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Abstract

Ion channels form an important class of drug targets in malignancies. Transient receptor

potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various

solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochem-

istry (IHC) in breast cancer cases compared with normal breast ducts, its association with

clinico-demographical parameters, and its potential function in breast cancers by Gene Set

Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were

significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085)

compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue

microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99

TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022).

Higher TRPM4 expression (median frequency cut-off) was significantly associated with

higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p =

0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of

breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) dem-

onstrated significant association of TRPM4 transcript expression with estrogen response

and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery

rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium

cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 pro-

tein expression is upregulated in breast cancers associated with worse clinico-demographi-

cal parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT

progression in breast cancer.

Introduction

Ion channels form an important class of therapeutic target where they account for nearly one-

fifth of all human druggable proteins [1]. Ion channels contribute to various malignant pheno-

types of cancer cells through regulating the transport of the universal signaling ion calcium
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(Ca2+) [2]. Transient receptor potential (TRP) ion channels were identified in Drosophila in

which mutated trp and trpl genes led to transient depolarization as well as receptor potential

[3]. On the basis of sequence homology, mammalian TRP channels can be categorized into six

subfamilies including the TRPM group of ion channels [4]. The TRPM subfamily consists of

eight ion channel members (TRPM1-8) where each contains six transmembrane domains and

a loop that forms the channel’s pore [5, 6].

Transient receptor potential melastatin 4 (TRPM4) is a non-selective cation channel acti-

vated by increased cytoplasmic Ca2+ to allow transport of monovalent cations such as Na+, K+,

Cs+ and Li+ but impermeable to Ca2+ cation [7–9]. TRPM4 activation triggers cell depolariza-

tion that reduces the driving force for Ca2+ transport required to modulate various physiologi-

cal processes including vasoconstriction of cerebral arteries, insulin secretion, and migration

of immune cells [10–13]. In diseases, TRPM4 is frequently implicated in cardiovascular disor-

ders [14] and recently implicated in malignancies [15, 16].

Independent investigations have shown the oncogenic roles of TRPM4 in prostate cancer.

TRPM4 mRNA and protein levels were overexpressed in prostate cancer tissues compared

with non-malignant pancreatic ducts [17, 18], and its overexpression conferred increased risk

of biochemical recurrence in patients with prostate cancer [18]. TRPM4 expression induced

the proliferation, migration and invasion of prostate cancer cells [17, 19–21] via TRPM4-me-

diated activation of β-catenin signaling pathway and epithelial-mesenchymal transition (EMT)

[20, 21]. TRPM4 is also overexpressed in diffuse large B-cell lymphoma associated with worse

survival [22], cervical cancer [23] and colorectal cancer where it could induce proliferation

and invasion of colorectal cancer cells [24].

Breast cancer is the most common cancer among women globally where it accounts for

approximately 25% of all female cancers [25, 26]. It is the leading cause of cancer death in

women worldwide despite improvements in hormone and targeted therapies [26]. The mem-

bers of TRPM ion channel family such as TRPM2, TRPM7 and TRPM8 play vital roles in the

growth, survival and metastasis of breast cancer cells, while somatic mutations affecting

TRPM6 occur in breast cancer patients [15]. We thus set out to investigate the expression pro-

file of TRPM4 in breast cancers, and to examine the potential roles of TRPM4 in the disease

based on its expression profile in gene expression profiling (GEP) datasets of breast cancer tis-

sues compared with normal breast epithelium tissues.

Materials and methods

Tissues and tissue microarrays (TMAs)

Two independent panels of formalin-fixed paraffin-embedded (FFPE) TMAs of breast cancer

cases were obtained from US Biomax (Rockville, MD, USA). The first panel (catalogue no:

BR1009) consisted of breast cancer (n = 40) and normal breast tissues adjacent to tumor

(NBT; n = 7), while the second panel (catalogue no: BR1503f) consisted of breast cancer

(n = 59), ductal carcinoma in situ (DCIS) i.e. pre-cancerous lesion of glandular tissues (n = 6),

fibroadenoma i.e. benign proliferative lesion of both glandular and stroma components

(n = 3), and NBT (n = 3). All TMAs contained duplicate cores per case and the following clin-

ico-demographical and pathological data: Age, tumor size, lymph node status, tumor grade,

ER, PR and HER2 protein status, and breast cancer subtypes. Furthermore, the first and sec-

ond TMA panel contained tumor stage and Ki-67 frequency data, respectively. In addition to

the TMAs, whole tissue sections of appendix from an adult female patient with appendicitis

were obtained from Department of Pathology, Universiti Sains Malaysia, FFPE blocks archive

and used as positive controls for IHC staining. All other data pertaining to the appendicitis

patient who sought treatment in November 2018 were fully anonymized before the tissue
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sections were retrieved in July 2019. The study procedures were approved by the Human

Research Ethics Committee of Universiti Sains Malaysia (JEPeM) (approved ethics code:

USM/JEPeM/18050232). All procedures carried out in this study involving human tissue sam-

ples were in accordance with the 1964 Declaration of Helsinki and its later updates, and with

the institutional ethical standards. All experimental protocols were conducted according to the

institutional relevant guidelines and regulations. All tissue samples in the TMAs obtained

from US Biomax were anonymous while the appendix tissue samples were linked-anonymized

archival FFPE specimens, and individual consent was not required for this study.

Immunohistochemistry (IHC)

Tissue sections were incubated at 60˚C for 10 min to facilitate tissue adherence onto the slides

before deparaffinization in two changes of xylene substitute (Sigma-Aldrich Co., St Louis, MO,

USA) each for 15 min. This was followed by serial rehydration in graded ethanol (GmbH,

Hamburg, Germany) from 100% ethanol followed by 70%, 50% and 30% ethanol, and finally

in distilled water. Heat-mediated antigen retrieval was conducted in Tris-EDTA buffer (pH

9.0) using a microwave pressure cooker for 10 min followed by incubation with a mouse anti-

TRPM4 monoclonal antibody (clone 10H5; Abcam, Cambridge, UK) at 1:500 dilution

(1.536 μg/ml) for one hour at room temperature. Binding of the anti-TRPM4 antibody was

detected using HRP-conjugated secondary anti-mouse/rabbit antibody from EnVisionTM

detection system (DakoCytomation, Carpinteria, CA, USA) for 30 min and developed with

DAB as the chromogen for 5 min. The sections were counterstained with fresh Gill No. 2

hematoxylin solution (Sigma Aldrich) for 10 sec and mounted with the VectaMountTM (Vec-

tor Labs, Burlingame, California) non-aqueous mounting medium.

Pathologic interpretation

Interpretation of the IHC staining was conducted by an experienced histopathologist F.A.H

and researcher K.K.W independently blinded to the clinico-demographical and pathological

data. The frequency of TRPM4 staining in tumor cells was scored in 10% increments and cases

with�20% discrepancy were resolved under a joint microscope. Intensity of TRPM4 staining

was scored as negative, weak, moderate, or strong.

Gene Expression Profiling (GEP) datasets and Gene Set Enrichment

Analysis (GSEA)

TRPM4 transcript expression values (z-scores) from the The Cancer Genome Atlas (TCGA)

dataset of breast cancer cases (n = 500) [27] matched for gender (females) and age range (27–

81 years old) with the TMA series were obtained from the cBioPortal database (https://www.

cbioportal.org/) [28, 29]. The clinico-demographical and pathological parameters retrieved

from the dataset consisted of age, lymph node status, stage, ER, PR and HER2 status, and

breast cancer subtypes. Microarray GEP datasets of normal breast epithelium from reduction

mammoplasty individuals were obtained from GSE10797 (n = 5) [30], GSE9574 (n = 15) [31]

and GSE20437 (n = 18) [32], while microarray GEP datasets of breast cancer patients were

obtained from GSE54002 (n = 417) [33], GSE20685 (n = 327) [34] and GSE23720 (n = 197)

[35] available on the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/).

All microarray GEP datasets were processed using the geWorkbench platform as described

previously [36–38] where each GEP dataset’s values were log2-transformed, z-scores obtained

(mean and variance normalization), and the z-scores were scaled to be within -3 (minimum)

and 3 (maximum). Gene Set Enrichment Analysis (GSEA) [39] according to TRPM4 expres-

sion (Affymetrix probe ID: 219360_s_at) and the Hallmark collection of the Molecular
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Signatures Database (MSigDB) [40] was conducted in each of the GEP dataset independently

by using Pearson correlation as the gene-ranking metric and permutated using the gene sets

permutation function [41].

Statistical analysis

The distributions of clinico-demographical and pathological variables of the breast cancer

patients were compared in terms of TRPM4 frequency or intensity of IHC staining using the

χ2-test or Fisher’s exact test (used when more than 20% of cells have expected frequencies of

below five) [42] (SPSS Statistics v22; IBM, Armonk, NY, USA). For TRPM4 frequency, the

median threshold (i.e. 50%) was used as the cut-off, and the group of patients with�50%

TRPM4 frequency was compared with patients harboring <50% TRPM4 frequency. For

TRPM4 intensity, patients with negative or weak TRPM4 intensity were grouped together to

be compared with patients harboring moderate or strong TRPM4 intensity. All p-values were

two-tailed and values<0.05 were considered statistically significant. Finally, a priori sample

size and power calculation was not performed due to TRPM4 protein expression profile in

breast cancer cases and the associations examined had not been reported before. Hence, we

were unable to estimate the effect of sample sizes according to other data.

Results

TRPM4 expression profile in breast cancer

Our initial data-mining showed that TRPM4 transcript was frequently expressed in breast can-

cer cell lines according to the Cancer Cell Line Encyclopedia (CCLE) database (https://portals.

broadinstitute.org/ccle) [43]. TRPM4 transcript was more highly expressed in breast cancer

cell lines (n = 60) compared with 38 other cancer types with the exception of Ewing’s sarcoma

(n = 12) with higher TRPM4 expression (Fig 1A). In The Cancer Genome Atlas (TCGA) breast

cancer cases as curated by Gene Expression Profiling Interactive Analysis 2 database (http://

gepia2.cancer-pku.cn/) [44], TRPM4 transcript levels were significantly higher in breast cancer

cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11) (Fig 1B).

IHC of the TMAs yielded 99 assessable breast cancer cases after exclusion of cases without

sufficient breast cancer cells or missing cores. The IHC yielded strong cytoplasmic and mem-

branous staining of TRPM4 in glandular cells of the appendix as control tissues (Fig 2A and

2B). The surrounding lymphocytes and adjacent lymphoid follicle with a germinal centre in

the appendix were negative for TRPM4, consistent with previous findings [22]. All breast can-

cers yielded cytoplasmic and membranous staining of TRPM4 specifically in breast cancer

cells, and negative in surrounding lymphocytes or stromal cells (representative pictures in Fig

2C and 2D).

TRPM4 protein was expressed in 83 (83.8%) of the cases with frequency ranging from 10–

100%, and median or mean frequency of 50% (Fig 3A). Majority of the breast cancer cases dis-

played weak TRPM4 intensity (n = 45/99; 45.5%) followed by moderate (n = 30/99; 30.3%)

and strong (n = 8/99; 8.1%) intensity (Fig 3B). Half of the NBT cases (n = 5/10; 50%) were neg-

ative for TRPM4 (Fig 4B and 4C), and TRPM4 protein was significantly overexpressed in

breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10

TRPM4+; 50%) (p = 0.022). Fig 4D–4I illustrate representative cases with TRPM4 frequency of

30%, 80%, 90% or 100%, and weak, moderate or strong intensity.

In addition, three cases in the TMA series were fibroadenomas where one of the cases was

positive for TRPM4 (frequency: 50%; intensity: weak) (Fig 4J). All DCIS cases (n = 6)

expressed TRPM4 with median and mean frequency of 50% and 60%, respectively, and weak

(n = 3/6; 50%), moderate (n = 1/6; 16.7%) or strong (n = 2/6; 33.3%) intensity (Fig 4K and 4L).
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TRPM4 expression is associated with higher lymph node status and cancer

stage

In terms of TRPM4 expression association with clinico-demographical parameters, higher

TRPM4 frequency (median cut-off) was significantly associated with lymph node involve-

ment (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005) (Table 1). No

significant association was observed for other characteristics i.e. median age, tumor size,

and cancer grade. Of note, only two breast cancer cases presented with grade 1, thus

grades 1 and 2 (n = 60) were grouped for further analysis. For TRPM4 intensity, cases with

negative or weak TRPM4 expression were grouped together to be analyzed against moder-

ate or strong TRPM4 intensity due to the relatively smaller number of cases with strong

(n = 8) or negative (n = 16) for TRPM4 expression. TRPM4 intensities (negative/weak vs

moderate/strong intensities) were not associated with any of the clinico-demographical

parameters investigated (Table 1).

Additionally, both TRPM4 frequency (median cut-off) and intensity (negative/weak vs

moderate/strong) were not associated with all pathological parameters investigated i.e. estro-

gen receptor (ER), progesterone receptor (PR), human growth factor receptor-2 (HER2),

breast cancer subtype and Ki-67 (Table 1). Analysis without grouping TRPM4 intensities

whereby each TRPM4 intensity (i.e. negative, weak, moderate, or strong individually without

any grouping) was analyzed separately for each parameter also did not yield any significance

for clinico-demographical parameters (S1 Table) and pathological markers (S2 Table). How-

ever, a trend toward PR (p = 0.085) or HER2 (p = 0.080) positivity was observed for cases with

higher TRPM4 frequency (Table 1). Higher TRPM4 expression showed a non-significant

Fig 1. TRPM4 transcript expression profile in cancer cell lines and breast cancer cases. (A) TRPM4 transcript levels in cancer cell lines and each cancer type is

represented by multiple cell lines (numbers in bracket denote total number of cell lines). Inset bracket denotes TRPM4 levels in breast cancer cell lines (n = 60). Data

derived from the CCLE database (https://portals.broadinstitute.org/ccle). (B) TRPM4 transcript levels in TCGA series of breast cancer cases (n = 1,085) compared with

normal breast tissues (n = 112) according to GEPIA2 (http://gepia2.cancer-pku.cn/) database.

https://doi.org/10.1371/journal.pone.0233884.g001
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trend for non-triple negative breast cancer (TNBC) subtypes including luminal A, luminal B

and HER2-enriched (p = 0.060).

Associations of TRPM4 transcript levels (median cut-off) with clinico-demographical and

pathological parameters were also examined in the TCGA dataset of breast cancer cases

(n = 500). Comparable with the observations in the TMA series, higher TRPM4 expression

(TRPM4hi) demonstrated a trend toward higher lymph node status (N1-N2 vs N0; p = 0.066),

while significantly associated with PR positivity (p = 0.010) and non-TNBC subtypes including

luminal A, luminal B and HER2-enriched (p<0.001) (Table 2). In addition, TRPM4hi patients

were significantly associated with ER positivity (p<0.001), while not associated with HER2 sta-

tus and breast cancer stage. Of note, the proportion of TRPM4hi patients with worse stage (IIb-

IV; 54.2%) was higher than with lower stage (I-IIa; 44.6%) albeit it did not reach statistical sig-

nificance (p = 0.102).

Fig 2. TRPM4 protein expression in representative control tissues and breast cancer cases. (A) TRPM4 expression by IHC in appendix as the control tissues

(magnification: 40x). The green arrow shows the germinal centre negative for TRPM4 expression. (B) Higher magnification (200x) of the inset in (A). (C-D)

Representative breast cancer tissues with high TRPM4 expression in breast cancer cells while negative in surrounding lymphocytes or stromal cells (green arrows).

Scale bar for (A): 200 μm; Scale bar for (B-D): 50 μm.

https://doi.org/10.1371/journal.pone.0233884.g002

PLOS ONE TRPM4 overexpression in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0233884 June 2, 2020 6 / 20

https://doi.org/10.1371/journal.pone.0233884.g002
https://doi.org/10.1371/journal.pone.0233884


TRPM4 transcript expression is associated with estrogen response and

EMT gene sets in breast cancer

We aimed to examine the functional relevance of TRPM4 in normal breast epithelium and

breast cancer cases (three GEP datasets for each group) by associating the gene sets (Hallmark

collection of the MSigDB) enriched according to TRPM4 transcript expression through GSEA.

Gene sets positively associated with TRPM4 expression with p<0.01 and False Discovery Rate

Fig 3. TRPM4 protein expression profile in breast cancer cases in terms of TRPM4 frequency and intensity. (A)

Distribution of breast cancer cases (n = 99) according to TRPM4 frequency at every 10% increment. (B) Distribution

of breast cancer cases (n = 99) according to TRPM4 intensity (weak, moderate or strong) and the proportion of cases

for each intensity.

https://doi.org/10.1371/journal.pone.0233884.g003
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(FDR) of<0.05 were included for further analysis with a three-way Venn diagram compari-

son. In normal breast epithelium of reduction mammoplasty individuals (n = 38) derived

from three independent GEP datasets, no consensus gene set was found in all three datasets

Fig 4. IHC of TRPM4 in normal breast tissues and breast cancer cases. (A) TRPM4 expression in appendix as control tissue (Ctrl) for IHC. (B-C) TRPM4

expression in two representative cases of normal breast tissues adjacent to tumor (NBT). (D-I) Representative breast cancer cases with various TRPM4

frequency and intensity. (J) TRPM4 expression in a representative fibroadenoma case. (K-L) Representative DCIS cases with 80–90% frequency and strong

intensity. Freq: Frequency; Int: Intensity. All pictures were captured at 400x magnification. Scale bar for all images: 25 μm.

https://doi.org/10.1371/journal.pone.0233884.g004
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according to TRPM4 expression. Nonetheless, four gene sets were enriched in two of the GEP

datasets (i.e. GSE10797 n = 5, and GSE20437 n = 18) consisting of Oxidative Phosphorylation

(Hallmark ID: M5936), Adipogenesis (M5905), Fatty Acid Metabolism (M5935) and DNA

Repair (M5898) gene sets (Fig 5). The list of consensus genes contributing to the enrichment

of these gene sets in both GEP datasets is listed in S3 Table.

In breast cancer cases (n = 941) derived from three GEP datasets, three consensus gene sets

were enriched according to TRPM4 expression in all three GEP datasets (i.e. GSE54002

Table 1. Association of TRPM4 protein expression with clinico-demographical and pathological parameters of breast cancer patients (n = 99). p<0.05 shown in

bold.

Characteristics n (%) TRPM4 frequency TRPM4 intensity

<Median (<50%) �Median (�50%) p-value Negative/Weak Moderate/Strong p-value

Age (years)

Median (range) 50 (27–81)

<50 44 (44.4) 19 (43.2) 25 (56.8) 0.890 29 (65.9) 15 (34.1) 0.432

�50 55 (55.6) 23 (41.8) 32 (58.2) 32 (58.2) 23 (41.8)

Tumor size 0.445

T1-T2 69 (69.7) 31 (44.9) 38 (55.1) 43 (62.3) 26 (37.7) 0.827

T3-T4 30 (30.3) 11 (36.7) 19 (63.3) 18 (60.0) 12 (40.0)

Lymph node status

N0 68 (68.7) 34 (50.0) 34 (50.0) 0.024 44 (64.7) 24 (35.3) 0.349

N1-N2 31 (21.3) 8 (25.8) 23 (74.2) 17 (54.8) 14 (45.2)

Grade�

1–2 62 (64.6) 22 (35.5) 40 (64.5) 0.097 37 (59.7) 25 (40.3) 0.841

3 34 (35.4) 18 (52.9) 16 (47.1) 21 (61.8) 13 (38.2)

Stage† 0.005

I-IIa 27 (67.5) 19 (70.4) 8 (29.6) 21 (77.8) 6 (22.2) 0.451 (F)

IIb-IIIb 13 (32.5) 3 (23.1) 10 (76.9) 8 (61.5) 5 (38.5)

ER‡

Negative 60 (61.2) 27 (45.0) 33 (55.0) 0.425 35 (58.3) 25 (41.7) 0.460

Positive 38 (38.8) 14 (36.8) 24 (63.2) 25 (65.8) 13 (34.2)

PR‡

Negative 57 (58.2) 28 (49.1) 29 (50.9) 0.085 36 (63.2) 21 (36.8) 0.643

Positive 41 (41.8) 13 (31.7) 28 (68.3) 24 (58.5) 17 (41.5)

HER2‡

Negative 67 (68.4) 32 (47.8) 35 (52.2) 0.080 40 (59.7) 27 (40.3) 0.649

Positive 31 (31.6) 9 (29.0) 22 (71) 20 (64.5) 11 (35.5)

Subtype‡

Luminal A 36 (36.7) 13 (36.1) 23 (63.9) 0.060 20 (55.6) 16 (44.4) 0.520

Luminal B 10 (10.2) 3 (30.0) 7 (70.0) 8 (80.0) 2 (20.0)

HER2-enriched 21 (21.4) 6 (28.6) 15 (71.4) 12 (57.1) 9 (42.9)

TNBC 31 (31.7) 19 (61.3) 12 (38.7) 20 (64.5) 11 (35.5)

Ki-67‡

<Median (<30%) 27 (45.8) 11 (40.7) 16 (59.3) 0.117 15 (55.6) 12 (44.4) 0.852

�Median (�30%) 32 (54.2) 7 (21.9) 25 (78.1) 17 (53.1) 15 (46.9)

�Number of cases with available grade data: n = 96. Only two cases with grade 1, thus grades 1 and 2 were grouped;
†Number of cases with available stage data: n = 40.
‡One case without ER, PR or HER2 data; Number of cases with available Ki-67 staining frequency data: n = 59.

https://doi.org/10.1371/journal.pone.0233884.t001
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n = 417, GSE20685 n = 327, and GSE23720 n = 197) as follows: (1) Estrogen Response Early

(Hallmark ID: M5906) gene set containing genes involved in early response to estrogen; (2)

Estrogen Response Late (Hallmark ID: M5907) gene set containing genes involved in late

response to estrogen; (3) Epithelial-Mesenchymal Transition (Hallmark ID: M5930) gene set

containing genes involved in EMT (Fig 6). In particular, these gene sets were not enriched in

normal breast epithelium cases, and none of the enriched gene sets in normal breast cases

were enriched in breast cancers.

One consensus gene set positively associated with TRPM4 transcript expression was shared

in GSE20685 (n = 327) and GSE23720 (n = 197) series of breast cancer cases as demonstrated

in the Venn diagram of Fig 6. The gene set was Myogenesis (ID: M5909) containing genes

involved in the development of skeletal muscle. The GSEA graphs are shown in S1 Fig and the

list of genes that contributed to the core enrichment of the gene set in both GEP datasets is

shown in S5 Table.

A total of 57, 43, and 31 genes contributed to the core enrichment across all three GEP

breast cancer datasets for Estrogen Response Early, Estrogen Response Late, and EMT gene

set, respectively (S4 Table). From these consensus genes across the three GEP datasets, 10

genes were shortlisted to represent each gene set for illustration in heat maps as follows (Fig 7):

(1) Estrogen Response Early (ABAT, AR, KDM4B, KRT18, MLPH, MUC1, PEX11A, RAB17,

SLC37A1 and TTC39A); (2) Estrogen Response Late (AGR2, CA12, CISH, GALE, SCUBE2,

Table 2. Association of TRPM4 mRNA expression with clinico-demographical and pathological parameters of TCGA breast cancer patients (n = 500). p<0.05

shown in bold.

Characteristics n (%) TRPM4 expression (z-score)

<Median (<0.114) �Median (�0.114) p-value

Age (years)

Median (range) 58 (27–81)

<58 249 (49.8) 124 (49.8) 125 (50.2) 0.929

�58 251 (50.2) 126 (50.2) 125 (49.8)

Lymph node status 0.066

N0 251 (50.3) 136 (54.2) 115 (45.8)

N1-N2 248 (49.7) 114 (46.0) 134 (54.0)

Stage†

I-IIa 222 (67.5) 123 (55.4) 99 (44.6) 0.102

IIb-IIIb 107 (32.5) 49 (45.8) 58 (54.2)

ER

Negative 115 (23.3) 79 (68.7) 36 (31.3) <0.001

Positive 378 (76.7) 167 (44.2) 211 (55.8)

PR 0.010

Negative 170 (34.6) 99 (58.2) 71 (41.8)

Positive 322 (65.4) 148 (46.0) 174 (54.0)

HER2

Negative 409 (85.2) 214 (52.3) 195 (47.7) 0.450

Positive 71 (14.8) 28 (39.4) 43 (60.6)

Subtype

Luminal A 221 (45.6) 95 (43.0) 126 (57.0) <0.001

Luminal B 112 (23.1) 55 (49.1) 57 (50.9)

HER2-enriched 57 (11.7) 19 (33.3) 38 (66.7)

TNBC 95 (19.6) 73 (76.8) 22 (23.2)

https://doi.org/10.1371/journal.pone.0233884.t002
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TFF1, TFF3, TJP3, WFS1 and XBP1); (3) Epithelial-Mesenchymal Transition (COL1A2,

COL5A1, COL6A3, COMP, ECM1, FSTL3, GPC1, HTRA1, IGFBP4 and ITGB5).

Androgen receptor (AR) is an emerging therapeutic target in breast cancer where it is

expressed in majority (60–80%) of breast cancers with higher prevalence in ER-α+ tumors

[45]. AR was one of the genes that contributed to the enrichment of the estrogen response

gene sets positively associated with TRPM4 expression as demonstrated above. To examine the

potential association between TRPM4 and AR further, the IHC data of TRPM4 and AR in

breast cancer cases were obtained from Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) [46]. Both the anti-TRPM4 (HPA041169) and anti-AR (CAB065764) anti-

bodies used for IHC received the “Enhanced” validation score by HPA whereby IHC staining

with the antibodies corresponded with mRNA expression levels across 37 normal tissues by

HPA. In HPA’s breast cancer cases, TRPM4 and AR protein was expressed in 90.9% (n = 10/

Fig 5. Consensus gene sets (Hallmark collection of the MSigDB) enriched according to TRPM4 expression (219360_s_at) in three independent normal breast

epithelium datasets (GSE9574, GSE10797, GSE20437).

https://doi.org/10.1371/journal.pone.0233884.g005
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11) and 100% (n = 12/12) of the cases, respectively. Four cases contained the IHC staining

images of both proteins and visualization of the IHC staining images of these four cases sug-

gested that TRPM4 and AR had similar expression profile in breast cancer cells (S2 Fig). The

frequency and intensity of each protein in these four cases, as annotated by HPA, were partially

similar (S6 Table) as follows: Case #1: TRPM4 >75% (frequency), moderate (intensity); AR

>75%, moderate; Case #2: TRPM4 >75%, moderate; AR 25–75%, weak; Case #3: TRPM4

<25%, weak; AR>75%, moderate; Case #4: TRPM4 negative; AR<25%, moderate.

Discussion

In this study, we showed that TRPM4 protein was overexpressed in breast cancers compared

with normal breast epithelial ducts. This observation is comparable with TRPM4 expression in

other solid tumors versus their counterpart non-malignant tissues. In prostate cancer, TRPM4

staining intensity was significantly higher in prostate cancer cases than benign or non-malig-

nant prostate tissues as well as stromal cells of prostate glands [17, 18]. TRPM4 was more

intensely expressed in tumor buds of colorectal cancer than normal ducts of non-malignant

colorectal tissues [24]. TRPM4 transcript was also overexpressed in cervical cancer cases com-

pared with normal cervical epithelium samples [23].

Breast cancer evolves from normal epithelial ducts through a sequence of increasingly

abnormal proliferative lesions that begin with atypical hyperplasia, to pre-malignant in situ

disease, before progressing into neoplasia [47, 48]. DCIS is characterized by epithelial carci-

noma within the ducts, surrounded by myoepithelial cells and with the basement membrane

intact [49]. Patients diagnosed with DCIS have a high risk for subsequent development into

invasive carcinoma particularly if left untreated [49, 50]. We observed that TRPM4 was

Fig 6. Consensus gene sets (Hallmark collection of the MSigDB) enriched according to TRPM4 expression (219360_s_at) in three independent breast cancer

datasets (GSE54002, GSE23720, GSE20685).

https://doi.org/10.1371/journal.pone.0233884.g006
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expressed in half a proportion of normal breast ducts but expressed in all DCIS cases with sim-

ilar frequency and intensity distribution as breast cancer cases. This suggests a progressive pat-

tern of TRPM4 expression upregulation from normal into pre-cancerous DCIS, and its

expression might be maintained in DCIS that develops into invasive breast carcinoma. How-

ever, larger number of DCIS cases complemented by TRPM4 functional studies is required to

conclusively prove this.

TRPM4 expression was associated with advanced clinical parameters such as higher lymph

node status (N1 and N2) and cancer grade (IIb and IIIb) in the TMA breast cancer series. This

is suggestive of the causative roles of TRPM4 in breast cancer metastasis and invasion into axil-

lary lymph nodes. TRPM4 has been frequently implicated in triggering the migration of vari-

ous types of immune cells including dendritic cells [12], T helper type 1 (Th1) cells [13] and

mast cells [51]. In malignancies, multiple studies have demonstrated the requirement of

TRPM4 for the migration and invasion of prostate cancer cells [17, 20, 21]. Moreover, colorec-

tal cancer cell clones with TRPM4 knockout showed decreased migration and invasion [24].

One of the key mechanisms that triggers cancer invasion and metastasis is through activa-

tion of EMT. TRPM4 transcript expression was associated with EMT gene set in breast cancer

cases but not in normal breast epithelium cases as demonstrated in this study, indicating its

potential involvement in triggering EMT for breast cancer cells metastasis. This observation is

in line with those observed in other cancers pertaining to TRPM4 and EMT as follows: (1)

Independent studies have shown that TRPM4 knockdown could suppress migration and inva-

sion of prostate cancer cells through reduction of EMT. Knockdown of TRPM4 correlated

with reduction of mesenchymal markers including N-cadherin and vimentin, while expression

of epithelial markers was increased such as E-cadherin and Snail [20, 21]; (2) In colorectal

Fig 7. Heat map of TRPM4 and top representative genes (n = 10 in each gene set and GEP dataset) contributing to the core enrichment of each gene set.

https://doi.org/10.1371/journal.pone.0233884.g007
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cancer, tumor budding is characterized by presence of disseminated colorectal cancer cells

driven by EMT for metastasis [52–54]. High TRPM4 protein intensity was associated with

increased number of tumor buds and infiltrative growth pattern in colorectal cancer patient

cases, and late-stage metastatic colorectal cancer cell lines had higher TRPM4 protein expres-

sion [24]; (3) TRPM4 transcript expression was positively associated with EMT genes of adhe-

sion molecules or extracellular matrix origin including collagens (e.g. COL1A2, COL5A1,

COL6A3) and extracellular matrix 1 (ECM1) in our GSEA results. Collagen proteins promote

metastasis of breast cancer cells [55, 56], while ECM1 is a key player in triggering EMT and

metastasis of breast cancer cells through stabilization of β-catenin [57, 58]. The key roles of

TRPM4 in activating the β-catenin signaling pathway for the EMT and invasion of prostate

cancer cells [19–21] might also occur in breast cancer to activate EMT for metastasis that

requires further investigations.

Breast cancer can be subtyped based on the expression of surface receptors including ER,

PR and HER2 [59]. Approximately two-thirds of breast cancer cases are ER-α+ which can be

controlled by modulators of ER-α such as tamoxifen [60]. However, tamoxifen resistance

development is common, hence novel therapies targeting ER-α is required. Our GSEA results

showed that TRPM4 transcript was positively-associated with estrogen response gene sets, sug-

gesting its involvement in ER signaling pathway. In particular, AR was one of the top genes

positively-associated with TRPM4 transcript expression in the enriched estrogen response

gene sets.

AR is frequently expressed in breast cancers and proposed to be a target in the disease [45].

AR competes with ER at the level of ER elements that impairs ER-dependent gene transcrip-

tion [61], and AR has been proposed as a therapeutic target in ER-α─ breast cancers that retain

AR expression [62, 63]. Circulating androgens are present at physiological conditions in

females with changing levels during life, and high levels of circulating androgens are associated

with increased risk of breast cancer development [64]. In prostate cancer, the tumors are

dependent on AR and androgen-deprivation therapy is a gold standard therapy in advanced

prostate cancer [45]. Interestingly, TRPM4 is highly expressed in androgen-sensitive prostate

cancers required for their aggressive phenotypes [19, 20]. Moreover, AR is expressed in all

grades of breast DCIS that confers unfavorable prognosis [65–67], and TRPM4 was also

expressed in all DCIS cases examined in this study. The similarities in the expression profile of

TRPM4 and AR in DCIS, breast and prostate cancers suggest a connection of TRPM4 with AR

signaling pathway in tumors, and this warrants future investigations.

A recent study reported that K+ channel tetramerization domain 5 (KCTD5) is a positive

regulator of TRPM4 activity whereby KCTD5 promotes cell migration and contractility

through regulation of TRPM4 [68]. Essentially, in a series of normal breast tissue samples

(n = 5) and breast cancer cases (n = 43), the authors demonstrated that TRPM4 mRNA expres-

sion was significantly higher in breast cancers or patients with higher breast cancer stage, com-

parable with the observations in our study. It was also reported that TRPM4 transcript

expression was significantly upregulated in TNBC cases compared with normal breast tissues,

in contrast with our observations in TCGA and TMA series of breast cancer cases in which

TRPM4 was significantly less common in TNBC cases compared with other breast cancer sub-

types (luminal A, luminal B, or HER2-enriched). We recommend that validation at the protein

level in larger series of breast cancer cases is required to resolve this, as well as to validate the

association of TRPM4 with AR protein expression.

Nevertheless, TRPM4 is listed as one of the druggable genes in the redefined list of the drug-

gable genome [69], and it is shortlisted as one of the potentially druggable proteins of the

human proteome by the Human Protein Atlas consortium [46]. TRPM4 thus represents a

potential therapeutic target in breast cancer. Small molecule inhibitors of TRPM4 include the
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most commonly investigated TRPM4 inhibitor 9-phenanthrol (a phenanthrene derivative)

[70] but the compound lacks specificity as it also targets the Ca2+-activated Cl- channel

TMEM16A in arterial myocytes [71], or the recently identified specific and potent TRPM4

inhibitor aryloxyacyl-anthranilic 5 (termed as compound 5) with approximately 20 times

stronger TRPM4 inhibition than 9-phenanthrol [72]. A recent TRPM4 blocking antibody has

been generated termed as M4P that demonstrates specificity for TRPM4 without binding to

TRPM5 channel. M4P is capable of binding to TRPM4 in ischemic stroke and ameliorating

reperfusion injury by improving blood-brain barrier integrity in a rat model of stroke reperfu-

sion [73]. Hence, TRPM4 blocking antibody expands the option of TRPM4 blockers not lim-

ited to small molecule inhibitors. Furthermore, the atomic-level structure of TRPM4 has been

revealed recently through cryo-electron microscopy by independent groups. The transmem-

brane domain of TRPM4 contains a Ca2+ binding site, and ATP binds its N-terminal nucleo-

tide-binding domain (NBD) that subsequently inhibits activities of TRPM4 [74–76]. These

atomic-level maps of TRPM4 facilitates ongoing development of specific TRPM4 inhibitors

that can act through selectively obstructing its Ca2+-activation binding site or to inhibit

TRPM4 via NBD binding, providing expanded avenues to therapeutically target TRPM4 in

cancers.

In conclusion, our study demonstrated frequent TRPM4 expression in breast cancer associ-

ated with poorer clinical parameters, and that its expression was associated with ER signaling

and EMT. These findings support future experimental investigations on TRPM4 inhibitors in

the destruction of breast cancer cells, and their potential inhibitory effects on ER signaling cas-

cade and EMT phenotypes.
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