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Abstract

Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that

prevail in several food-related ecosystems. In the present study, the role of undissociated

acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in labora-

tory media and in an acid food matrix was investigated. Several combinations of acetic acid

(0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their abil-

ity to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening

assay). Increased survival was observed when increasing undissociated acetic acid within a

range of sublethal concentrations (1.9–5.4 mM), but only at pH 5.5 and 6.0. No effect was

observed at lower pH values, regardless of the undissociated acetic acid levels. Three com-

binations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for

adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH

4.35 ± 0.02), stored at 5˚C. Surprisingly and contrary to the results of the screening assay,

none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the

food matrix, as compared to non-adapted cells (control). Further examination of the food pH

value, acidulant and storage (challenge) temperature on the responses of the pathogen

adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media.

Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH

4.35 (tarama salad pH value) at 37˚C and 5˚C, whereas incubation under refrigeration (5˚C)

at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold

stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive

responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent

manner, with regard to conditions prevailing during acid challenge.
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Introduction

It is now well documented that pre-exposure of microorganisms to sublethal stress conditions

may induce adaptive responses that enhance resistance to subsequent lethal factors [1] of the same

or multiple stresses (cross protection; [2]). Exposure to acid environments is frequently encoun-

tered by microorganisms during their route from the food chain to the human host. Among the

foodborne pathogens, Salmonella spp., is able to induce resistance mechanisms as a result of adap-

tation to mild or moderate acid stress [3,4]. The acid induced phenotypic responses are highly

affected by factors such as the selected strain [5,6] and conditions prevailing during adaptive and

subsequent lethal challenge treatments, e.g., acidulant, temperature and composition [3]. So far,

different adaptation protocols are used in order to formulate suitable sublethal acid conditions.

For instance, acid adaptation can be achieved by supplementation of growth media with glucose

[6,7] or by long- or short-term pre-exposure of cells to various organic or inorganic acidulants [8–

13]. Nevertheless, it has been demonstrated that different protocols used to stimulate acid resis-

tance can diversify the survival of Escherichia coli in apple juice stored under refrigeration [8].

Organic acids such as acetic can form acid stress conditions frequently encountered by Sal-
monella spp., as they are widely applied to the food industry. They are common preservatives

in foods, such as mayonnaise and salad dressings, carcass decontamination treatment agents,

whereas they can also accumulate in fermentable products as the result of indigenous or starter

cultures activity. Finally, they are naturally present inside the gastrointestinal human or animal

track due to the metabolic activity of endogenous microflora [11,14–18]. The antimicrobial

activity of organic acids has been traditionally attributed to their undissociated molecules [17].

Despite the antibacterial efficiency of organic acids, their application might also pose consider-

able risk associated with potential induction of acid resistance. Thus, apart from adaptation to

acids intrinsically encountered in foods, some food industry interventions may also promote

induction of acid resistance [19], e.g., in environments with sublethal acid levels due to dilu-

tion of acid concentration with water, etc.. Stimulation of acid resistance mechanisms may

result in increased likelihood of disease. A positive correlation between acid resistance and

pathogenicity [5] has been found, alongside with evidence that acid adaptation increases viru-

lence [20]. In addition, several regulators involved in the induced acid resistance of Salmonella
spp. also control the expression of genes required for virulence [21].

So far, numerous studies have dealt with the responses of foodborne pathogens following

adaptation to organic acids under different experimental conditions. Nevertheless, investiga-

tion pertaining the role of undissociated acid to the induction of acid resistance is limited. In

addition, considering the protective effect of some food matrices on the ability of bacterial cells

to tolerate lethal stresses [12,22], it is important to compare the results from experiments in

laboratory media to those from food related environments.

Given the above, this study was conducted in order to examine the contribution of undissoci-

ated acetic acid over a range of different pH values to the induction of acid resistance in Salmo-
nella Enteritidis (S. Enteritidis) in laboratory media. The second part of this study aimed to

evaluate whether the results from the broth media could be extrapolated in foods, particularly in

an acid food matrix (tarama salad containing citric acid as acidulant), stored under refrigeration.

Materials and methods

Bacteria strain and growth conditions

Salmonella enterica ssp. enterica serovar Enteritidis (S. Enteritidis) P167807 Phage Type 4

(PT4), a food (beef) isolate reported in Boziaris et al. [23] was provided by the Laboratory of

Food Microbiology and Biotechnology, Agricultural University of Athens, Greece.
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Cells were monthly subcultured in Tryptone Soy Agar (TSA, Lab M Limited, Lancashire,

UK) from stock cultures (-20˚C) and maintained at 4˚C. Prior to each experimentation, one

single colony was transferred to 10 ml of Tryptone Soy Broth without dextrose (TSBG(-), Lab

M Limited, Lancashire, UK) and incubated at 37˚C for 24 h. Subsequently, 100 μl of the 24-h

cultures were transferred to 10 ml of the same medium and incubated at 37˚C for another 18

h, in order to collect stationary phase cells.

Minimum Inhibitory Concentration (MIC) determination

Stationary phase cultures were washed twice with ¼ Ringer solution (Lab M Limited, Lanca-

shire, UK) (2709 X g, 10min, 4˚C) and resuspended in the appropriate medium. For the prepa-

ration of the media, Tryptone Soy Broth (Lab M Limited, Lancashire, UK) was supplemented

with several concentrations (10, 20, 30, 40, 50, 75, 100, 150 and 200 mM) of acetic acid (Pan-

reac, Barcelona, Spain) and then the pH was adjusted to 5.0 using HCl 6 N (Merck, Darmstadt,

Germany) or NaOH 10 N (Panreac, Barcelona, Spain). After autoclave, the pH value of each

acid concentration was confirmed with a digital pH-meter (pH 526, Metrohm Ltd, Switzer-

land) and differences (maximum ± 0.2) -if evident- were taken into consideration in the final

assay. Samples were inoculated with approximately 5.0 log CFU/ml and incubated at 37˚C for

up to 10 days to assess the growth responses. Sampling was performed on day 0 and after 5

and 10 days of storage by plating 0.1 ml of the appropriate dilution on TSA plates. The experi-

ment was conducted four independent times with duplicate samples per trial.

Preparation and inoculation of adaptation media and acid challenge assays

Adaptation media were prepared by combining different concentrations of total acetic acid

and pH values. More specifically, appropriate volumes of acetic acid (1 M) were added to 100

ml of TSBG(-). The media were then autoclaved, adjusted to the desired pH values with HCl 6

N or NaOH 10 N, in order to create different concentrations of undissociated acetic acid

(UAA) and filtered-sterilized (0.2 μm, LLG Labware, USA). In all assays, adaptation was per-

formed for 90 minutes at 37˚C to a preheated water bath. Enumeration of the initial adapted

populations was carried out at the end of adaptation period by transferring 100 μl in 900 μl of

¼ Ringer and plating the appropriate dilution on TSA plates. Non-adapted (NA) cells grown

at neutral pH (7.00) without being subjected to any pH adjustment or acetic acid pre-exposure

were also used as controls in all experiments.

Adaptation and exposure to TSB adjusted to pH 2.5 (screening assay). For screening

assay, four different concentrations of total acetic acid (15, 25, 35 and 45 mM) were combined

with pH adjusted to 4.0, 4.5, 5.0, 5.5 and 6.0 (± 0.05), as described above. Cells adapted to pH

in the absence of acetic acid (pH-adapted cells; 0mM acetic acid) were used as ‘positive’ con-

trols by adjusting the pH of the broth medium to the same values as those mentioned above

using only HCl 6 N. For the preparation of adapted cultures, stationary phase cells were centri-

fuged (2709 X g, 10 min, room temperature) and resuspended to the appropriate adaptation

medium at a final concentration of approximately 6.5–7.0 log CFU/ml. Following adaptation,

cells were harvested by centrifugation (2709 X g, 5 min, 37˚C) and immediately resuspended

to TSB adjusted to pH 2.5 with HCl 6 N (TSB2.5) at a final concentration of ~ 5.0 CFU/ml.

Non-adapted (control) inocula were resuspended to TSB2.5 without prior adaptation. Acid

challenge was performed at 37˚C for 30 minutes. Samplings were carried out at 0, 2.5, 5 and

7.5 minutes of acid exposure by plating 0.1 ml of the appropriate dilution on TSA (detection

limit of 1.0 log CFU/ml) and at 10, 15 and 30 minutes of exposure, by plating 1 ml of the chal-

lenged broth into three TSA petri dishes (detection limit of 0 log CFU/ml). Experiments were

conducted in triplicate with duplicate samples per independent trial.
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Impact of adaptive responses in tarama salad or TSB adjusted to pH 4.35. Based on the

results of the screening assay (TSB2.5), three acetic acid/pH combinations i.e. 15mM/pH5.0,

35mM/pH5.5 and 45mM/pH6.0, were selected. These treatments were further tested for their

ability to induce acid resistance of S. Enteritidis at commercial tarama salad stored at 5˚C and

at TSB adjusted to pH 4.35 (TSB4.35) with HCl 6 N or citric acid 6 M (AnalaR, Dublin, Ireland)

and incubated at 37˚C or 5˚C. Exposure of S. Enteritidis to TSB4.35 incubated at two tempera-

tures was performed in order to isolate the impact of food matrix on pathogen survival at the

same pH value, acidulant and challenge temperature.

Preparation of adapted cultures inoculated in broth medium (TSB4.35) was performed as

described above. Briefly, stationary phase cells were centrifuged (2709 X g, 10 min, room tem-

perature) and resuspended to each of the above adaptation media (i.e. 15mM/pH5.0, 35mM/

pH5.5 or 45mM/pH6.0) at a final concentration of approximately 6.5–7.0 log CFU/ml. Follow-

ing adaptation, cells were harvested by centrifugation (2709 X g, 5 min, 37˚C) and resuspended

to TSB4.35 adjusted either with HCl (to stimulate food matrix pH) or citric acid (to stimulate

food matrix acidulant), at a final concentration of ~ 5.0 CFU/ml. Non-adapted (control) inoc-

ula were resuspended to TSB4.35 without prior adaptation. Samples were stored at 5˚C for 60

days or at 37˚C for 96 hours (when citric acid was used for pH adjustment) or 7 days (when

HCl was used for pH adjustment). Samplings were performed at different time intervals,

depending on storage temperature and the use of HCl or citric acid for lowering the pH. Enu-

meration was carried out by plating 0.1 ml of the appropriate dilution on TSA plates contain-

ing 0.1% sodium pyruvate (Applichem, Darmstadt, Germany) (TSA/SP) (detection limit of 1.3

log CFU/ml). This medium was selected for enabling the maximum recovery of injured cells

[24]. Experiments were conducted four independent times with duplicate samples per

replicate.

For the inactivation experiments in the acid food matrix, commercial tarama salad packages

of a Greek food industry were purchased from a local supermarket and transferred to the labo-

ratory within 20 minutes. Tarama salad is a traditional Greek fish roe appetizer (spread) stored

under refrigeration. Acidification is performed using citric acid. Apart from fish roe and citric

acid, other ingredients used for the preparation of the product according to the labelling were

mashed potatoes, vegetative oil, salt, pigments, flavorings, condenser and chemical preserva-

tive (sodium benzoate, sorbic acid). This product was selected since it is a domestically wide-

spread acid food with very low to undetectable initial microbial load. Prior to inoculation,

levels of indigenous microbiota of commercial packages was determined by diluting 10 g of

each uninoculated package to 90 ml of ¼ Ringer and plated on TSA/SP plates. The pH of com-

mercial tarama salad was also measured using a digital pHmeter.

For the preparation of adapted cultures inoculated in tarama salad, stationary phase cells

were centrifuged (2709 X g, 10 min, 4˚C), washed twice with ¼ Ringer and then resuspended

to each of the above adaptation media (i.e 15mM/pH5.0, 35mM/pH5.5 or 45mM/pH6.0) at a

final concentration of approximately 8.5–9.0 log CFU/ml. Following adaptation, cells were

harvested by centrifugation (2709 X g, 5 min, 37˚C) and resuspended to 4 ml of diluted tarama

salad prepared by mixing10 g of tarama salad with 30 ml ¼ Ringer. This was performed in

order to acclimatize inocula in a medium similar to the subsequent food substrate. The suspen-

sion was vortexed for 1 minute and aliquots (0.8 ml) were added to 80 g of commercial tarama

salad pre-weighed in sterilized containers. Non-adapted inocula were resuspended to 4 ml of

diluted tarama salad without prior adaptation. The initial inoculated population was approxi-

mately 6.5–7.0 log CFU/g. Samples were stored at 5˚C for 37 days. Samplings were conducted

by transferring 10 g of inoculated tarama salad in 90 ml ¼ Ringer solution and homogenized

in a stomacher apparatus (Seward, London, UK). Then, 0.1 ml of the appropriate dilution was

spread on TSA/SP plates (detection limit of 2 log CFU/g). pH changes during storage were
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determined using a digital pHmeter. Experiments were conducted four independent times

with duplicate samples per replicate.

Determination of 4D inactivation parameters

The time needed for a 4 log reduction (4D) of the microbial population was calculated by fitting

the log transformed inactivation data collected from the screening assay at TSB2.5 to Weibull with

tail (Albert) model according to the equation log10(N) = log10[(N(0)-Nres) x 10(-(t/δ)^p) + Nres]

[25], whereas the log transformed data of tarama salad inactivation curves were fitted in Weibull

model according to the equation log10(N) = log10(N(0))-(t/δ)p [26], where No the population at

time to, N the population at time t, Nres the residual bacterial concentration log CFU/g at the end

of microbial inactivation, δ the time needed for the first decimal reduction and p a shape parame-

ter corresponding to different concavities; downward concave survival curves for p>1, upward

concave survival curves for p<1 or linear curves for p = 1. GinaFit, a freeware Add-in for Micro-

soft1Excel [27] available at https://cit.kuleuven.be/biotec/software/GinaFit was used for data fit-

ting. In total, six curves per experimental case were fitted.

Statistical analysis

Log transformed inactivation data and 4D inactivation estimates were used for statistical analysis.

Analysis of variance (SPSS 22.0 for Mac) was performed among cell populations (log CFU/ml or

g) for each time point during all stresses and among 4D values calculated from the screening assay

(TSB2.5) and ‘tarama’ salad inactivation. Means were compared using Tukey’s Honestly Signifi-

cant Difference (HSD) test and were considered significant at 95% level. Comparison between

NA and pH-adapted cells was performed using t-test of Microsoft1 Excel 16 for Mac.

Results

MIC determination

The MIC of UAA for S. Enteritidis ranged between 5.2 and 7.2 mM. At concentrations of

UAA� 5.2 mM growth was observed at the 5th day of storage, while concentrations� 7.2 mM

displayed a bactericidal effect.

Screening assay at TSB2.5

Populations at the end of adaptation period (90 min) ranged from 6.1 to 6.9 CFU/ml. The

effect of adaptation to pH (i.e., 0mM/pH 6.0, 5.5, 5.0, 4.5 and 4.0; no added acetic acid) on S.

Enteritidis acid resistance was evaluated comparing bacterial populations of pH-adapted and

NA inocula (Fig 1). Adaptation to pH 6.0 did not increase acid resistance, since no marked dif-

ferences (P>0.05) were observed during 2.5–15 minutes of acid exposure. In contrast, signifi-

cantly higher (P<0.05) survivors were recovered at the lower pH values 4.0–5.5 compared to

NA cells. Nonetheless, the magnitude of the observed differences was pH-dependent. Log dif-

ferences following adaptation to pH 5.5 and 5.0, albeit statistically significant (P<0.05), were

rather low (0.7–1.4 log CFU/ml). Adaptation to pH 4.5 and 4.0, on the other hand, clearly

enhanced resistance: 1.3–2.5 and 0.6–1.9 log CFU/ml higher survivors were enumerated fol-

lowing adaptation to pH 4.5 and 4.0, respectively, compared to control (NA) (Fig 1). The ratio

of 4DpH/4DNA (Fig 2) was used to characterize the pH induced acid resistance, where 4DpH

and 4DNA the 4D parameters of the pH adapted and NA inocula, respectively, calculated by

Weibull with tail (Albert) model. The ratio was calculated by dividing 4DpH of each replicate

with an average value of 4DNA. A clear difference (P<0.05) was observed between treatments

adapted to pH 6.0 and 4.5, with higher values, i.e., suggesting longer survival, obtained at the
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Fig 1. Inactivation of NA and pH-adapted cells of S. Enteritidis at pH 2.5 (TSB2.5). Adaptation was performed to

pH values (A) 6.0, (B) 5.5, (C) 5.0, (D) 4.5 and (E) 4.0. Reduction of the pH of the adaptation medium from 6.0 to 4.0

increased the enumerated survivors compared to control (NA), with maximum differences found for cells adapted to

pH 4.0 and 4.5. White and grey bars represent NA and adapted populations, respectively. Each bar is an average of six

replicates (± standard deviation). Stars indicate significant differences between two treatments for each time point

according to t-test.

https://doi.org/10.1371/journal.pone.0234999.g001

Fig 2. Induced acid resistance of S. Enteritidis following adaptation to different pH values. Each data point

represents a mean ratio 4DpH/4DNA (± standard deviation), where 4DpH and 4DNA the 4D’s for pH adapted and NA

inocula, respectively, resulting from diving 4DpH of each replicate with an average value of 4DNA. Lower pH value 4.5

induced a higher ratio and, thus, an increased survival compared to higher pH value 6.0.

https://doi.org/10.1371/journal.pone.0234999.g002
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lower pH (4.5). In summary, adaptation over a range of different pH values enhanced survival,

with maximum acid resistance induced by lower pH values.

Adaptation to acetic acid enhanced acid resistance in a pH- and UAA concentration-

dependent manner. Regarding cultures adapted to pH 6.0, a gradual increase in the ability of

the pathogen to endure severe acid stress was observed with increasing concentrations of

UAA. Adding 1.9 (35mM/pH6.0) and 2.4 (45mM/pH6.0) mM UAA acid resulted in up to 1.5–

2.0 log units (P<0.05) higher counts compared to cultures adapted to treatments with lower

levels or without UAA (i.e., 0, 0.8 and 1.4 mM corresponding to 0mM/pH6.0, 15mM/pH6.0

and 25mM/pH6.0, respectively) (Fig 3A; Table 1). This trend was also confirmed by compar-

ing the inactivation kinetics (Table 1). The addition of 1.9 (35mM/pH6.0) and 2.4 (45mM/

pH6.0) mM UAA increased the time needed for a four-log reduction (4D) by more than two-

fold, i.e. from 5.0 minutes required for control cells (0mM/pH6.0) to 10 (P<0.05) and 11.6

min (P<0.05), respectively (Table 1).

A similar trend was found for cells adapted to treatments with a lower final pH 5.5, though

higher amounts of UAA were required to induce acid resistance at pH 5.5 compared to pH

6.0. For instance, adding 2.3 mM UAA (15mM/pH5.5), a similar concentration of UAA as in

the case of 45mM/pH6.0, as well as 3.8 mM UAA (25mM/pH5.5) resulted in 1.0–1.7 log units

Fig 3. Inactivation of adapted S. Enteritidis cells at pH 2.5 (TSB2.5) (screening assay). Diagrams represent

treatments adapted to pH (A) 6.0, (B) 5.5, (C) 5.0, (D) 4.5 and (E) 4.0, whereas bars within each diagram different

(undissociated) acetic acid concentrations. Adaptation to pH 6.0 and 5.5 within a range of increasing concentrations of

UAA (1.9–5.4 mM) induced elevated acid resistance compared to the individual effect of pH. Adaptation to lower pH

values (5.0, 4.5 and 4.0) had no effect, regardless of the amount of UAA. Each bar is an average of six replicates (±
standard deviation). Different letters indicate significant differences among treatments of the same time interval

according to Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0234999.g003
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(P<0.05) higher survivors compared to the individual effect of pH 5.5 (no added UAA, 0mM/

pH5.5), but did not have any impact on the 4D estimates (P>0.05) (Fig 3B, Table 1). There-

fore, the log differences were not taken into consideration, since they were considered mar-

ginal. An additional increase in UAA concentrations to 5.4 mM (35mM/pH5.5) resulted in up

to 2.2 log CFU/ml higher survivors compared to control (0mM/pH5.5) (Fig 3B) and the high-

est (P<0.05) 4D value (16.0 min; Table 1). Further increase of UAA (6.9 mM, 45mM/pH5.5)

limited survival and decreased 4D values to similar levels as in control (0mM/pH5.5) (Fig 3B,

Table 1).

Contrary to the above results, no effect on the acid resistance of S. Enteritidis was observed

when cells were previously exposed to acetic acid at pH values equal to or lower than 5.0 (Fig

3C–3E, Table 1). This was evident even in concentrations of UAA that induced acid resistance

at higher pH value (i.e. 5.5). For these treatments, similar log counts (P>0.05) and 4D esti-

mates (P>0.05) were obtained for all UAA concentrations (Fig 3C–3E, Table 1).

Table 1. Adaptive treatments without (pH adapted cells) or in the presence of UAA used in the current study and their kinetic parameter estimates during acid

inactivation at TSB2.5.

pH adjusted with HCl/NaOH Total AAa (mM) UAAb (mM) 4D RMSEc R2 d

pH 6.0 0 0.0 5.0 ± 1.7 (a) 0.2092–0.6124 0.9788 ± 0.0116

15 0.8 6.7 ± 1.3 (ab) 0.1499–0.522 0.9787 ± 0.0177

25 1.4 6.4 ± 1.4 (ab) 0.2746–0.5035 0.9850 ± 0.0060

35 1.9 10.0 ± 3.8 (bc) 0.1742–0.4406 0.9840 ± 0.0086

45 2.4 11.6 ± 2.1 (c) 0.1029–0.3306 0.9903 ± 0.0082

pH 5.5 0 0.0 7.6 ± 3.5 (a) 0.2046–0.7463 0.9567 ± 0.0309

15 2.3 10.9 ± 2.8 (a) 0.2023–0.3894 0.9823 ± 0.0076

25 3.8 11.2 ± 1.5 (a) 0.1239–0.4631 0.9843 ± 0.0151

35 5.4 16.0 ± 3.7 (b) 0.1603–0.3591 0.9827 ± 0.085

45 6.9 7.7 ± 1.9 (a) 0.1824–0.6411 0.9830 ± 0.0128

pH 5.0 0 0.0 7.2 ± 1.2 (a) 0.0718–0.5381 0.9782 ± 0.0187

15 5.5 8.4 ± 1.7 (a) 0.1628–0.6340 0.9701 ± 0.0215

25 9.1 8.4 ± 0.6 (a) 0.0974–0.5299 0.9842 ± 0.0156

35 12.8 8.9 ±2.3 (a) 0.1442–0.6641 0.9801 ± 0.0130

45 16.4 8.9 ±1.0 (a) 0.1716–0.5709 0.9826 ± 0.0156

pH 4.5 0 0.0 9.7 ± 2.8 (a) 0.1087–0.6569 0.9873 ± 0.0199

15 9.7 7.5 ±0.7 (a) 0.2253–0.5100 0.9735 ± 0.0201

25 16.1 8.5 ± 0.7 (a) 0.1204–0.5669 0.9798 ± 0.0236

35 22.6 9.2 ± 1.7 (a) 0.1613–0.456 0.9877 ± 0.0102

45 29.0 10.8 ± 2.8 (a) 0.1876–0.3979 0.9819 ± 0.0101

pH 4.0 0 0.0 7.2 ± 2.0 (a) 0.1821–0.4894 0.9786 ± 0.0112

15 12.8 7.9 ± 0.9 (a) 0.2534–0.6946 0.9758 ± 0.0250

25 21.3 8.4 ± 1.1 (a) 0.0855–0.4374 0.9923 ±0.0078

35 29.8 10.1 ± 3.1 (a) 0.2043–0.4317 0.9856 ± 0.0091

45 38.3 8.6 ± 1.6 (a) 0.1485–0.3170 0.9831 ± 0.0187

Weibull with tail (Albert) model was used for calculation of 4D, RMSE and R2 inactivation estimates. Values represent mean (± standard deviation) of six replicates.

Different letters among treatments adapted at a given pH indicate significant differences of 4D values according to Tukey’s HSD test.
a AA: Acetic acid.
b Theoretical undissociated acetic acid was calculated according to Henderson–Hasselbalch equation.
c RMSE: Root Mean Square Error.
d R2: regression coefficient.

https://doi.org/10.1371/journal.pone.0234999.t001
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Overall, the induced acid resistance of S. Enteritidis PT4 against subsequent acid exposure

to pH 2.5 (TSB2.5) was affected by both pH and UAA concentration of the adaptation medium.

Adaptation to pH 6.0 and 5.5 within a range of increasing concentrations of UAA (1.9–5.4

mM) successfully protected pathogen against the subsequent severe acid stress.

Exposure to ‘tarama’ salad

In order to examine whether the results from the laboratory media could be extrapolated in an

acid food matrix stored under refrigeration, three adaptation treatments (15mM/pH5.0,

35mM/pH5.5 and 45mM/pH6.0) were selected for culture preparation prior to inoculation in

tarama salad. The selection of the treatments was based on the concentration of UAA and

their adaptive responses at TSB2.5, as follows: 45mM/pH6.0 and 35mM/pH5.5 had different

concentrations of theoretical UAA (2.4 mM and 5.4 mM, respectively) (Table 1) but both

increased acid resistance of S. Enteritidis (Fig 3A and 3B). On the other hand, 15mM/pH5.0

contained approximately the same amount of UAA as 35mM/pH5.5 (5.5 and 5.4 mM, respec-

tively) (Table 1), but had no effect on the subsequent acid resistance of the pathogen (Fig 3B

and 3C). Non-adapted inocula were also used as control.

A total of 21 commercial tarama salad packages were used throughout the study. The initial

pH of the salad was 4.35 ± 0.02. The levels of indigenous microflora were not quantifiable in

the packages tested. No marked differences (P>0.05) were observed among enumerated popu-

lations and 4D values following inoculation in tarama salad at 5˚C, irrespectively of the pre-

ceded adaptation treatment or the control (NA) (Fig 4, Table 2). This is in contrast to the

results of the screening assay, where adaptation to 35mM/pH5.5 and 45mM/pH6.0 adequately

strengthened the cells against the subsequent severe acid stress (Fig 3A and 3B). pH values

remained unchanged throughout the storage period (P>0.05) (S1 Fig).

Exposure to pH 4.35 using HCl and citric acid

Since acid adaptive responses following exposure to TSB2.5 at 37˚C were different from those

obtained in tarama salad stored under refrigeration (5˚C), an effort was made to examine the

reasons underpinning these discrepancies. Thus, the effect of key individual factors for

S. Enteritidis inactivation that may be of relevance to an acid food matrix (e.g., pH value, acid-

ulant agent) and the effect of challenge temperature (5˚C, 37˚C) was further examined. Cells

Fig 4. Acid adapted S. Enteritidis cells were not protected against tarama salad stored at 5˚C. Each data point

represents an average of six to eight replicates (± standard deviation).

https://doi.org/10.1371/journal.pone.0234999.g004
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were first adapted to the selected treatments (15mM/pH5.0, 35mM/pH5.5 or 45mM/pH6.0),

inoculated in TSB4.35 (pH of the commercial tarama salad) using either HCl or citric acid

(acidulant of tarama salad) and incubated at 37 or 5˚C (temperature effect).

Adaptation to 35mM/pH5.5 failed to protect the pathogen against the subsequent lethal

stress of pH 4.35 (TSB4.35) at 37 and 5˚C, regardless of the acidulant used (Figs 5 and 6). Even

though this observation is not in line with the results obtained following TSB2.5 inactivation at

37˚C (Fig 3B), it may explain the inability of these culture types to tolerate the lethal environ-

ment of tarama salad stored at 5˚C (Fig 4). On the other hand, adaptation to 45mM/pH6.0 suc-

cessfully prolonged the survival of pathogen in TSB4.35 at 37˚C for both acidulants used (Fig 5,

S3 Table). The ability of 45mM/pH6.0 adapted cells to survive lethal acid stress at 37˚C was

also observed following exposure to TSB2.5 (Fig 3A), though this trend was not confirmed in

tarama salad stored at 5˚C (Fig 4). More specifically, exposure to TSB4.35 adjusted with citric

acid following adaptation to 45mM/pH6.0 resulted in up to 1.8 log units (P<0.05) higher pop-

ulations during 32–96 hours of incubation compared to the rest treated and untreated cultures

(i.e., control and 15mM/pH5.0, 35mM/pH5.5) (Fig 5A). Exposure to HCl at 37˚C had a bacte-

ricidal effect for cells adapted to 15mM/pH5.0 and 35mM/pH5.5 as well as NA inocula, reduc-

ing the microbial load until the 5-7th day of storage (Fig 5B). Nonetheless, cells adapted to

45mM/pH6.0 exhibited a low reduction up to 1 log CFU/ml followed by an increase to their

initial levels at the 3rd day of storage (S3 Table). On the contrary, a shift in the incubation tem-

perature from 37˚C to 5˚C sensitized 45mM/pH6.0 inocula (1.0–1.5 log CFU/ml lower counts)

(P<0.05) against the subsequent acid and cold stress compared to 15mM/pH5.0, 35mM/

pH5.5 and control (NA) cells (Fig 6).

In line with the results from the screening assay and tarama salad inactivation, inoculation

of 15mM/pH5.0 adapted cells in TSB4.35 did not affect their survival, irrespectively of the incu-

bation temperature or the acidulant used (Figs 5 and 6).

Overall, the pH value of the challenge medium as well as the incubation (challenge) temper-

ature determined the responses of S. Enteritidis following adaptation to 35mM/pH5.5 and

45mM/pH6.0, respectively, but not to 15mM/pH5.0. On the contrary, similar trends were

found when different acidulants were used for lowering the pH.

Discussion

In the present study, the effect of adaptation to UAA and pH on the subsequent acid adaptive

responses of S. Enteritidis was examined in laboratory media and in an acid food matrix. Ace-

tic acid was used as the adaptation agent, since it is the predominant acid in many foods, such

as mayonnaise, salad dressings and sauces [14]. The amount of undissociated acetic acid in the

adaptation treatments was estimated according to Henderson-Hasselbalch equation. Experi-

mental design covered a range of different combinations of pH values and concentrations of

Table 2. Kinetic parameter estimates of Weibull model during inactivation in tarama salad.

Treatment 4D RMSEa R2 b

NA 28.0 3 ± 5.32 (a) 0.0607–0.3426 0.9838 ± 0.0109

15mM/pH5.0 27.16.7 ± 5.6 (a) 0.0855–0.5095 0.9760 ± 0.0144

35mM/pH5.5 28.1± 6.0 (a) 0.1996–0.3776 0.9779 ± 0.0070

45mM/pH6.0 28.75 ± 6.12 (a) 0.1721–0.3650 0.9758 ± 0.0161

Values represent mean (± standard deviation) of six to eight replicates. Different letters indicate significant differences among 4D values according to Tukey’s HSD test.
a RMSE: Root Mean Square Error.
b R2: regression coefficient.

https://doi.org/10.1371/journal.pone.0234999.t002
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acetic acid Salmonella spp. may encounter in food-related ecosystems. Salmonella Enteritidis

serotype was chosen as it was the most prevalent in Europe [28].

The individual effect of pH in the induced acid resistance of the pathogen was examined by

adjusting the pH of the adaptation medium (TSBG(-)) with hydrochloric acid. This inorganic

acid was used because it is completely dissociated in aqueous environments and therefore itself

is not toxic for the cells [29]. In line with previous reports, adaptation to moderate pH values

(4.0–5.5) protected cells against subsequent acid exposure, with higher resistance observed at

the lower pH values (4.0 and 4.5) [30–33]. Nonetheless, the pH values required for the induc-

tion of acid resistance in pH adapted cells were lower compared to the milder pH values (5.5–

6.0) required in the presence of acetic acid.

The addition of acetic acid to the adaptation media also enhanced survival of the pathogen

following adaptation to some of the treatments tested. In general, the ability of weak organic

acids to activate acid resistance mechanisms has previously been reported [9–13,34–37]. Adap-

tation to juices, natural sources of organic acids, was also found to elicit a protective effect in

Salmonella spp. and E. coli [38,39]. According to Yuk and Marshall [35] and Yuk and Schnei-

der [38], the differences observed in the phenotypic responses of individual strains of E. coli
and Salmonella spp. adapted to organic acids and juices, respectively, can be ascribed to the

Fig 5. Effect of food matrix (pH, acidulant) on the responses of S. Enteritidis at 37˚C. Cells were exposed to TSB4.35

at 37˚C adjusted either with citric acid (A) or HCl (B) following adaptation to 15mM/pH5.0, 35mM/pH5.5 and

45mM/pH6.0. Each data point is an average of eight replicates (± standard deviation).

https://doi.org/10.1371/journal.pone.0234999.g005
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different amounts of undissociated acid present in the adaptation media. Acetate has been

found to activate rpoS in log phase cells [40]. This gene is the master regulator of the general

stress response in many Gram- bacteria [41] induced upon entry of cells into stationary phase

of growth and under a variety of unfavorable conditions, such as low pH [42]. Lee et al. [43]

has reported that induction of rpoS by acetate is performed indirectly, through the reduction

of intracellular pH.

Nevertheless, the impact of different levels of undissociated acid in the induced acid resis-

tance of Salmonella has not been widely investigated. Therefore, the present study tries to

establish a link between the levels of theoretical UAA calculated according to Henderson-Has-

selbalch equation and the induced acid resistance of S. Enteritidis PT4 under extreme acid

conditions. Based on the results of the broth screening, previous exposure of the pathogen to

acetic acid increased its acid resistance in a UAA concentration- and pH-dependent manner.

In mild pH values (5.5–6.0), increasing the amount of UAA within a range (1.9–5.4 mM) pro-

tected the pathogen against the detrimental effect of severe pH (2.5), even though higher con-

centrations of UAA were required at pH 5.5 compared to pH 6.0 for the induced resistance to

be manifested. The concentrations of UAA that induced acid resistance were in each case

lower, or at least close to the lowest limit of the calculated MIC range (5.2–7.2 mM), indicating

Fig 6. Effect of food matrix (pH, acidulant) and refrigeration temperature (5˚C) on the responses of S. Enteritidis.

Cells were exposed to TSB4.35 at 5˚C adjusted either with citric acid (A) or HCl (B) following adaptation to 15mM/

pH5.0, 35mM/pH5.5 and 45mM/pH6.0. Adaptation to 45mM/pH6.0 sensitized pathogen against the subsequent acid

and cold stress. Each data point is an average of eight replicates (± standard deviation).

https://doi.org/10.1371/journal.pone.0234999.g006
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that levels below the growth/no growth limit were needed for the stimulation of the protective

effect. Adaptation to UAA close to the upper limit of the MIC (6.9 mM UAA, treatment

45mM/pH5.5) had no effect on the acid tolerance of S. Enteritidis. On the other hand, addition

of UAA in lower pH values (5.0–4.0), where a higher concentration of protons was present,

had no effect on the acid phenotypic responses, regardless of the concentrations of theoretical

UAA that were added.

Alterations in factors prevailing in the challenge substrate or during challenge drastically

affected the ability of the pathogen to tolerate stress in culture media. Interestingly, increasing

the pH of the challenge medium (TSB) from 2.5 to 4.35 clearly suppressed the induced resis-

tance of cells adapted to 35mM/pH5.5 at both incubation temperatures (5 and 37˚C) and acid-

ulants (HCl, citric acid) tested. Although the exact reason for this shift is not known, different

mechanisms triggered to support survival under extreme acid conditions may be significantly

affected by conditions prevailing at the challenge substrate. For instance, the so-called Acid

Tolerance Response (ATR) may protect stationary phase cells at external pH 3.0 [30], but will

not provide significant protection at pH 2.5 [44]. Amino acids-dependent pH homeostatic

mechanisms, on the other hand, may enhance resistance at pH 2.5 [45] or pH 2.3 [46], pro-

vided that the cognate amino acids are available in the substrate. TSB used in the broth experi-

ments is a rich medium, containing tryptone and soy peptone as protein sources, therefore

providing the necessary amino acids. Contrary to the responses of 35mM/pH5.5 adapted cells,

acid resistance of 45mM/pH6.0 inocula adapted to lower concentrations of UAA, but higher

pH was affected only by incubation temperature. These inocula were sensitized when exposed

to pH 4.35 (TSB5.35) at 5˚C but not at 37˚C, regardless of the acidulant used. This result is in

line with those reported from Tiwari et al. [47], who also found that prolonged exposure of

acid adapted Salmonella cells to acidic conditions at 4˚C was more detrimental (e.g. had higher

reductions) compared to the control samples stored at pH 7.3 at the same temperature. Expo-

sure of S. Seftenberg non-adapted and acid-adapted cells to acid and cold stress altered the

membrane fatty acid composition of both inocula, with higher changes found in acid adapted

cultures. These alterations resulted in increased bacterial membrane fluidity [48]. It is gener-

ally believed that a lower membrane fluidity correlates well with higher acid resistance of bac-

terial cells [32, 35, 49]. As demonstrated before, a shift in the storage temperature can affect

the acid resistance phenotypes. Shen, Yu and Chou [50] reported that whereas no differences

were observed between acid adapted and non-adapted cells of S. Typhimurium inoculated in

skim milk and treated fermented milk stored at 37˚C, acid adaptation, in addition to promot-

ing acid resistance, decreased the susceptibility of the pathogen to refrigeration (5˚C). None-

theless, it is not the first time that the effects of acid adaptation are counteracted by subsequent

stressors, increasing the sensitivity of acid adapted cells to lethal stresses compared to their

non-adapted counterparts [33,51,52].

When tarama salad was used instead of TSB4.35 at 5˚C, survival of all adapted cells was simi-

lar to the non-adapted cultures. Notably, enhanced resistance of acid adapted S. Typimurium

was reported in fermented milk products stored at 5˚C [50]. The increased sensitivity of

45mM/pH6.0 adapted cells at TSB4.35 at 5˚C but not at tarama salad at 5˚C suggests a protec-

tive effect of food matrix on these inocula. This result indicates that intrinsic factors of tarama

salad other than the pH value and the acidulant per se may also determine the resistance phe-

notypes. It has been found that a combination of organic acids and NaCl may elicit a protective

effect against Salmonella, E. coli and Shigella flexneri [53–55], principally due to a raise in the

intracellular pH [55]. In addition, certain food ecosystems may help bacterial cells tolerate

lethal acid environments [12,22]. For instance, Alvarez et al. [12] reported that acid adapted

cells challenged to Meat Extract at pH 3.0 exhibited higher resistance compared to those chal-

lenged to Brain Heart Infusion adjusted to the same pH value. Similarly, Waterman and Small
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[22] also manifested that S. Typhimurium was protected when inoculated into ground beef

and boiled egg white but not when rice was used. In general, discrepancies between pheno-

types in culture media and food matrices has been found by other authors as well [56].

Conclusions

In conclusion, pre-exposure of S. Enteritidis PT4 to organic (acetic acid) or inorganic (HCl)

mild treatments may stimulate acid resistance mechanisms against subsequent extreme acid

stress. Nevertheless, this effect cannot be directly extrapolated to acid foods, where other con-

voluted factors compromise the enhanced acid resistance phenotype. More specifically, the

composition of adaptation medium (concentration of UAA, pH) and factors prevailing on the

subsequent acid challenge (pH, temperature and other intrinsic but unspecified factors), may

collectively determine the acid adaptive response of Salmonella in foods and, thus, alter the

resistance phenotypes. Further work is required in order to elucidate the effect of the food

compounds in the total acquired acid resistance. In addition, given that strain variations

can dramatically affect the acid resistance phenotypes, experimental assays expanded to

include more strains adapted under the condition employed in the present study should be

prompted.
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4. Alvarez-Ordóñez A, Broussolle V, Colin P, Nguyen-The C, Prieto M. The adaptive response of bacterial

food-borne pathogens in the environment, host and food: Implications for food safety. International

Journal of Food Microbiology. 2015; 213: 99–109. https://doi.org/10.1016/j.ijfoodmicro.2015.06.004

PMID: 26116419

5. Berk PA, de Jonge R, Zwietering MH, Abee T, Kieboom J. Acid resistance variability among isolates of

Salmonella enterica serovar Typhimurium DT104. Journal of Applied Microbiology. 2005; 99: 859–866.

https://doi.org/10.1111/j.1365-2672.2005.02658.x PMID: 16162237

6. Lianou A, Nychas G-JE, Koutsoumanis KP. Variability in the adaptive acid tolerance response pheno-

type of Salmonella enterica strains. Food Microbiology. 2017; 62: 99–105. https://doi.org/10.1016/j.fm.

2016.10.011 PMID: 27889173

7. Kim G-H, Breidt F, Fratamico P, Oh D-H. Acid resistance and molecular characterization of Escherichia

coli O157:H7 and different non-O157 shiga toxin-producing E. coli serogroups. Journal of Food Sci-

ence. 2015; 80: M2257–M2264. https://doi.org/10.1111/1750-3841.12996 PMID: 26375176

8. Usaga J, Worobo RW, Padilla-Zakour OI. Effect of acid adaptation and acid shock on thermal tolerance

and survival of Escherichia coli O157:H7 and O111 in apple juice. Journal of Food Protection. 2014; 77:

1656–1663. https://doi.org/10.4315/0362-028X.JFP-14-126 PMID: 25285481

9. Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin Y-J, et al. Membrane lipid composition and

stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and triso-

dium phosphate and their resistance to lethal heat and acid stress. International Journal of Food Micro-

biology. 2014; 191: 24–31. https://doi.org/10.1016/j.ijfoodmicro.2014.08.034 PMID: 25217722

10. Koutsoumanis KP, Sofos JN. Comparative acid stress response of Listeria monocytogenes, Escheri-

chia coli O157:H7 and Salmonella Typhimurium after habituation at different pH conditions. Letters in

Applied Microbiology. 2004; 38: 321–326. https://doi.org/10.1111/j.1472-765x.2004.01491.x PMID:

15214733

11. Kwon YM, Park SY, Birkhold SG, Ricke SC. Induction of resistance of Salmonella typhimurium to envi-

ronmental stresses by exposure to short-chain fatty acids. JFS: Food Microbiology and Safety. 2000;

65: 1037–1040. https://doi.org/10.1111/j.1365-2621.2000.tb09413.x

PLOS ONE Undissociated acetic acid and pH adaptation affect the responses of Salmonella Enteritidis Phage Type 4

PLOS ONE | https://doi.org/10.1371/journal.pone.0234999 July 23, 2020 15 / 18

https://doi.org/10.4315/0362-028x-72.5.1121
https://doi.org/10.4315/0362-028x-72.5.1121
http://www.ncbi.nlm.nih.gov/pubmed/19517746
https://doi.org/10.4172/2476-2059.1000e103
https://doi.org/10.1016/j.foodres.2011.04.002
https://doi.org/10.1016/j.ijfoodmicro.2015.06.004
http://www.ncbi.nlm.nih.gov/pubmed/26116419
https://doi.org/10.1111/j.1365-2672.2005.02658.x
http://www.ncbi.nlm.nih.gov/pubmed/16162237
https://doi.org/10.1016/j.fm.2016.10.011
https://doi.org/10.1016/j.fm.2016.10.011
http://www.ncbi.nlm.nih.gov/pubmed/27889173
https://doi.org/10.1111/1750-3841.12996
http://www.ncbi.nlm.nih.gov/pubmed/26375176
https://doi.org/10.4315/0362-028X.JFP-14-126
http://www.ncbi.nlm.nih.gov/pubmed/25285481
https://doi.org/10.1016/j.ijfoodmicro.2014.08.034
http://www.ncbi.nlm.nih.gov/pubmed/25217722
https://doi.org/10.1111/j.1472-765x.2004.01491.x
http://www.ncbi.nlm.nih.gov/pubmed/15214733
https://doi.org/10.1111/j.1365-2621.2000.tb09413.x
https://doi.org/10.1371/journal.pone.0234999
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