seeder animals, while the second group (LTC) was pre-treated with

intranasal administration of LTC (2 ml per nostril) 24h before comingling. Study animals were

observed daily for development of clinical signs associated with BRDC, by scorers who were

blinded to the treatment status of the animals. In addition, hematological and biochemical

changes were monitored by every other day analysis of blood samples and cytokine concentra-

tions (Il-6, TNFα) were monitored in blood samples as well.

Clinical monitoring revealed that animals treated prophylactically with LTC had signifi-

cantly reduced clinical depression scores over the course of the 24-day study, when compared

to animals treated similarly with PBS (Fig 9). For example, the clinical score was reduced from

an average of 1.5 in PBS-treated animals to 0.5 in LTC treated animals, which represented a

statistically significant overall reduction. Analysis of serum IL-6 and TNFα concentrations in

PBS treated animals at day 0, day 8 and day 12 post-infection showed that concentrations of

both cytokines increased marginally but not significantly overall by day 8 post challenge. How-

ever, in LTC treated animals, serum IL-6 concentrations were significantly reduced at day 8

and day 12 when compared to PBS treated animals. At the completion of the study, cytokine

analysis of bronchial swabs collected at necropsy revealed significant reductions in airway IL-6

concentrations in PBS treated animals (81.34 pg/ml, [+/- 57]), compared to (42.77 pg/ml, [+/-

42]) in LTC treated animals (S2 Fig). These data indicated therefore that pre-treatment with

LTC ameliorated the increase in pro-inflammatory cytokines associated with BRDC infection

in cattle.

Additionally, culturing pathogenic respiratory bacteria procured from nasal swabs of the

cattle before being exposed to seeder animals indicated that most of the cattle (62.5% of the

PBS treatment group and 52.16% of the LTC-treated group) cultured no significant levels of

Fig 9. Impact of LTC pre-treatment on clinical illness scores in cattle subjected to BRDC challenge. Cattle (n = 24 per

group) were treated with PBS (2 ml per nostril) or LTC (2 ml per nostril), and then 24 h later were co-mingled with BHV-

1 infected, BVD infected, and M. haemolytica- infected seeder animals, as described in Methods. All exposed treated

animals were monitored daily for clinical illness scores by blinded clinical observers, and overall scores tallied for each

group of animals for the entire 24-day study period and mean and SEM values for illness scores were plotted. Data were

analyzed for significance using a 2-way ANOVA with ��, P<0.01.

https://doi.org/10.1371/journal.pone.0235422.g009
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Mannheimia spp. P. multocida or T. pyogenes. At the end of the study (day 24) lung necropsy

samples showed that 57% of the cattle from the PBS control group lung tissue cultured high

CFU of Mannheimia spp. or P. multocida whereas only 14.2% of the LTC group scored in the

high CFU category indicating a significant difference in pathogen burden. (S3 Fig).

Euthanasia due to clinical signs of BRDC infection (used here as a proxy for mortality) in

the two groups of cattle were also assessed the course of the 24-day study. Observers scoring

the cattle were blinded as to treatment groups to which the animals were assigned. Survival

analysis by Kaplan-Meier curves revealed that survival was significantly increased (p = 0.02) in

the LTC treated animals, compared to PBS treated animals (Fig 10A). In PBS-treated animals,

10 animals were euthanized due to clinical manifestations of severe BRDC-induced illness (Fig

10B). By contrast, in the LTC treated group, only 3 animals were euthanized due to BRDC-

induced illness, thereby demonstrating a marked overall reduction in euthanasia (mortality) of

71%. These findings are important in that they provide critical evidence of the ability of effec-

tive immunoprophylaxis with a potent, non-specific mucosal immunotherapeutic to prevent

or hinder the onset of clinically severe BRDC and associated death losses in cattle.

Discussion

Bovine respiratory disease complex is a significant health problem in cattle throughout much

of the developed world wherever intensive cattle husbandry is practiced [41] [42] [43] [44]. As

such, BRDC is the principal source of economic loss for the North American beef industry and

is also a significant source of losses in the dairy industry in early weaned calves [4] [45] [1]

[46]. There are multiple factors associated with triggering BRDC in cattle, including complex

interactions between the environment, host factors, and viral and bacterial pathogens [2] [3]

[47]. Stressors to cattle can adversely affect both immune and nonimmune defense mecha-

nisms. Thus, the pathogenesis of BRDC typically involves some combination of stressors inter-

acting with altered host immunity and subclinical infection to trigger clinically apparent

disease. For example, viral infection is known to compromise host defenses and stimulate

deeper invasion of pulmonary tissues by pathogenic bacteria normally commensal in the naso-

pharynx—in particular members of the Pasteurellaceae family [48] [48] [49] [50].

Fig 10. LTC pre-treatment significantly reduces euthanasia (mortality) associated with experimental BRDC

infection in cattle. Cattle (n = 24 per group) were treated with PBS (2 ml per nostril) or LTC (2 ml per nostril), and then

24h later were co-mingled with BHV-1 infected, BVD infected, and M. haemolytica-infected seeder animals, as described

in Methods. Animals in each treatment group were monitored daily for signs of clinical illness by observers and were

euthanized when clinical scores reached a pre-determined score. Survival was evaluated and represented by Kaplan-

Meier survival curve, followed by log-rank analysis to determine the level of statistical significance (p = 0.02) (A). In

animals pre-treated with LTC, the total percentage of animals euthanized due to BRDC associated clinical illness was

12.5%, which was markedly lower than the 42% euthanized due to clinical illness for animals in the PBS treated group

(B).

https://doi.org/10.1371/journal.pone.0235422.g010
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To address the need for more effective, non-antimicrobial measures to prevent BRDC or to

lessen disease severity, we have turned to local activation of innate immune defenses in the

nasal passages and oropharynx. Previously, our laboratory has demonstrated the utility and

effectiveness of intranasal delivery of potent innate immune activators such as liposome-TLR9

complexes for prevention of mortality due to lethal viral or bacterial infections [21] [22] [23]

[24] [25] [26] [27] [28] [29]. Our work has demonstrated earlier that when TLR3 or TLR9

agonists are complexed to cationic liposomes, their potency for activating innate immune

responses is significantly increased [16] [51]. For example, we found that liposomal delivery of

TLR3 and TLR9 agonists was particularly effective for stimulating type I interferon responses

and CD8 T cell cross-priming [51]. Prior work has also established that combinations of cer-

tain TLR agonists, especially TLR3 and TLR9 agonists, are capable of generating synergistic

innate immune activation when co-delivered to the same antigen presenting cells [52] [53]

[54] [55] [16] [17] [25] [56] [56] [57] [58] [59] [15]. Therefore, we reasoned that a combined

TLR3/9 agonist liposomal immunotherapeutic, optimized for delivery to mucosal surfaces [29]

[29] [29], might be effective as a non-specific mucosal immune stimulant in cattle, in particular

for preventing or lessening clinical signs and mortality associated with BRDC.

To address this question, we evaluated the local immune stimulatory properties of LTC in

cattle, incorporating both in vitro and in vivo studies. Initial in vitro studies revealed that LTC

treatment of PBMC stimulated IFNγ production (Fig 1), indicative of activation of key innate

immune pathways. Additionally, LTC treatment of macrophages triggered upregulated

MHCII expression (most likely mediated by autocrine released TNFα) and increased TNFα
and IL-6 cytokine release (Fig 2). The importance of these findings relates to the known key

role of MHCII expression for more efficient antigen presentation by macrophages to T cells,

while both TNFα and IL-6 are important components of innate immunity and regulation of

anti-viral and anti-bacterial immune responses [60] [61] [62] [63]. Importantly, macrophage

treatment with LTC also triggered significant intrinsic macrophage bactericidal activity,

against 3 different important pathogens, including S. aureus, M. hemolytica and P. multocida
(Fig 4). This macrophage bactericidal activity appeared to be related in part to LTC induction

of reactive nitrogen intermediate production, as revealed by NO pathway inhibitors (Fig 4).

The LTC-mediated increased release of TNFα in bovine MDM is significant since TNFα has

been shown to induce high levels of bactericidal NO likely by inducing increased levels of tran-

scription of iNOS mRNA in macrophages [64]. Additionally, TNFα is chemotactic for mono-

cytes in vivo which is prerequisite for their inflammatory and innate immunity functionality

[65].

Studies were done in vivo to determine whether topical delivery of LTC could trigger

significant local innate immune activation. Prior studies of a related innate immune agonist

(Zelnate1) had demonstrated immune activation following systemic (intramuscular) adminis-

tration, but the mucosal effects of a similar immune stimulant have not been previously evalu-

ated in cattle [14]. Importantly, we found that intranasal administration of even relatively low

doses of LTC in healthy cattle triggered rapid immune activation at mucosal surfaces. For

example, following intranasal LTC delivery, there was a rapid cellular influx into the nasopha-

ryngeal region (Fig 5A). Specifically, LTC treatment appeared to preferentially trigger mono-

cyte recruitment, with a significant dose-dependent recruitment of CD14+ monocytes

occurring in the nasopharynx within 6h of LTC administration and continuing for another

72h (Fig 5B). The recruited monocytes also exhibited upregulated MHCII expression, consis-

tent with activation by either IFNγ or TNFα (Fig 5C). Activated monocytes are a critical

component of innate immunity and provide a potential bridge between innate and adaptive

immune responses, both by generating antimicrobial activity directly and by presenting viral

and bacterial antigens effectively to stimulate T cell responses indirectly.
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We also observed sustained upregulation of expression of innate immune response genes

for at least 2 weeks in cells obtained from the nasopharynx of cattle following a single intrana-

sal administration of LTC (Fig 6). For example, upregulated expression of IFNγ, IL-8 and

MCP-1 transcripts were observed at 2 weeks following LTC treatment. These findings are

important because they speak to the duration of immune activation elicited by LTC and sug-

gest that immune stimulatory complexes designed to adhere more effectively to mucosal sur-

faces, as in the case of LTC used in these studies, can trigger sustained immune activation and

hence potential protective immunity for several weeks.

Interestingly, we found that LTC administration to the nose did not significantly disrupt

the nasal microbiome (Fig 8). This surprising finding was also observed in recently reported

study in healthy dogs treated with LTC and suggests that the endogenous microbiome may be

relatively resistant to transient immune perturbations induced by innate activation alone [29].

This finding is important, inasmuch as it is well-established that the microbiome is highly

susceptible to significant disruption induced by antibiotic treatment [66] [67] [67]. Thus, an

important advantage to the use of an immunotherapeutic approach to BRDC prevention is

preservation of the normal flora, which serves as an important barrier to pathogen coloniza-

tion [68].

Another intriguing finding was the stimulatory effect of local activation of innate immune

responses in the upper respiratory tract on systemic humoral immune responses to several key

bacterial pathogens often harbored sub-clinically in the upper respiratory tract of cattle [69].

Thus, in animals treated with a single intranasal LTC administration, we observed significant

increases in IgG responses to Mannheimia, Histophilus, and Pasteurella, consistent with activa-

tion of specific T cell and B cell responses to these pathogens. Though the exact mechanism of

this effect remains undetermined at present, it is possible that LTC in the nose and oropharynx

may bind (via charge-charge interactions) to resident bacteria in those sites, thereby serving to

create an in-situ vaccine against these pathogenic organisms. Notably, the response appeared

to be pathogen specific, inasmuch as IgG binding to a non-pathogenic bacterium (eg, Biberstei-
nia trehalosi) was not increased following LTC treatment. Thus, local mucosal immune activa-

tion appeared to augment immune responses against potential mucosal bacterial pathogens.

The ultimate goal of a respiratory tract innate immune stimulant such as LTC would be effi-

cient and rapid induction of non-specific protection against infection caused by a complex

mixture of viral and bacterial pathogens, a key feature of the pathogenesis of BRDC in cattle.

To determine whether LTC could in fact induce protective immunity against BRDC without

use of antibiotics, a realistic BRDC challenge model was utilized. In this model, test animals

exposed to “seeder” animals infected with IBR, BVD, or M. hemolytica rapidly developed clini-

cal infection. Clinical illness scores in LTC treated animals were significantly reduced com-

pared to scores in control, PBS-treated animals (Fig 9). Thus, the average clinical illness score

declined from 1.5 to 0.5 in treated animals compared to control (PBS-treated) animals. More-

over, the euthanasia rate (proxy for mortality rate) was markedly reduced by LTC pre-treat-

ment, from 42% in control animals (PBS treated) to 12% in LTC-treated animals, a 71%

reduction in overall euthanasia rate (Fig 10). This degree of reduction in animal morbidity

and mortality associated with BRDC in cattle would have a significant economic benefit to the

producer, both by reducing animal losses outright, as well as by minimizing the reduction in

weight gain associated with BRDC. Taken together, these data indicate that intranasal delivery

of a potent innate immune stimulus, even without antibiotic treatment, can reduce morbidity

and mortality associated with BRDC in cattle.

Prior studies in rodent models indicate that innate immune activation can protect hosts

from a variety of infectious agents [70] [71] [71]. Such an effect induced by an immune stimu-

lant would also be an important factor in increasing the overall resistance of younger and at-
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risk animals to BRDC infection. Finally, the non-specific innate immune activation approach

may also lessen emergence of antimicrobial resistance by bacteria in the respiratory and gas-

trointestinal tracts, and thereby reduce the overall pressure on producers and feedlot operators

to use antibiotics for prophylaxis or metaphylaxis.

Supporting information

S1 Fig. Macrophage treatment with LTC stimulates increased phagocytosis. Triplicate cul-

tures of MDM were either untreated, treated with LPS or with increasing concentrations of

LTC for 24 h, followed by addition of fluorescent 1 um beads, as described in Methods (A).

Cells were incubated with beads for 2 h and harvested by trypsinization followed by flow cyto-

metric analysis to quantitate bead positive cells. In separate studies, MDM were incubated

with S. aureus, and intracellular uptake quantitated by immunostaining for S. aureus, followed

by analysis by flow cytometry. Macrophages were pre-treated with vehicle, LPS or increasing

concentrations of LTC followed by infection with S. aureus. Analysis of variance of gMFI

parameters was evaluated using a two-way ANOVA with, �, P<0.05; ��, P <0.01; ���,P<0.005

and ����, P<0.0001.

(TIF)

S2 Fig. Cytokine concentrations in bronchial swabs from cattle treated with PBS or LTC

prior to induction of BRDC. Cattle were treated with PBS or LTC administered by the intra-

nasal route (2 ml per nostril) prior to exposure to BRDC seeder animals. Bronchial swabs were

obtained at necropsy in animals that were euthanized due to BRDC or study completion (24

days). Bronchial samples were analyzed for IL-6 concentrations by ELISA. Statistical compari-

sons of differences in cytokine release was analyzed by ordinary one-way ANOVA with multi-

ple comparisons with, �, P< 0.05.

(TIF)

S3 Fig. Cattle in contact with seeder cattle infected with M. hemolytica, IBR and BVDV1b

treated with LTC have lower pathogen burden in upper and lower respiratory mucosa

when compared to animals treated with PBS. Nasal swabs were obtained from cattle and

plated on Brain Heart Infusion or blood agar plates and CFU were analyzed and assessed for

pathogenic strains of respiratory bacteria including Mannheima spp., P. multocida and Truper-
ella pyogenes. Extent of infection was assessed as either “no significant CFU”(A), “few/moder-

ate CFU (B) or “high CFU” (C). For day 24, CFU were obtained from lung necropsies. Data

were analyzed for significance using an unpaired t test with �, P�0.01.

(TIF)
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