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Abstract

Background

Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization

method in multiple cancer types. One limitation for robust and reproducible analysis lies in

the inter-reader variability of the tumor annotations, which can potentially cause differences

in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and

clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to

assess MR-derived parameters for predicting molecular subtype, hormonal receptor status,

Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as

well as grading in patients with breast cancer.

Methods

A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0–89.4) with BI-RADS 5

and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively

included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-

weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing

VOIs around the primary tumor lesions followed by thresholding. From each segmentation,

13.118 quantitative imaging features were extracted and analyzed with machine learning

methods. Validation was performed by 5-fold cross-validation with 25 repeats.

Results

Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-

negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another

was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs tri-

ple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone
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Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while

Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels

could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of

0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and

0.74 for the histological grading.

Conclusion

Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics pro-

vides comparable results to current publications with the perks of clinical suitability, enabling a

comprehensive non-invasive platform for breast tumor decoding and phenotyping.

Background

Breast cancer is one of the most common causes of cancer-related death in women worldwide.

The prognosis depends on the time of first diagnosis and treatment, which in turn strongly

depends on the molecular and hormonal features of the tumor. In clinical routine, these fea-

tures are assessed by invasive tissue sampling and histopathological analysis. Over the past few

years, ‘radiomics’ or ‘radiogenomics’ has demonstrated its potential for non-invasive, imag-

ing-based tissue characterization in multiple cancer types [1–4]. As a rapidly emerging field,

radiomics is based on the extraction of numerous quantitative features from medical images to

assess relationships between features and the underlying pathophysiology using machine

learning methods for analysis [5]. While radiomics-based analysis for prediction of the molec-

ular status has been shown highly successful for brain cancers and prostate cancer [6–8],

results from previously published studies on breast cancer show promising, yet divergent

results [9,10]. One limitation for robust and reproducible radiomics analysis lies in the impact

of widely-divergent inter-reader variability in annotating the tumors [11]. To date most radio-

mics studies require an either fully manual or semi-automatic tumor segmentation by a radiol-

ogist to enable the feature extraction process [10,12–16], resulting in potentially strongly

divergent differences of the tumor annotations. These differences have been shown to cause

significant variations in the feature sets extracted from the annotated tumor images and the

consequential results thereof.

Therefore, the aim of this study was to investigate whether the utilization of a rapid and

reproducible approach of VOI-based semi-automatic radiomics can facilitate the prediction of

the molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, involvement of

lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer.

Materials and methods

Patients

Ethical approval for this retrospective study was granted by the local ethics committee.

Informed consent was waived. All analyses were performed based on anonymized data. After a

prospective database research a total of 114 patients with histopathological confirmation of

breast cancer (BIRADS 5 or 6) between August 2014 and March 2018, who fulfilled the follow-

ing criteria were included in this study: (1) dedicated breast MRI prior treatment, (2) breast

MRI performed exclusively on one dedicated 1.5 Tesla MR scanner to reduce potential influ-

ence of varying field strengths or imaging parameters on texture analysis, (3) lesions>/ = 1cm

on MRI to decrease potential partial volume effects on radiomic analysis [17], (4) 18 years or
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older, (5) neither pregnant nor breastfeeding. 16 of these 114 patients with incomplete MR

sequences were excluded from this study, resulting in a total of 98 patients who were included

in the analysis.

Data acquisition

Breast MR scans were performed on a 1.5 Tesla MR system (Aera, Siemens Healthcare,

Erlangen) in prone position utilizing a dedicated 16-channel breast radiofrequency (RF) coil

(Siemens Healthcare, Erlangen).

The study protocol comprised the following sequences:

• A transversal 2-dimensional turbo-spin echo sequence (0.7 x 0.7 mm voxel size, 2.0 mm slice

thickness, gap 0 mm, TR 6100 ms, TE 52 ms, FOV 340 x 340 mm2, flip angle 150 degrees,

matrix size 256x256, 88 slices)

• Six repetitions of a non-fatsaturated transversal 3-dimensional fast low-angle shot (FLASH)

sequence for dynamic imaging (0.3 x 0.3 mm voxel size, 2.0 mm slice thickness, gap 0 mm,

TR 8.7 ms, TE 4.76 ms, FOV 400 x 400 mm2, flip angle 25 degrees, matrix size 256x256, 88

slices). A dose of 0.1 mmol/kg bodyweight gadobutrol (Bayer Healthcare, Berlin, Germany)

was injected intravenously after the first FLASH sequence with a flow of 2 mL/s using an

automated injector (Spectris Solaris, MR Injection System; Medrad, Pittsburg, PA).

• Subtraction imaging was acquired automatically after completion of the dynamic series.

Standard of reference

Histopathological analysis served as the reference standard and was based on either core nee-

dle biopsy (n = 79) or surgical resection (n = 19). Histological and molecular subtype classifica-

tion was determined according to the 2013 St. Gallen guidelines [18]. IHC

(ImmunoHistoChemistry) status analysis comprised estrogen receptor, progesterone receptor

and HER2 status. Positivity for ER and PR was defined as the presence of 1% or more of posi-

tively stained nuclei. Molecular subtypes were classified accordingly: (1) luminal A for hor-

mone receptor positive and HER2 negative, (2) luminal B for hormone receptor positive and

HER2 positive, (3) triple-negative for hormone receptor and HER2 negative and (4) HER2-e-

nriched for hormone receptor negative and HER2 positive [19–21]. Histological grading was

determined in accordance with Elston-Ellis [22]. Elston-Ellis gradings 5, 6 and 7 were classified

into a low-grade group, gradings 8 and 9 into a high-grade group. Ki67 was considered to be

low, if the value was below 14% and high if otherwise [18]. A list of all outcome variables is dis-

played in Table 1.

Radiomics and statistical analysis

All MRI datasets were imported into the open source image processing software 3D-Slicer

[23]. To ensure best conspicuity of the cancerous lesions the second subtraction series of the

dynamic set was utilized for radiomic analysis. Tumor volumes were encircled utilizing a VOI

(volume of interest) by an experienced breast radiologist with 15 years of experience (Fig 1A).

A simple threshold of using 30% of the highest intensity inside the volume, followed with a

morphological closing was used to obtain an automatic fine segmentation of the tumor mass

(Fig 1B). Since this method may generate several segments, only the largest was retained. All

segmentations were then reviewed by the above mentioned experienced breast radiologist and

exported as DICOM-SEG. (http://dicom.nema.org/medical/dicom/current/output/chtml/

part03/sect_A.51.html).
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Image preprocessing was performed in accordance with previous publications [1,5,24], e.g.

a gradient filter was used to make the T1-weighted DCE-MRI series and the T2-weighted

series more comparable. Overall, 13.118 generic features comprising shape, first order and

higher order features were generated (a detailed list is displayed in S1 File). Five different fea-

ture selection methods (randomized logistic regression, chi-square, f-score, t-score, mutual

information) were used to reduce the set of features. For machine learning analysis, three dif-

ferent classifiers (Naive Bayes, random forests and logistic regression) were employed. Classifi-

cation performance was measured using a Receiver Operating Characteristic (ROC) analysis

and reported as Area under the Curve (AUC) with a 95% confidence interval. A two-sided

DeLong test was employed to compare if the AUC of ROC curves is different to that of a con-

stant predictor. More details are listed in S3 File.

All analyses were performed using Python 3.6. Pyradiomics 2.0.1 [24] was used for the

extraction of the radiomics features. Implementations of the feature selection methods and

classifiers were taken from the scikit-learn 0.21.0 package.

Validation

For internal validation, a stratified 5-fold cross-validation (CV) was applied, selecting 80% of

the samples randomly in each round for training, with the remaining 20% being reserved

exclusively for testing. Feature selection was applied only to the training folds. The CV was

Table 1. Display of the distribution of the outcome variables. N denotes the sample size used for each outcome,

while Positive and Negative denote the balance of the data.

Outcome Variable N Positive Negative

Molecular breast cancer subtypes
Luminal A 95 58 (61%) 37 (39%)

Luminal B 95 16 (17%) 79 (83%)

HER2-enriched 95 6 (6%) 89 (94%)

Triple-Negative 95 15 (16%) 80 (84%)

Differentiation of Molecular breast cancer subtypes
Luminal A vs Luminal B 74 58 (78%) 16 (22%)

Luminal A vs HER2-enriched 64 58 (91%) 6 (9%)

Luminal A vs Triple- Negative 73 58 (79%) 15 (21%)

Luminal B vs HER2-enriched 22 16 (73%) 6 (27%)

Luminal B vs Triple- Negative 31 16 (52%) 15 (48%)

HER2-enriched vs Triple-Negative 21 6 (29%) 15 (71%)

Receptor status
Estrogen Receptor (ER) 95 73 (77%) 22 (23%)

Progesterone Receptor (PR) 95 66 (69%) 29 (31%)

Hormone receptor positivity 95 74 (78%) 21 (22%)

Ki67- and HER2-Expression
Ki67 80 20 (25%) 60 (75%)

Human epidermal growth factor receptor 2 (HER2) 95 22 (23%) 73 (77%)

Involvement of the lymphatic system
Lymph Vessel Involvement 51 8 (16%) 43 (84%)

Lymph Node Metastasis 84 34 (40%) 50 (60%)

Grading
Elston-Ellis Grading (EE) 57 44 (77%) 13 (23%)

Histological Grading 90 18 (20%) 72 (80%)

https://doi.org/10.1371/journal.pone.0234871.t001
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repeated 25 times to get a more accurate estimation of the final performance. As some of the

outcome variables showed imbalanced positive and negative classes (Table 1), stratified sam-

pling was used.

The prediction capacity of all models was measured by averaging over the corresponding

cross-validation test folds. Subsequently, AUC as well as sensitivity and specificity were computed.

Results

A total of 98 patients (mean age 59.7, range 28.0–89.4) were included in the study. Mean lesion

size was 4.9 +/- 2.9 cm (range: 1.2–16.1 cm).

Due to low occurrence, patients with an Elston-Ellis grading below 5 (n = 3) or with a histo-

pathological grading of 1 (n = 2) were removed from the corresponding subanalyses. The sam-

ple sizes of all subanalyses ranged from 21 to 95. The distributions of the outcome variables are

listed in Table 1.

Trained models produced prediction scores that were used for the ROC analysis (Fig 2 and

violin plots in S4 File). Predictions showed varying results, ranging from AUC 0.62 to 0.97.

Detailed results of classification accuracies are displayed in Table 2 and visualized in ROC

plots in S5 File.

Molecular breast cancer subtypes

Highest accuracies for correct classification were achieved for the differentiation of HER2-e-

nriched from triple-negative with an AUC of 0.97, followed by luminal B from triple-negative

(AUC 0.86) and luminal A and B from HER2-enriched (AUC 0.79 and 0.78 respectively). Clas-

sification of the individual molecular subtype against all other subtypes showed moderate to

low accuracies, with best accuracies achieved for prediction of HER2-enriched (AUC 0.75)

and lowest for luminal A (AUC 0.65).

Fig 1. Imaging example of the VOI-encirclement of a tumor lesion. Fig 1A–1C display three consecutive axial slices of a tumor lesion in the second subtraction series

annotated via VOI-encirclement. Fig 1D–1F show the corresponding semi-automatic fine tumor segmentation obtained by thresholding.

https://doi.org/10.1371/journal.pone.0234871.g001
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Receptor status

Classification of the hormonal receptor status was highest for the pairwise discrimination of

the overall hormone receptor positivity and Progesterone receptor positivity with AUCs of

0.69. Comparable, yet slightly lower AUCs were achieved for Estrogen receptor positivity with

an AUC of 0.67.

Ki67- and HER2-expression

Prediction of Ki67 Expression was achieved with an AUC of 0.81. Classification of HER2-E-

xpression was rather low with an AUC of 0.62.

Involvement of the lymphatic system

Prediction of lymph vessel involvement achieved high accuracies (AUC 0.80), while classifica-

tion of involvement of lymph nodes was moderate with an AUC of 0.72.

Grading

Both gradings (histological grading and Elston-Ellis grading) showed comparably moderate

performance, with AUC 0.71 for the prediction of the Elston-Elliis grading and 0.75 for histo-

logical grading.

Features and feature selection methods

Regarding the number of features, no general trend could be observed (a detailed list of the

selected features is displayed in S2 File while a correlation matrix of all extracted features with

the outcomes is visualized in S6 File). The number of selected features of the best models dif-

fered for each outcome variable, e.g. selecting 1 feature yielded the best model for lymph node

Fig 2. Example of two patients with low and high prediction scores using the model trained to predict low vs high Ki67. (A-C) Three consecutive axial slices of a

tumor lesion in the second subtraction series for the patient with the highest prediction score. Histological reference revealed a Ki67 count of 80. (D-F) The

corresponding axial slices for the patient with the lowest prediction score. Histological reference revealed a Ki67 count of 10.

https://doi.org/10.1371/journal.pone.0234871.g002
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metastasis, while the model using 32 features showed the best performance for prediction of

the Elston-Ellis grading. Similarly, the most often selected features differed: Considering only

those 114 features that have been selected more than 50% in all training repeats across all sub-

analyses, most often features from the DCE-MRI sequence were selected (70%, N = 80) with

lowest features derived from T2 imaging (11%, N = 12). Considering the preprocessing, wave-

let features were most often used (41%, N = 47), followed by local binary pattern features

Table 2. Detailed results of the classification accuracies. Results for all classifiers. P-Values were computed using a DeLong test to compare ROC curves.

Outcome Classifier Feature Selection Method Number of

Features

AUC [95% CI], p-

Value

Sensitivity Specificity Accuracy

Molecular breast cancer subtypes
Luminal A Random forest Mutual Information 32 0.65 [0.54, 0.77],

p = 0.009

0.53 0.78 0.62

Luminal B Random forest t-Score 32 0.69 [0.55, 0.84],

p = 0.008

0.56 0.76 0.72

HER2-enriched Logistic

Regression

Randomized Logistic

Regression

2 0.75 [0.58, 0.91],

p = 0.003

0.67 0.82 0.80

Triple- Negative Random forest Chi Square 32 0.73 [0.58, 0.87],

p = 0.002

0.8 0.6 0.59

Differentiation of Molecular breast cancer subtypes
Luminal A vs Luminal B Random forest Randomized Logistic

Regression

4 0.64 [0.47, 0.81],

p = 0.115

0.78 0.56 0.72

Luminal A vs HER2-enriched Random forest Mutual Information 16 0.79 [0.58, 0.99],

p = 0.003

0.79 0.83 0.78

Luminal A vs Triple- Negative Random forest t-Score 8 0.74 [0.61, 0.87],

p < 0.001

0.66 0.8 0.66

Luminal B vs HER2-enriched Logistic

Regression

F-Score 2 0.78 [0.59, 0.97],

p = 0.003

0.69 0.83 0.68

Luminal B vs Triple- Negative Naive Bayes Randomized Logistic

Regression

1 0.86 [0.71, 1.0],

p < 0.001

0.88 0.87 0.84

HER2-enriched vs Triple Negative Naive Bayes Mutual Information 2 0.97 [0.89, 1.0],

p < 0.001

0.83 1.0 0.90

Receptor status
Estrogen Receptor (ER) Naive Bayes Mutual Information 32 0.67 [0.53, 0.8],

p = 0.014

0.68 0.68 0.63

Progesterone Receptor (PR) Naive Bayes t-Score 32 0.69 [0.57, 0.8],

p = 0.002

0.71 0.62 0.69

Hormone receptor positivity Logistic

Regression

Chi Square 1 0.69 [0.57, 0.81],

p = 0.002

0.65 0.71 0.61

Ki67- and HER2-Expression
Ki67 Logistic

Regression

Randomized Logistic

Regression

8 0.81 [0.7, 0.92],

p < 0.001

0.75 0.68 0.84

Human epidermal growth factor

receptor 2 (HER2)

Random forest Randomized Logistic

Regression

16 0.62 [0.48, 0.75],

p = 0.079

0.64 0.58 0.51

Involvement of the lymphatic system
Lymph Vessel Involvement Random forest Mutual Information 8 0.8 [0.65, 0.95],

p < 0.001

0.88 0.67 0.68

Lymph Node Metastasis Logistic

Regression

Mutual Information 1 0.71 [0.6, 0.83],

p < 0.001

0.71 0.74 0.71

Grading
Elston-Ellis Grading (EE) Logistic

Regression

Chi Square 32 0.71 [0.55, 0.88],

p = 0.009

0.64 0.85 0.67

Histological Grading Naive Bayes Randomized Logistic

Regression

16 0.74 [0.62, 0.87],

p < 0.001

0.72 0.72 0.62

https://doi.org/10.1371/journal.pone.0234871.t002
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(24%, N = 27). No shape features were selected by any of the feature selection methods. While

most often first order features (36%, N = 41) and GLSZM as well as GLCM features (22%,

N = 25 and 21%, N = 24 resp.) were used, no clear pattern can be seen in the features them-

selves. Here, the most often selected feature was LargeAreaHighGrayLevelEmphasis (8%,

N = 9), while variants of the emphasis feature was most often used (32%, N = 36).

No clear pattern was observed regarding the feature selection method and the classifier.

Models using randomized logistic regression (N = 6) were equally successful in producing best

performing models as mutual information (N = 6). Similarly, no superiority of any of the clas-

sifiers was seen: Though random forests were used slightly more often than logistic regression

(N = 8 and N = 6), both were not outperforming Naive Bayes (N = 5).

Discussion

Inter- and intratumoral heterogeneity is one of the hallmarks of breast cancer [25] having

induced refinements of the previously mainly pathology-driven classification to molecular

classifications and subtyping [26]. Each of these subtypes is associated to different risk factors

for incidence, response to treatment, risk of disease progression, and preferential organ sites of

metastases. Luminal tumors are positive for estrogen and progesterone receptors, and the

majority respond well to hormonal interventions, whereas HER2+ tumors have amplification

and overexpression of the ERBB2 oncogene and can be effectively controlled with a diverse

array of anti-HER2 therapies. Basal-like tumors in general lack hormone receptors and HER2;

thus, the majority of these tumors are also called triple-negative breast cancer (TNBC). While

the “personalization” of treatment, by means of adaptation in accordance with molecular sub-

typing, has significantly changed and improved breast cancer treatment, invasive tissue sam-

pling may be restricted in its assessment of whole-tumor heterogeneity, as particularly in

patients undergoing neoadjuvant chemotherapy only a minor part of the tumor is histopatho-

logically analyzed prior to treatment.

Over the past few years, Radiomics has been demonstrated to facilitate a promising plat-

form for non-invasive whole-tumor tissue characterization for a number of cancer types

[6,7,27]. An increasing number of research studies have found radiomic signatures to be pre-

dictive markers of underlying gene-expression patterns, therapy response, relapse, patient sur-

vival and other clinical and histopathological outcomes, building a bridge between imaging

and genomics, also known as radiogenomics [4,6,28]. In one of the largest studies on molecu-

lar subtyping, Saha et al. [9] extracted 529 features from DCE-MRI imaging of 922 patients

and predicted luminal A, triple-negative, ER and PR status with AUCs of 0.70, 0.66, 0.66 and

0.62, respectively. These results coincide well with our study results, with the biggest difference

lying in the prediction of triple-negative cancers (AUC 0.66 vs 0.73). Similarly, in a smaller

study, Guo et al. [10] predict Stage I vs III, ER, PR, HER2 as well as lymph node metastases

(LNM) from radiological and genetic data. The AUCs of the radiomics only models were 0.87,

0.79, 0.69, 0.65 and 0.69 for Stage, ER, PR, HER2 and LNM respectively. Again, these numbers

lie within the 95% CI of our models, differing strongest in prediction of ER (AUC 0.79 vs

0.67). Our results in differentiation of molecular subtypes also go in line with a previous publi-

cation by Leithner et al. [29], revealing comparable results for the differentiation of luminal A

from HER2-enriched, luminal B from triple-negative and superior results for distinguishing

HER2-enriched from triple-negative cancers.

Similar results have also been obtained using computer-assisted diagnostics (CAD), where

instead of a broad set of automatically generated features only a few manual ones are extracted

and analyzed via statistical or machine learning models. Baltzer et al. [30] demonstrated that

volume enhancement characteristics are significantly associated with LNM, ER, PR and HER2.
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Dietzel et al. [31] used a neural network to predict lymph node status and obtained an AUC of

0.74, which is comparable to our result.

Nevertheless, our study differs from a number of previous trials in three important factors:

Firstly, we favored a rather simple and robust imaging protocol for analysis, comprising

dynamic T1-weighted imaging and T2-weighted imaging. While DWI is known to be suscepti-

ble to artifacts and suffer from an overall lack of standardization, it is considered as an impor-

tant source of functional data and has been shown to improve specificity [32]. Nonetheless

DWI was not used in this study as it was not part of our standard imaging protocol. As it was

not consistently available for all patients, it was excluded from our analysis. Secondly, our

approach to non-invasive tissue characterization was composed broader than most previous

studies in comprising the molecular subtype as well as parameters like Ki67, grading and

involvement of lymph tissue. While the prediction of grading and involved lymph nodes may

be considered rather moderate with AUCs of 0.71 and 0.75, respectively, prediction of Ki67

achieved clinically relevant and high AUCs of 0.81. Ki67 expression and Ki67 index have been

shown to play considerable roles as predictive factors for disease free survival, overall survival

and may be used for treatment and follow-up assessment [33]. The third and most distinctive

difference is our approach towards tumor annotation. Most previous radiomics studies were

based on labor-intensive manual or semi-automatic full-tumor annotations performed by the

radiologists, resulting in potential inter-reader variabilities depending on each radiologists´

appreciation of the tumor shape and size as well as expertise. Our approach was simplified in

restricting the radiologists´ influence to recognition and a VOI-based encirclement of the

tumor and a subsequent sub-automatic segmentation by the machine learning algorithm,

using a simple threshold of 30% of the highest intensity inside the volume to obtain an auto-

matic fine segmentation of the tumor mass. A similar segmentation approach was adopted

recently by Dietzel et al. [34]. By thresholding voxels in the initial enhancement in the dynam-

ics having more than 30% difference they identify the active tumor tissue and extract vasculari-

zation patterns.

This simplified approach endorses two important factors: first, the time for tumor annota-

tion is significantly reduced from a dedicated whole-tumor manual / semi-automatic annota-

tion to a simple VOI demarcation as commonly used in hybrid imaging for assessment of

tracer uptake, making this approach feasible in clinical routine. Secondly, these VOI and inten-

sity-based segmentations reduce potential inter-reader variabilities based on manual / semi-

automatic segmentation by radiologist. This simplified approach to radiomics goes in line with

the recent recognition of the potential impact of inter-reader variability in radiomics. Saha

et al. [11] recently published an overview of algorithmic features and the potential impact of

inter-reader variability in annotating tumors. They conclude that breast MRI radiomics fea-

tures widely vary in terms of their stability, ranging from an average inter-reader stability for

all features of 0.85 to as low as 0.63 for tumor-based features.

Compared to previous publications [35,36] our study results do not facilitate clear recom-

mendations regarding the feature selection method or the applied classifiers. This underlines

that in high dimensional spaces no method generally outperforms others. This also holds true

for the feature selection, where similarly no pattern could be clearly detected. Overall, dynamic

T1-weighted imaging seems to facilitate the extraction of more relevant features than T2

weighted imaging, which goes in line with previous publications on this matter [32,37].

While the present study offers several strong points, including a rather broad scope and

simplified approach to tumor-annotation, some limitations apply: The small sample size might

have introduced a bias in form of overfitting and impeded the splitting of the data into strict

train and test sets. This stems from the fact that the lesions of many patients were clip-marked

at the time of examination and thus were excluded from the study. Furthermore, a total of 24
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patients with BIRADS 6 were included. As a biopsy was performed in these patients prior to

imaging, an effect on the radiomics analysis cannot be ruled out. A meaningful subgroup analy-

sis would require a higher sample size and was thus not carried out. Another bias may be caused

by the fact, that all examinations in this study were performed with a scanner from a single pro-

vider. Finally, due to the “proof-of-concept” nature of this study, another restriction may be

elicited by the lack of an external validation data set, as the primary study goal was to establish a

simplified approach to radiomics. Hence, all of these weak points should be addressed in future

trials, comprising larger patient cohorts of multi-center, multi-vendor studies.

Conclusions

Overall, our preliminary study results demonstrate the usability of a simplified and rapid

approach to tumor for MRI-based tumor decoding and phenotyping of breast cancer.
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