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Abstract

Pavement crack analysis, which deals with crack detection and crack growth detection, is a

crucial task for modern Pavement Management Systems (PMS). This paper proposed a

novel approach that uses historical crack data as reference for automatic pavement crack

analysis. At first, a multi-scale localization method, which including GPS based coarse local-

ization, image-level localization, and metric localization has been presented to establish

image correspondences between historical and query crack images. Then historical crack

pixels can be mapped onto the query crack image, and these mapped crack pixels are seen

as high-quality seed points for crack analysis. Finally, crack analysis is accomplished by

applying Region Growing Method (RGM) to further detect newly grown cracks. The pro-

posed method has been tested with the actual pavement images collected in different time.

The F-measure for crack growth is 88.9%, which demonstrates the proposed method has

an ability to greatly simplify and enhances crack analysis result.

1. Introduction

Modern Pavement Management Systems (PMS) are playing more and more important roles

in pavement survey, maintenance, and rehabilitation. An increasing number of transportation

agencies are building and upgrading their PMS to enhance pavement management. In PMS,

pavement crack analysis, which deals with crack detection and crack growth detection, is a cru-

cial and core task. With the development of sensor and information technology, crack data

can be quickly and automatically collected by vehicle-borne sensors. For example, many trans-

portation agencies are routinely (e.g., quarterly, semi-annually, annually, etc) using sensor

vehicles for pavement image collection. Thereby, how to accurately identify pavement cracks

from the collected pavement images is becoming a key technology in automatic crack analysis

in PMS.

For the past decades, pavement crack detection and recognition have been extensively

investigated. Generally, existing crack detection methods can be classified into two main cate-

gories: 1) 2D image data based methods; 2) 3D range data based methods. In these researches,
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the image-based methods are the mainstream methods, which can also be classified into two

main sub-categories: supervised methods and unsupervised methods. The supervised methods

are based on the supervised learning approaches that consist of the two steps of training and

testing. In the training step, the image patches with cracks are labelled manually as positive

samples while those patches with no cracks as negative ones. From the training data, a classifier

can be trained by using different machine learning models. Finally, the trained classifier can be

used for crack detection, also known as testing step. In the literature, many machine learning

models are proposed to train the classifiers. For example, Chu et al applied Back Propagation

(BP) neural network to train a crack detector [1]. Another important progress for supervised

crack detection is the use of Convolutional Neural Network (CNN), also known as deep learn-

ing. The CNN based methods try to utilize a deep neural network with more layers to train the

data and finally derive a more accurate and robust classifier [2–4]. For example, Wang et al

first applied the CNN for crack detection [5]. In their work, a deep CNN of 7 layers was uti-

lized to train a crack detector. Moreover, the authors compared two kinds of scale grid (32×32,

64×64) to achieve a good performance in crack detection. This method can achieve 95.9% pre-

cision and 93.5% recall, which demonstrates good potential of deep learning for crack analysis.

Li et al utilized CNN to classify the pavement crack. In their work, the accuracy of pavement

crack classification is more than 94% [6]. However, the disadvantage of the supervised meth-

ods is that a large number of labelled data is required for the training. In contrast, the unsuper-

vised based methods require no training data. They try to segment the crack areas by using

some prior knowledge of the crack areas, such as image intensity, edge, texture, etc. Many algo-

rithms have been developed by adaptively setting the thresholds for direct crack segmentation.

For example, Fujita et al utilized a locally adaptive threshold to segment crack pixels in the

image. It achieved a good performance in pavement crack detection [7]. Another type of crack

detection algorithms are based on seed points, which are usually selected from pavement

images by comparing a pixel value within its surrounding pixels or by computing the image

edges. With the seed points, the remaining crack areas can be derived by using region growing

or by path optimization. For example, Kaul et al formulated the crack detection into a shortest

path problem based on the initial seed point detection results [8]. As asphalt pavement images

are highly textured, many texture based methods are developed for crack detection. For exam-

ple, the Gabor filters have been extensively investigated for crack detection by analysing the

pavement texture with a bank of filters with different scales and angles [2, 3, 9–12]. Besides

Gabor filter, Li et al also proposed a steerable matched filter to extracted crack saliency map

[13]. The crack saliency map can be used as a coarse initial guess to fill into an active contour

method to extract all the crack areas. Besides image-based crack detection, crack detection

methods based on 3D data are also developed in existing literature recently. 3D data especially

laser has unique character. Many researchers have developed pavement crack detection algo-

rithm utilizing laser scan [14–16]. For example, Tsai et al developed 3D pavement crack imag-

ing systems, as well as the crack detection methods based on 3D data in different environment

conditions [17]. The result illustrated that 3D data are more robust and reliable than image

data for crack detection. In addition, since the deep learning has remarkable performance in

object recognition utilizing 3D data, Zhang et al applied a deep CNN of 7 layers named Crack-

Net to realize crack detection through 3D data [18]. It achieved good results (Precision

90.13%, Recall 87.63%, F-measure 88.86%).

Currently, many transportation agencies are collecting pavement image data in a routinely

and periodic manner. For example, most of transportation agencies collect pavement data

annually, while some of them collect pavement data every 6 months. As a result, historical

crack images can be obtained by several crack data collections. The pavement cracks will not

grow substantially in a short period of time. Hence, the historical crack data can be utilized to
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enhance current crack analysis. To achieve this goal, an important task is to establish the corre-

spondence between historical and current crack images, which is also called localization.

Therefore, this paper proposed a method that using historical data as reference for current

crack analysis. Especially, the proposed method aim to address the localization problem by

using a multi-scale strategy. Contributions of this paper are summarized as follow: 1) The

authors proposed a method that using historical crack data as the reference for pavement

crack analysis, which can greatly enhance the performance of pavement crack analysis; 2) The

authors proposed a multi-scale localization strategy to match historical crack image with cur-

rent crack image. The multi-scale localization method consists of GPS-based coarse localiza-

tion, image-level localization and finally pixel-level localization; 3) By referring to historical

crack data, the authors proposed a novel approach, called RGM, it can detect the condition

change of pavement cracks easily. The condition change of pavement crack is especially impor-

tant for pavement treatment strategies.

The rest of this paper is organized as follow: Section 2.1 introduces the multi-scale localiza-

tion and crack data mapping. Section 2.2 introduces crack detection and analysis by RGM.

Section 3 presents the experimental results. Section 4 draws the conclusion.

2. The proposed method

We got the authority of work from Wuhan university of technology. As illustrated in Fig 1, the

proposed reference-based crack analysis method consists of three main modules: 1) multi-

Fig 1. Illustration of the reference-based crack analysis method.

https://doi.org/10.1371/journal.pone.0235171.g001
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scale localization; 2) mapping historical crack image onto the query crack image; 3) crack

post-processing and analysis. Each query crack data and historical crack data contains GPS

information and a crack image. Each crack image is well associated with GPS information. In

addition, the historical crack label, either extracted in manual or automatic way, are repre-

sented as a limited number of pixels belonging to crack (in pixel-level) in the pavement images.

Hence, each historical crack data can be presented by using point sets as follows:

mi ¼ fGi; Ii; Lig ði ¼ 1; 2; ::; nÞ ð1Þ

where n is the number of historical crack data. Gi is GPS information. Ii is the pavement crack

image and Li represents all the crack pixels that are labelled in the historical image.

2.1. Multi-scale localization and crack data mapping

The module of multi-scale localization aims to establish the pixel-level image correspondence

between the query crack data and the historical crack data. The proposed method adopts a

coarse-to-fine strategy to achieve multi-scale localization. And it consists of three steps, which

are GPS-based coarse localization, image-level localization and pixel-level localization. Based

on the localization results, the labelled crack pixels in the historical image can be mapped onto

the query crack image for crack analysis.

2.1.1. GPS-based coarse localization. The first step of multi-scale localization is the

coarse localization using GPS data, as illustrated in Fig 2. Let Gj be the GPS coordinate of jth

query crack data and Gi be the GPS coordinate of ith historical crack data. The distance

between Gj and Gi can be calculated as follow:

dji ¼ distðGj;GiÞ ð2Þ

With the GPS data matching, a set of historical crack image candidates can be obtained,

whose associated GPS coordinates and the query GPS coordinates are within a threshold dis-

tance. Thus, this step is called GPS-based coarse localization. The GPS-based coarse localiza-

tion allows us to derive a limited number of candidates from a huge amount of historical crack

Fig 2. Coarse localization from GPS coordinate matching.

https://doi.org/10.1371/journal.pone.0235171.g002
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images collected. The mathematical of this task are described as follow:

Pos ¼ fGijdij � kg ð3Þ

where k is a threshold distance to select the candidate historical crack data. It decides that the

ith historical crack data is close enough to the jth query crack data. dij is the distance between ith

historical crack data and jth query crack data. In practice, according to the accuracy of GPS

localization, the threshold distance is heuristically set to 10 meter. After GPS-based coarse

localization, a limited number of candidate historical crack images, which satisfies Eq (2), are

obtained.

2.1.2. Image-level localization. The purpose of image-level localization is to find the

“closest” historical crack image, which is within the candidate historical crack images from the

GPS-based coarse localization results, to the query crack image. The term “closest” means that

the matched historical crack image and query crack images have least distance among all the

candidate historical crack images. The authors employ the local image feature point pairs,

which are corresponding same local feature points for different images, to realize image-level

localization. In this paper, all the images are represented with a number of local feature points.

As a result, we can match two images by comparing their local features to achieve image-level

localization.

In this paper, ORB [19] is utilized to extract local feature points both for query and candi-

date historical crack images. The ORB is an image match algorithm which combines oFAST

(FAST with orientation) and rBRIEF (rotated BRIEF). Compared to the classic SIFT and

SURF, ORB has much faster computation speed. More specific, it applies oFAST for feature

point detection and rBRIEF for feature descriptor computation. The oFAST develops from

FAST (From Accelerated Segment Test). FAST takes one parameter, the intensity threshold

between the centre pixel and those in a circular window around the centre. Hence, FAST is

very fast in implementation. Practically, FAST-9, which circular radius is 9, is usually used for

good performance. The performance of oFAST is enhanced in two ways. First, the Harris cor-

ner measure is adopted to select the distinct FAST points. Second, the orientation information

is added such that the extracted feature points are orientation invariant. The orientation is cal-

culated from the moments of the image within a circular window:

mpq ¼
X

x;y

xpyqIðx; yÞ ðp; q 2 ð0; 1ÞÞ ð4Þ

where x, y are coordinate of an image and I(x,y) is moment of this image. As a result, the cen-

troid of the image is computed from the moments as follows:

C ¼
m10

m00

;
m01

m00

� �

ð5Þ

The orientation of the patch image is thus defined as follows:

y ¼ atan2ðm01;m10Þ ð6Þ

where atan2 is the quadrant-aware version of arctan, and the BRIEF descriptor is a bit string

description of an image patch constructed from a set of binary intensity tests. Consider a

smooth image patch P, a binary test of two arbitrary positions x and y is a logic result of com-

paring their image intensities as follows:

tðP; x; yÞ ¼
1 : PðxÞ < PðyÞ

0 : PðxÞ � PðyÞ

(

ð7Þ
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where P(x) is the intensity of the image c at a point c. The BRIEF descriptor is thus defined as a

vector of n binary tests:

fnðP; x; yÞ ¼
Xn

i¼1

2i� 1tðP; x; yÞ ð8Þ

In the literature, there are many solutions on how to choose the n binary tests. And in this

paper, the authors use a Gaussian distribution around the patch centre and choose a vector

length n = 256. As a result, an ORB feature descriptor is represented with a 256-bit string vec-

tor. In order to make the BRIEF descriptor invariant to rotation, ORB steers BRIEF according

to the orientation of the key points. For any feature set of n binary test, ORB defines the follow-

ing 2×nmatrix:

S ¼
x1; . . . ; xn
y1; . . . ; yn

 !

ð9Þ

From the patch orientation θ, the corresponding rotation matrix Rθ can be computed as fol-

low:

Ry ¼
cosy � siny

siny cosy

 !

ð10Þ

Then a steered version Sθ can constructed by rotation matrix Rθ and S as follows:

Sy ¼ RyS ð11Þ

From the steered BRIEF, the authors can compute the rotation-invariant descriptor, also

known as ORB descriptor, as follows:

gnðP; yÞ ¼ fnðPÞjðxi; yiÞ 2 Sy ð12Þ

The matching of local features across different images is based on the Hamming distances.

More details are referred to [19]. The query image is thus matched with all the candidate his-

torical images by ORB-feature based matching. And the “closest” historical crack image that

has the most number of matched feature points is derived as the image-level localization

result.

2.1.3. Pixel-level localization for historical crack mapping. Once the “closest” historical

crack image is obtained, the underlying geometric relationship between the query and the his-

torical images can be calculated by pixel-level localization. At first, the authors assume that the

pavement is a plane. Therefore, under a pin-hole camera model, the underlying geometry can

be described with a homography matrix [20] such that:

xi
yi
1

2

6
6
4

3

7
7
5 ffi H

mi

ni

1

2

6
6
4

3

7
7
5 ð13Þ

where μi, νi are the coordinate of local feature on the historical image and xi, yi are the
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coordinate of local feature on the query image.

H ¼

h1 h2 h3

h4 h5 h6

h7 h8 h9

2

6
6
4

3

7
7
5 ð14Þ

Eq (13) can be re-written as follows:

xi ¼
h1mi þ h2ni þ h3

h7mi þ h8ni þ h9

yi ¼
h4mi þ h5ni þ h6

h7mi þ h8ni þ h9

ð15Þ

From the above equation, the authors can generate two linear constraints on the homogra-

phy matrix:

mi ni 1 0 0 0 � ximi � xini � xi
0 0 0 mi ni 1 � yimi � yini � yi

" #

hi h2 � � � h9

� �T
¼ 0 ð16Þ

As the homography matrix can be determined up to a scale, the homography matrix can be

computed from at least 4 point correspondences. In practice, the Direct Linear Transform

(DLT) can be applied to compute the homography matrix and optimize the results with the

Levenberg-Marquardt (LM) method. The computation details can be referred in [20].

With the computed homography matrix, the historical crack label can be mapped onto the

query image as follow:

½xi yi 1�
T
ffi H½mi ni 1�

T
ði ¼ 1; 2; . . . ; nÞ ð17Þ

where n is the number of labelled crack pixels on historical image. [μi νi]T is the coordinates of

pixel which is the mapped crack label on the historical image. [xi yi]T is the coordinate of

mapped crack label on the query image.

As a result, the mapped crack label on the query images can be represented with a set of 2D

image coordinates as follow:

Q ¼ f½xi yi�
T
g ði ¼ 1; 2; � � � nÞ ð18Þ

With Eq (18), we can determine the mapped crack pixels on the query images from pixel-

level localization results.

2.2. Crack detection and analysis by RGM

Once the authors obtain the crack pixels on the query image by mapping the historical crack

pixels, which were well labelled in the historical database, all the crack pixels can be detected

afterwards. These mapped crack pixels on the query images are important clues for crack

detection. The grown crack pixels of query images can be detected by RGM through mapped

crack pixels.

As crack situations can be deteriorate during the time interval between the current and his-

torical crack data collection operations, there are some pixels belonging to newly grown crack

that need to detect as well. This paper proposes using the RGM for crack post-processing and

analysis. According to [21, 22], the newly grown crack pixel is close to existing crack pixel. The

existing crack pixel, which is the mapped query crack label from the above steps, can be used

as “ideal” initial seed points. The aim of RGM is to find the newly grown crack pixels according
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to seed points. From these seed points (number 0 points in Fig 3), the region can be grew by

finding all the neighbouring points (all the points around number 0 point in Fig 3) that have

similar properties. In practice, the homogenous points (number 2, 4, and 8 points in the Fig 3)

have similar colours or intensities, etc., with the seed points, as illustrated in Fig 3.

As the crack image pixels have similar intensity values in the same image, the authors ana-

lyse the pixel intensity histogram from the mapped crack pixels. From the mapped label, the

pixel values can be computed from the mapped correspondences on the query image. All these

pixel values I(μ’,ν’) associated with the mapped crack label follow certain pattern, as shown in

Fig 4. Fig 4 illustrates a typical image intensity distribution of the mapped crack pixel, which

demonstrates a Gaussian-like model. It can be used as a constraint for crack growing. There-

fore, this paper develops a Gaussian model to fulfil this task. This paper thus utilizes the Gauss-

ian model to represent such distribution. The corresponding mean and standard deviation can

Fig 3. Seed point from mapping for crack region growing.

https://doi.org/10.1371/journal.pone.0235171.g003
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be computed as follow:

o ¼
X

i

X

j

Iði; jÞ=N ð19Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

X

j

ðIði; jÞ � oÞ2=N
s

ð20Þ

where [i,j]T2Q and N is the number of mapped crack label pixels.

Note that, the proposed method allows that each query crack image has unique pixel Gauss-

ian model. Compared to the hard threshold methods in literature, the proposed method is

thus more robust and adaptive for region growing. From the computed Gaussian model, the

authors can quickly determine if a neighbour image I(pμ,pν) has the similar properties with the

seed points. As crack region in the image usually has low image intensities, the authors can

thus set a range of image intensities from the Gaussian model parameters, such as the mean

and the standard deviation. Hence, a point (pμ,pν) is classified into crack if its intensity satisfied

the following conditions:

Iðpm; pvÞ 2 ½0;oþ ls� ð21Þ

Fig 4. Histogram of pixel intensities from the mapped crack data on the query image.

https://doi.org/10.1371/journal.pone.0235171.g004
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where λ is determinate ratio that is empirically set in the practical applications. The detail for

selection of determinate radio can be seen is Section 3.2.

As a result, the RGM can be applied to Eq (21) to detect all the neighbour homogenous

points near the seed points. By utilizing the RGM, the authors can detect all the pixels belong-

ing newly grown cracks in the query crack image. These newly grown crack pixels are impor-

tant for us to analyse the crack growth and predict the crack severity.

3. Experimental results

In order to test the proposed method, two scenarios were selected for experiments. In order to

test the proposed method, two scenarios were selected for experiments. The first scenario was

Youyi Road near Yujiatou campus of Wuhan university of technology (WUT) (GPS coordi-

nate: 114.363, 30.615). The second one was Linjiang Road, Wuhan city (GPS coordinate:

114.354, 30.621). The total distance for two scenarios is 6.5KM that amount of pavement crack

data has been collected. Both scenarios have high traffic volume every day. The types of pave-

ments for two scenarios are asphalt. Various kinds of pavement crack were recorded, such as

longitudinal crack, transverse crack and fatigue crack, as illustrated in Fig 5.

The experimental data was obtained by a mobile platform (Fig 6), which was equipped with

a PointGrey RGB camera and GPS receiver. The image resolution of the RGB camera is

1500×960 (in pixel). The RGB camera faced downward to the ground to capture pavement

images. In such setup, the actual physical size of each pixel in the image is 1mm×1mm. Besides

RGB camera, a GPS receiver was used to simultaneously collected GPS location with about 2-

10m accuracy. The GPS receiver and the RGB camera were synchronized for data collection.

3.1. Crack data collection and evaluation

For the two scenarios, we collected the pavement data in two different times with different

lighting and weather conditions. We collected 113 crack images and GPS information as his-

torical data. After 6 months, we collected 113 crack images and GPS information at same place

and these data were query data. In these historical pavement images, all the crack pixels were

manually labelled. As a result, the pavement images, the labelled crack data, and the associated

GPS data, were organized to formulate the reference crack data, as shown in Fig 7. The data

collected later were used as the query data. In both historical and query data, the distance

between the data collection was 0.5 meter.

In order to evaluate the performance of the proposed reference crack based method, the

ground truth data were first obtained in a manual way. Hence, the crack detection results were

compared to the ground truth to identify true crack pixels (as TP), false crack pixels (as FP),

and true non-crack pixels (as TN), and false non-crack (as FN). Based on the TP, FP, TN, FN,

the authors employ the Precision P, Recall R, and F-Measure as criterion to evaluate the perfor-

mance of the proposed method as follow:

P ¼
TP

TP þ FP
ð22Þ

R ¼
TP

TP þ FN
ð23Þ

F � Measure ¼ 2�
P � R
P þ R

ð24Þ
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Fig 5. Typical collected pavement crack images.

https://doi.org/10.1371/journal.pone.0235171.g005
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3.2. Multi-scale localization and determinate radio selection

In this section, the authors demonstrated the experimental results for multi-scale localization

and determinate radio selection. Multi-scale localization consists of GPS-based coarse localiza-

tion, image-level localization, and pixel-level localization. The results for GPS-based coarse

localization are illustrated in Fig 8. The accuracy of GPS localization is close to 10 meter.

Therefore, the number for candidate historical crack images after GPS-based coarse

Fig 6. The developed mobile platform for crack data collection.

https://doi.org/10.1371/journal.pone.0235171.g006
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localization is 19. As can be observed in Fig 8, the “closest” historical crack image in the candi-

date historical crack images database is No.9. And the authors try to automatically determine

the No. 9 image by using the proposed image-level localization method.

In order to illustrate the multi-scale localization, the authors demonstrated the number of

local feature point pairs between query crack image and each candidate historical crack image.

The local feature point pairs are illustrated in Fig 9A. The local feature point pairs increase

with the distance that between query crack image and historical crack image decrease. It can

be seen in Fig 9A. The number of local feature point pairs for query crack image and No.9 his-

torical crack image is 117. The number of local feature point pairs for query crack image and

Fig 7. The organization form of query data and historical data.

https://doi.org/10.1371/journal.pone.0235171.g007
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No.10 historical crack image is 54. The former has more local feature point pairs comparing

with the latter. By this way, we compared the number of local feature point pairs between

query image and each historical image. As illustrated in Fig 9B, No.9 candidate historical crack

image approximates most to query crack image, which confirm to the ground truth.

After mapping historical labelled crack images onto the current crack image by image cor-

respondence transform, the RGM can be utilized to detect the crack growing. This paper

selected different determinate radio λ to control crack growing. The determinate radio are

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. The F-Measure of error crack pixels for differ-

ent determinate radio are illustrated in Fig 10.

As illustrated in Fig 10, F-Measure of error crack pixels for different determinate radio is a

convex curve. When determinate radio 0<λ<0.1, the F-Measure increase with determinate

radio increase. When determinate radio 1>λ>0.1, the F-Measure become decrease with deter-

minate radio increase. The peak value of determinate radio for F-Measure is λ = 0.1. It indi-

cates that determinate radio λ = 0.1 has best performance in crack growing detection.

Therefore, the determinate radio λ = 0.1 is selected to test the crack growth.

3.3. Crack detection and analysis on WUT campus

Firstly, the authors tested the proposed method on WUT campus dataset. Various kinds of

pavement cracks, such as longitudinal crack, transverse crack and fatigue crack, were tested in

the experiment. Due to time interval between historical crack and query crack is 6 month and

huge vehicle flowrate in the test road, it is enough for crack growth. The ground truth of crack

grown pixels was obtained by human annotated. In this experiment, the authors utilized the

precision, recall, and F-Measure as criterion to evaluate the proposed method. The contrast

experimental results for three methods are illustrated in Table 1.

Fig 8. The results for GPS-based coarse localization. The image-level localization by matching local feature points and the number of matched feature point pairs for

different historical images are shown.

https://doi.org/10.1371/journal.pone.0235171.g008
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Fig 9. The local feature point pairs for query crack image and candidate historical crack images.

https://doi.org/10.1371/journal.pone.0235171.g009
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As illustrated in Table 1, the precision, recall, and F-Measure for the proposed method were

95.4%, 84.3%, and 89.5%. In addition, the authors compared the proposed method with other

crack detection methods. The contrast methods detect the newly crack pixels by comparing

the detection result of historical crack image and query crack image for twice. The contrast

experimental results also can be seen in Table 1. As illustrated in Table 1, The precision, recall,

and F-Measure were 80.1%, 91.3%, and 85.3% for the CrackTree [23], respectively. The preci-

sion, recall, and F-Measure was 58.3%, 64.2%, and 61.1% for Seg-Ext [24]. The precision,

recall, and F-Measure were 82.7%, 78.2%, and 80.4% for FCN [25]. The seed points, which are

mapped from historical crack pixels, have high confidence value for crack pixels. Therefore,

the result of growth crack pixels detection, which through analysed from seed points, is more

accuracy than detecting grown crack in the image directly. The result also shows the proposed

method has good performance for crack growth detection.

Fig 10. F-Measure of error crack pixels for different determinate radio.

https://doi.org/10.1371/journal.pone.0235171.g010
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The results of crack growth on WUT dataset are illustrated in Fig 11. The zooming images

for historical crack and query crack are illustrated in Fig 11A and corresponding crack growth

detection images are illustrated in Fig 11B. Due to the randomness of the crack growth, the

growth crack pixels are surround to the previous pavement crack pixels. According to Fig 11,

the ground truth for the crack growth were 135 pixels and there were 141 pixels for crack

growth detection. The slight crack growth still can be detected by utilizing proposed method.

Time consumption of each procedure of proposed method is illustrated in Fig 12. Since the

step of image-level localization is time-consumption, the average time consumption of proce-

dure of image-level localization is 273ms. The procedure of historical crack mapping is the

procedure of matrix transformation so that the time consumption is 7ms. The procedure of

RGM need to search the satisfied pixels that near crack pixels. It is time-consuming step and

the time consumption is 293ms. The average time consumption of whole procedure is 583ms.

It illustrates that the proposed method is effective for crack growth detection.

3.4. Crack detection and analysis on Linjiang Road

The authors also tested the proposed crack growth analysis on Linjiang Road dataset. Same

with WUT dataset, various crack such as longitudinal crack, transverse crack and fatigue crack

has been tested in the experiment. The authors also selected the tested road with huge vehicle

flowrate. Moreover, time interval between historical crack and query crack is also 6 month.

Therefore, it is enough for crack growth. The ground truth of crack grown pixels also can be

obtained by human annotated. In the experiment, the authors utilized the precision, recall,

and F-Measure as criterion to evaluate the proposed method. The contrast experiment results

for three methods are illustrated in Table 2.

As illustrated in Table 2, the precision, recall, and F-Measure for the proposed method were

94.3%, 82.9%, and 88.2%. In addition, the authors compared the proposed method with other

crack detection methods. The contrast experimental results also can be seen in Table 2. As

illustrated in Table 2, The precision, recall, and F-Measure were 78.3%, 89.9%, and 83.7% for

the CrackTree [23], respectively. The precision, recall, and F-Measure were 55.9%, 63.4%, and

59.4% for Seg-Ext [24]. The precision, recall, and F-Measure were 81.9%, 77.5%, and 79.6% for

FCN [25]. The seed points, which are mapped from historical crack pixels, have high confi-

dence value for crack pixels. Therefore, the result of growth crack pixels detection, which

through analysed from seed points, is more accuracy than detecting grown crack in the image

directly. The experimental results of Youyi Road dataset are higher than the results of Linjiang

Road dataset. The reason is that pavement of Linjiang Road is worse than Youyi Road. Even

so, it still has a good performance without shape decline. It shows the robustness of proposed

method. The contrast experimental results also showed the proposed method has good perfor-

mance for crack growth detection.

The results of crack growth on Linjiang Road dataset are illustrated in Fig 13. The zooming

images for historical crack and query crack are illustrated in Fig 13A and corresponding crack

growth detection images are illustrated in Fig 13B. Due to the randomness of the crack growth,

Table 1. Crack growth experiment results for three methods.

Method Precision Recall F-Measure

The proposed method 95.4% 84.3% 89.5%

CrackTree Method [23] 80.1% 91.3% 85.3%

Seg-Ext Method [24] 58.3% 64.2% 61.1%

FCN Method [25] 82.7% 78.2% 80.4%

https://doi.org/10.1371/journal.pone.0235171.t001

PLOS ONE Pavement crack analysis by referring to historical crack data based on multi-scale localization

PLOS ONE | https://doi.org/10.1371/journal.pone.0235171 August 14, 2020 17 / 23

https://doi.org/10.1371/journal.pone.0235171.t001
https://doi.org/10.1371/journal.pone.0235171


Fig 11. Crack growth detection on WUT dataset.

https://doi.org/10.1371/journal.pone.0235171.g011
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the growth crack pixels are surround to the previous pavement crack pixels. According to Fig

13, the ground truth for the crack growth were 189 pixels and there were 193 pixels for crack

growth detection. The slight crack growth still can be detected by utilizing proposed method.

The time consumption of each procedure of proposed method is illustrated in Fig 14. Since the

step of image-level localization is time-consumption, the average time consumption of proce-

dure of image-level localization is 294ms. The procedure of historical crack mapping is the

procedure of matrix transformation so that the time consumption is 10ms. The procedure of

RGM need to search the satisfied pixels that are closed to crack pixels. It is time-consuming

step and the time consumption is 356ms. The average time consumption of whole procedure

is 660ms. It illustrates that the proposed method is effective for crack growth detection.

Fig 12. Time consumption of the proposed method.

https://doi.org/10.1371/journal.pone.0235171.g012

Table 2. Crack growth experiment results for three methods.

Method Precision Recall F-Measure

The proposed method 94.3% 82.9% 88.2%

CrackTree Method[23] 78.3% 89.9% 83.7%

Seg-Ext Method ([24] 55.9% 63.4% 59.7%

FCN Method [25] 81.9% 77.5% 79.6%

https://doi.org/10.1371/journal.pone.0235171.t002
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Fig 13. Crack growth on Linjiang Road dataset.

https://doi.org/10.1371/journal.pone.0235171.g013
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4. Conclusions

This paper evidently demonstrates that historical crack data could greatly enhance pavement

crack analysis. In order to refer to historical crack data, the core is to establish the image corre-

spondences between the current and historical crack images, a step called localization in this

paper. The authors proposed a multi-scale localization strategy for image correspondences. It

consists of a coarse localization from GPS matching, image-level localization from visual fea-

ture matching, and finally pixel-level localization from accurate in-vehicle camera calibration.

The multi-scale localization allows us to predict query crack by using historical crack data,

therefore can greatly improve the performance of crack detection and recognition. The pro-

posed method has been validated by using the actual pavement data collected before and after

6 months with the earlier crack data as the reference. The results for crack analysis are promis-

ing in term of reliability and accuracy. The paper suggests a novel strategy to pavement crack

analysis in support of modern pavement management systems.
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