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Abstract

Generative adversarial networks (GANs) have been used to obtain super-resolution (SR)

videos that have improved visual perception quality and more coherent details. However,

the latest methods perform poorly in areas with dense textures. To better recover the areas

with dense textures in video frames and improve the visual perception quality and coher-

ence in videos, this paper proposes a multiresolution mixture generative adversarial network

for video super-resolution (MRMVSR). We propose a multiresolution mixture network

(MRMNet) as the generative network that can simultaneously generate multiresolution fea-

ture maps. In MRMNet, the high-resolution (HR) feature maps can continuously extract

information from low-resolution (LR) feature maps to supplement information. In addition,

we propose a residual fluctuation loss function for video super-resolution. The residual fluc-

tuation loss function is used to reduce the overall residual fluctuation on SR and HR video

frames to avoid a scenario where local differences are too large. Experimental results on the

public benchmark dataset show that our method outperforms the state-of-the-art methods

for the majority of the test sets.

Introduction

Super-resolution (SR) imaging techniques are used to solve the classic problem of recovering

high-resolution (HR) images from low-resolution (LR) images. These techniques are widely

used in image processing. At present, there are many ways to obtain SR, but there is still room

for further development to improve upon the techniques.

With the relatively recent development of artificial intelligence, the use of deep learning to

achieve SR has attracted widespread attention [1–8]. Many deep learning-based image meth-

ods are superior to traditional methods, achieving breakthroughs in the peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM) metrics [9]. Among them, image super-

resolution (ISR) based on generative adversarial networks (GANs) [10] have recorded

improvements in visual perception quality. However, using adversarial training for video

super-resolution (VSR) has not received the same attention. Unlike ISR, VSR has to consider
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the relation between consecutive video frames, considering both spatial and temporal informa-

tion to generate results with temporal consistency and spatial consistency. The creators of VSR

algorithm TecoGAN [11] proposed a spatio-temporal discriminator and a Ping-Pong loss

function to achieve such consistency. Using GANs in VSR can generate coherent and clear

video details, however, there is still a large difference between the SR video implemented by

TecoGAN and the real video. The performance of TecoGAN still needs to be improved, espe-

cially in some areas with dense textures.

A multiresolution mixture generative adversarial network for video super-resolution

(MRMVSR) is proposed in this paper. In order to make full use of the information of LR video

frames and generate results with better visual quality, this paper proposes a multiresolution

mixture network (MRMNet) for VSR. Contrary to the traditional network, the MRMNet has

simultaneous multiple resolution feature maps during the training process, which can continu-

ously extract information from the LR feature maps to supplement the HR feature maps. The

LR frame is gradually enlarged to the target resolution after being put into the network. More-

over, we propose a residual fluctuation loss function, to avoid excessive local differences in the

generated frames and to generate better results in areas with dense textures. Experimental

results were gathered, using public datasets to test our proposed model against other state-of

the-art methods.

The contributions of the proposed method are summarized as follows: 1) an MRMNet is

proposed for VSR, which makes full use of the information from LR images, 2) a residual fluc-

tuation loss function is proposed for VSR to improve the visual perception quality of the result-

ing image, and 3) the performance of the MRMVSR model is fully evaluated, is superior to the

performance of state-of-the-art video super-resolution methods.

There are five sections in this paper. We have briefly introduced the research content in

Section 1. Section 2 examines related studies which motivate the proposed method. Section 3

introduces the proposed method in detail. In Section 4, the results and corresponding discus-

sion of the experiments are presented, with concluding statements given in Section 5.

Related work

In recent years, image and video acquisition, processing, and analysis have commanded

greater focus from researchers [12–16]. A significant amount of work has taken place analyz-

ing ISR, with Wang et al. [16] producing a review of this body of work. The SR convolutional

neural network [15] proposed by Dong et al. uses deep learning for the first time in the field of

ISR, accomplishing single image super-resolution, surpassing the traditional methods in terms

of the PSNR and SSIM metrics. Researchers have looked to improve image quality by predom-

inantly making improvements to the network, continuously accelerating the training process

and hence improving the performance of ISR. The network structure of improved models for

VSR can be divided into three distinct types: network front-end upsampling, network back-

end upsampling, and iterative upsampling [4, 8, 17–20]. Although these methods have

achieved excellent results according to PSNR and SSIM, the visual perception quality is still

poor. Several models follow SRGANs [19] to combine the GAN and perceptual loss [21] to

obtain ISR, which can generate improved results in visual quality [22–25].

VSR differs from ISR by requiring the generation of continuous multi-frame images, with a

certain relationship between frames. Simply using ISR methods for VSR will lose related infor-

mation between adjacent frames. VSR has been realized by complex calculation methods that

consequently have very high computational complexity [26, 27]. However, most existing meth-

ods that use a deep-learning technique to complete VSR divide the task into multiple sub-

tasks. Each sub-task recovers an HR image from multiple LR video frames [1, 3, 7, 28]. One
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such method, frame-recurrent VSR [29], takes multiple frames of LR images as input, learning

motion compensation information through a stream evaluation network. This method uses

the generated HR video frames to cyclically generate subsequent video frames that can reuse

high-frequency details and improve temporal consistency. GANs for ISR have been successful

in improving visual perception quality; however, few studies apply such a method for VSR. To

address this problem, TempoGAN [30] uses a GAN for VSR, improving overall temporal con-

sistency. Furthermore, the TecoGAN algorithm introduced a novel spatio-temporal discrimi-

nator that gets rid of the single function of the authenticity identification, and can guide the

network to generate spatio-temporal consistent results. Experimental results have found that

TecoGAN can generate clear and coherent details.

Although existing methods produce improved video clarity, the performance of the existing

methods in dense texture areas is still not satisfactory. Moreover, the visual perception quality

needs to be further improved. In order to improve the performance in texture-dense regions

and generate results with better visual perception quality, this paper proposes an MRMNet

and a residual fluctuation loss function.

Methodology

In this section, we introduce our proposed method that consists of network architecture

MRMNet, and the residual fluctuation loss function that will be used for training purposes.

MRMNet

To make full use of the information from LR frames such that the quality of VSR improves, we

propose an MRMNet. This network architecture, a generator network in adversarial training,

is illustrated in Fig 1.

There are three types of resolution feature map (x1, x2, x4) in the whole network. The label

x1 signifies that the resolution of the feature map is the same as the original resolution, whilst

x2 and x4 denote that the resolution of the feature map is magnified two and four times the

Fig 1. The architecture of the multiresolution mixture network (MRMNet). The x1, x2 and x4 levels denote the

scale of the feature maps. The input dimension of the network is 24×24, with the subsequent output dimension being

magnified by four to 96×96.

https://doi.org/10.1371/journal.pone.0235352.g001
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original resolution, respectively. The entire network gradually enlarges x1 resolution frames to

x4 resolution in multiple stages.

Specifically, the MRMNet consists of three components: bottleneck module, exchange unit,

and residual module. The bottleneck module is responsible for feature extraction from LR

frames and expressing LR features efficiently. The exchange unit is the central component of

MRMNet, enlarging frames and obtaining exchanged features. The exchanged features have

higher resolution feature maps that were obtained from other similar and lower resolution fea-

ture maps. These multiresolution feature maps are then combined to form a new feature map.

The residual module is responsible for feature extraction and representation learning after the

exchange unit.

The details of the bottleneck module are shown in Fig 2, consisting mainly of convolution

layers and activation layers. The details of the convolution layers are also shown in Fig 2, with

the kernel size (k), the number of channels (n), and stride (s) all given. In the activation layers,

we chose the parametric rectified linear unit (PReLU) [31] function as an activation function.

The input and output of the bottleneck module are all LR feature maps. It should be noted that

the feature map obtained by the input feature map through the single and triple convolution

layer routes will be combined, then activated as the output of the bottleneck module.

The exchange unit of the MRMNet is shown in Fig 3. There are three exchange units in the

MRMNet, with different numbers of feature maps as inputs and outputs. In Fig 3, we show a

generalized version of the exchange unit with N inputs and M outputs. The values of N and M
are 3 and 2 respectively in Fig 3. The resolutions of the input feature maps are x1, x2, and x4,

while the resolutions of the output feature maps are x2 and x4. The feature map of x1 resolu-

tion is enlarged to x2 resolution by the deconvolution operation [32], and is enlarged to x4 res-

olution by applying the deconvolution operation twice. If the x1 resolution feature map was

enlarged to x4 resolution through applying the deconvolution operation only once, the train-

ing results would produce checkerboard artifacts. The feature map of x2 resolution is enlarged

Fig 2. The architecture of the bottleneck module of the MRMNet. The kernel size (k), number of channels (n), and

stride (s) of each convolutional layer are presented. The input dimension of the bottleneck module is [24, 24, c] and the

output dimension is [24, 24, 1024], where c denotes the number of channels of the input feature maps.

https://doi.org/10.1371/journal.pone.0235352.g002
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to x4 resolution by applying the deconvolution operation once. In all deconvolution layers, the

kernel size is 3x3, the stride is 2, and the number of channels of x1, x2, and x4 feature maps are

128, 64, and 32, respectively. We also can obtain the feature map with the same resolution

through the convolution operation, where kernel size is 3x3, the stride is 1, and the number of

channels of x1, x2, and x4 feature maps are 128, 64, and 32, respectively. If someone needs to

obtain a feature map with a specified resolution as output, they should receive all feature maps

less than or the same as this resolution. For example, if the x4 resolution feature map is the

desired output, the feature maps from x1 and x2 resolution feature maps must be obtained

first, through deconvolution. Second, if the inputs of the exchange unit contain a x4 resolution

feature map, a new feature map with the same resolution should be obtained from it via convo-

lution. Then, all feature maps (if there are more than one) are merged into a feature map

through the concatenation of feature maps in the channel dimension. The number of channels

is adjusted through the convolution layer that has a kernel size of 1x1, a stride of 1, and the

number of channels of x1, x2, and x4 feature maps are 128, 64, and 32, respectively. The final

output is obtained using an activation layer. Through this structure, the exchange unit can sup-

plement the information gathered from the LR frame and transfer it to the HR frame, obtain

enlarged frames, and exchange features. After the first exchange unit, the number of channels

of x1, x2, and x4 feature maps are 128, 64, and 32, respectively.

The residual module of the MRMNet, as shown in Fig 4, is a classic residual network with-

out the batch normalization (BN) layer. The MRMNet also has a convolutional layer and an

activation layer at the beginning of network, and a convolutional layer after the bottleneck

module and at the end of the network. At the beginning, the kernel size of the convolutional

layer is 3x3, the number of channels is 64, and the stride is 1. After the bottleneck module, the

kernel size is 3x3, the number of channels is 128, and the stride is 1. By the end, the size of the

convolutional kernel is 9x9, the number of channels is 3, and the stride is 1.

Fig 3. The architecture of the exchange unit of the MRMNet. The dimension of the input(x1), input(x2), and input

(x4) are [24, 24, c1], [48, 48, c2], and [96, 96, c4] respectively. The dimension of the output(x2) and output(x4) are [48,

48, 64] and [96, 96, 32] respectively. The labels c1, c2, and c4 denote the number of channels of corresponding feature

maps.

https://doi.org/10.1371/journal.pone.0235352.g003
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In the MRMNet, the number of bottleneck module and residual module used in each

stage can be adjusted. In this paper, the number of each component is fixed at two, in each

stage.

Loss function

In deep learning-based methods, the loss function is necessary since it can guide the neural

network to learn desired information. In order to reduce the overall fluctuation of residual val-

ues between the SR frame and HR frame, hence avoiding a result with excessive local differ-

ences, we propose a residual fluctuation loss function. We will introduce the details of the

residual fluctuation loss and the final loss function as follows.

Residual fluctuation loss function. The residual fluctuation loss function lSRrf is proposed

to reduce the overall fluctuation and avoid excessive local differences in the generated frame.

Such a residual function mainly refers to the variance in probability theory and statistics. The

function is calculated by determining the variance of the difference between the HR feature

map and the SR feature map,

lSRrf ¼
1

WH � 1

PW
x¼1

PH
y¼1
ðResx;y � meanðResÞÞ2; ð1Þ

where H and W denote the dimensions of the feature maps, Res denotes the residual between

the reference HR frame and the generated SR frame, Resx,y denotes the pixel value of Res at

point (x, y), and mean(Res) denotes that the average value of pixels is calculated based on the

obtained residual, Res. The residual, Res, can be calculated using,

Res ¼ FVGGðI
HRÞ � FVGGðGðI

LRÞÞ: ð2Þ

Here, FVGG denotes the feature map that is obtained by the VGG19 [33] network, ILR is the

LR frame version of its HR frame counterpart IHR, and G denotes the generator network.

Final loss function. During training, the proposed model uses a residual fluctuation loss

function in combination with the loss function LG;F� TecoGAN , as the final loss function of

Fig 4. The architecture of the residual module of the MRMNet. The input dimension of the residual module is [a, a,

c], and output is [a, a, c], where a denotes the length and width of the feature maps and c denotes the number of

channels in the input feature maps. The parameters of the two convolution layers remain the same, where kernel size is

3x3 and the stride is 1. If a equals 24, 48, and 96, the number of channels are 128, 64, and 32, respectively.

https://doi.org/10.1371/journal.pone.0235352.g004
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MRMVSR’s generator. The LG;F� TecoGAN is calculated using,

LG;F� TecoGAN ¼
P
kgt � ytk2 � la

P
logDðINgÞ

þ
P
llkFDðINgÞ � FDðINyÞk

2

þ
P
kFVGGðgtÞ � FVGGðytÞk2

þ LPP þ Lwarp:

ð3Þ

In (3), gt and yt denote the generated frame and reference frame for tth frame, respectively,

while INg and INy denote the generated frames and reference frames for three consecutive

frames, respectively. Furthermore, FD and FVGG denote the feature maps of the discriminator

network D and VGG19 network, respectively. λa and λl are the coefficients of the loss function.

LPP and Lwarp are the Ping-Pong loss and warp loss that are consistent with TecoGAN [11].

Using these two variables, the final loss function is formulated as follow,

LG;F� MRMVSR ¼ LG;F� TecoGAN þ
P
lSRrf : ð4Þ

The proposed model will be trained based on this final loss function.

Results and discussion

Datasets

The training data used to test MRMVSR had the same source as the TecoGAN, which were

obtained from the HR video dataset Vimeo [34]. Specifically, this training set has 290 video

clips that were extracted from 28 high-definition videos. Each video clip consists of 120 frames,

and hence 34,800 images were included in the training set. We used 250 (a total of 30,000

images) and 40 (a total of 4800 images) video clips for training and validation processes,

respectively. Image augmentation was used in the training process, including rotations and

flipping.

Four scene sets in the Vid4 dataset [26] were used as the test data in both the MRMVSR

model and the comparative models, namely Calendar, City, Foliage, and Walk. These four

scene data sets all contain 50 consecutive video frames, which are commonly used in the field

of VSR.

Training details

In the training process, following the TecoGAN model, the MRMVSR model amplifies the

video frame resolution four times to obtain the SR video frames. The LR video frame was

obtained by down-sampling the HR video frame, implemented via bicubic interpolation. The

LR video frame was normalized to [0, 1], whilst the HR video frame was normalized to [–1, 1].

To prevent the generation of local noise, the feature map was cropped to [–5, 5] after the

exchange unit.

The training process had two stages, with each stage comprising 500,000 steps. The training

time of the proposed MRMVSR is about 100 hours. The inference time of the proposed

MRMVSR is about 0.8 second on average for an image. Each batch contained four different

videos. Ten consecutive frames were selected for each video, so each batch consisted of 40

frames. The LR images were cropped to the same size of 24×24. The first stage was a pre-train-

ing stage without discriminator, where the loss function was ∑kgt−ytk2 + Lwarp. The second

stage was a formal training stage, which used the GAN with a discriminator. The learning rate

in both two stage was set as 5e-5. Adam was chosen as the optimization algorithm, where β1
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and β2 were 0.9 and 0.99, respectively. The final loss function used was LG;F� MRMVSR, where λa =

0.01, λl = 0.02.

The model was implemented in Python3.5 and Tensorflow1.10. Matplotlib3.0.3, Numpy1.14.5,

and Opencv-python 4.1.0.25 were also used. The memory of the GPU used was 16GB.

Experimental results

To demonstrate the performance of the MRMVSR method, we made several experimental

comparisons analyzing from three main aspects: the network, loss function, and overall perfor-

mance of the model. The details are described separately as follows.

Network performance

To verify the performance of the MRMNet, the generator of TecoGAN-G was selected as the

comparative network. The loss functions LG;F� TecoGAN of TecoGAN and LG;F� MRMVSR of MRMVSR

were used to train the generator. Learned perpetual image patch similarity (LPIPS) [35] and tem-

poral learned perpetual image patch similarity(tLP) [11] were selected as the evaluation metrics

on the Vid4 test set, for measuring the visual perception quality and temporal coherence respec-

tively. A smaller value represents an improved performance. The tLP is calculated using,

tLP ¼ kLPIPSðyt� 1; ytÞ � LPIPSðgt� 1; gtÞk1; ð5Þ

where gt and yt denote the current generated frame and reference frame, gt−1 and yt−1 denote the

previous generated frame and reference frame. The tLP employs LPIPS to measure the visual sim-

ilarity of two consecutive frames in comparison to the reference, which are used for quantifying

realistic temporal coherence and video continuity. We choose tLP and LPIPS as the evaluation

metrics because PSNR and SSIM cannot evaluate the visual perception quality very well in the

super-resolution field. Several GAN-based SR methods (e.g. SRGAN and ESRGAN) has better

visual perception quality that is close to the real image, but the quantitative results are not satisfac-

tory according to PSNR and SSIM.

We took LG;F� TecoGAN as the generator loss function to evaluate the network performance at

first. Figs 5 and 6 show the evaluation results according to the LPIPS metric and tLP metric,

respectively.

From Fig 5, we can observe that TecoGAN-G and MRMNet have their own advantages on

the four different scene datasets when using the same loss function according to the LPIPS

metric. The evaluation results indicate that both networks can generate SR video with better

visual quality. From Fig 6, we can observe that the performance of MRMNet is better than

TecoGAN-G according to the tLP metric, significantly outperforming the other method in

three out of the four datasets. This indicates that the SR video derived from MRMNet has an

improved visual perception quality whilst also having better continuity. From the above con-

clusions, the performance of MRMNet can be considered to be better than TecoGAN-G.

In addition, we define LG;F� MRMVSR as the loss function of the generator and conduct contrast

experiments to evaluate the network performance. Fig 7 shows the evaluation results according

to the LPIPS metric, while Fig 8 shows the evaluation results according to the tLP metric.

As shown in Fig 7, according to the LPIPS metric, the MRMNet with loss function

LG;F� MRMVSR is better than TecoGAN-G with the same loss function in different test sets. This

means that MRMNet can produce videos with a higher visual quality than the other method.

Fig 8 shows that the performance of MRMNet is also better than that of TecoGAN-G network

according to the tLP metric. It can be found that the SR video generated by MRMNet has bet-

ter visual perception quality and continuity than the video generated by TecoGAN-G.
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According to the above experiments, it is shown that our MRMNet is superior to Teco-

GAN-G in both visual perception quality and continuity.

Fig 5. Evaluation results using the LPIPS metric for MRMNet and TecoGAN-G on four different data sets. The loss function used is LG;F� TecoGAN .

https://doi.org/10.1371/journal.pone.0235352.g005

Fig 6. Evaluation results using the tLP metric for MRMNet and TecoGAN-G on four different data sets. The loss function used is LG;F� TecoGAN .

https://doi.org/10.1371/journal.pone.0235352.g006
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Fig 7. The evaluation results of MRMNet and TecoGAN-G on four different data sets, using the LPIPS metric. LG;F� MRMVSR is the loss

function used.

https://doi.org/10.1371/journal.pone.0235352.g007

Fig 8. The evaluation results of MRMNet and TecoGAN-G on four different data sets, using the tLP metric. LG;F� MRMVSR is the loss function used.

https://doi.org/10.1371/journal.pone.0235352.g008
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Performance results and analysis of loss function

In order to show the effectiveness of the proposed residual fluctuation loss function, we use

MRMNet as the generator network with different loss functions, LG;F� TecoGAN and LG;F� MRMVSR.

Vid4 was used again as the evaluation dataset, while LPIPS and tLP were again selected as eval-

uation metrics. Figs 9 and 10 show the experimental evaluation results, using the LPIPS metric

and tLP metric, respectively to compare the effectiveness of the loss function.

We can observe that the result generated by the proposed residual fluctuation loss function

LG;F� MRMVSR has a smaller LPIPS value compared to different loss functions from Fig 9. This

shows that adding a residual fluctuation loss function can effectively improve the visual per-

ception quality of SR video. From the results of Fig 10, the model with our proposed loss func-

tion LG;F� MRMVSR can also generate a smaller tLP value in a majority of datasets. This indicates

that the generated video from the proposed method has better continuity feature. In summary,

adding a residual fluctuation loss function can effectively improve the performance of VSR,

with both the visual perception quality and video continuity improved.

The loss curve of the proposed residual fluctuation loss function during training is shown

in Fig 11. With the training processes, the loss value decreases gradually. It also shows that the

training hyperparameters were set properly.

Results and analysis of overall performance of the model

In Table 1, the evaluation results of MRMVSR compared to Bicubic, dynamic upsampling fil-

ter (DUF) [36], FRVSR [29], and TecoGAN [11] methods are given, according to the LPIPS

and tLP metrics.

Fig 9. The evaluation results comparing different loss functions on four different data sets, according to the LPIPS metric. Loss-TecoGAN

represents the loss function LG;F� TecoGAN , whilst Loss-MRMVSR represents the loss function LG;F� MRMVSR.

https://doi.org/10.1371/journal.pone.0235352.g009
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As shown in Table 1, the proposed method MRMVSR achieved the best performance in

most scenarios according to the tLP and LPIPS metric, scoring the lowest evaluation results

for three of the four data sets. This implies that the proposed MRMVSR method can produce

Fig 10. The evaluation results comparing different loss functions on four different data sets, according to the tLP metric. Loss-TecoGAN

represents the loss function LG;F� TecoGAN , whilst Loss-MRMVSR represents the loss function LG;F� MRMVSR.

https://doi.org/10.1371/journal.pone.0235352.g010

Fig 11. The loss curve of the residual fluctuation loss function during training.

https://doi.org/10.1371/journal.pone.0235352.g011

PLOS ONE Multiresolution video super-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0235352 July 10, 2020 12 / 15

https://doi.org/10.1371/journal.pone.0235352.g010
https://doi.org/10.1371/journal.pone.0235352.g011
https://doi.org/10.1371/journal.pone.0235352


videos with better visual quality and temporal coherence, as well as better continuity between

video frames compared to the other tested methods. However, the tLP and LPIPS of MRMVSR

are worse than TecoGAN, and the tLP is inferior to FRVSR and DUF on Walk data set. One

possible reason is that it has much local movement in the Walk data set. We will try to fix this

problem in the future work.

The limitations and future work

Although the MRMVSR has achieved good performance in some aspects, there are still some

limitations. The loss function of generator is a little complex. Therefore, the loss function

terms may conflict with each other. In some scenarios, the loss function may lead to poor per-

formance. One potential solution is to simplify the loss function. Another solution is to set

appropriate weights for different loss function terms. The second problem is that the training

time of the model is too long. To solve this problem, we will try to simplify the discriminator

to speed up the training in the future work.

Conclusion

In this paper, we propose an MRMVSR method with a new generative network and a residual

fluctuation loss function for VSR tasks, with the proposed generative network called MRMNet.

In this network, the HR feature map can continuously extract LR feature map information to

supplement the images. The LR feature map is gradually enlarged to obtain the target resolu-

tion, hence the utilization rate of the LR feature map information is improved. The proposed

residual fluctuation loss function is able to restrict large variations in the quality of the gener-

ated images, to avoid the large local differences. By comparing the MRMVSR method with

other state-of-the-art models using the LPIPS and tLP metrics over four test data sets, the

experimental results showed that the proposed method offers a significant improvement. The

proposed method has the ability to generate videos with better visual perception quality and

temporal coherence, significantly improving performance in areas with dense textures.

Supporting information

S1 Data.

(TXT)

S2 Data.

(ZIP)

Table 1. Comparison of evaluation results of Bicubic, DUF, FRVSR, TecoGAN and MRMVSR methods. The evaluation metrics are LPIPS and tLP. The lowest values

are highlighted in bold, representing the best performances for each data set and evaluation metric permutation. The tLP×100 denotes the value of it is 100 times of tLP.

Data set Metric Bicubic DUF [36] FRVSR [29] TecoGAN [11] MRMVSR (proposed)

Calendar LPIPS tLP×100 0.5676 0.3882 0.3027 0.2825 0.2473

3.1539 1.9293 1.1050 1.4686 0.3472

City LPIPS tLP×100 0.5208 0.3499 0.3532 0.2769 0.2467

2.3497 1.9936 1.9411 1.3946 0.7923

Foliage LPIPS tLP×100 0.5459 0.4109 0.4124 0.2436 0.2177

4.4131 2.1364 2.4091 1.4203 0.3512

Walk LPIPS tLP×100 0.3694 0.1897 0.1992 0.1334 0.1353

1.3073 0.2132 0.1621 0.3254 0.8537

https://doi.org/10.1371/journal.pone.0235352.t001
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