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Abstract

The field of Evolutionary Robotics addresses the challenge of automatically designing

robotic systems. Furthermore, the field can also support biological investigations related to

evolution. In this paper, we evolve (simulated) modular robots under diverse environmental

conditions and analyze the influences that these conditions have on the evolved morpholo-

gies, controllers, and behavior. To this end, we introduce a set of morphological, controller,

and behavioral descriptors that together span a multi-dimensional trait space. Using these

descriptors, we demonstrate how changes in environmental conditions induce different lev-

els of differentiation in this trait space. Our main goal is to gain deeper insights into the effect

of the environment on a robotic evolutionary process.

1 Introduction

Natural evolution has inspired computer science to develop a digital counterpart, Evolutionary

Computing, applicable to solving optimization, design, and modeling problems [1]. Evolution-

ary Computing can be considered as a 20th-century incarnation of the Darwinian principles in
silico. Recent advances in robotics, rapid prototyping (3D-printing), and material science are

opening up the potentials for the Evolution of Things—a 21st-century version in materio [2,

3].

Applying evolutionary methods to robots leads to a new kind of artificial evolution, one

where the individuals are embodied, situated, and actuated. This is different from Evolutionary

Computing where the population members are not embedded in time and space; they do not

‘do’ anything, but only represent a candidate solution of a search problem.

Evolutionary Robotics is concerned with evolving the morphologies (bodies) or controllers

(brains), or both for simulated or real robots [4]. Notably, the interactions between the envi-

ronment and the phenotypes of robots are an important factor in the evolutionary process,

and this holds in a real-world setting as well as in simulations where physical interactions are

simulated by some physics engine. The fitness of a robot is then determined by three factors,

the body, and the brain, and the environment. Hence, by deduction, the result of the whole

robotic evolutionary process depends on the environment as well. Taking a biological perspec-

tive, we can note that in natural evolution the environment largely determines the evolved life-

forms [5–7]. The concept of Convergent Evolution is related to phenotypic convergence

observed in nature as evidence that similar ecological conditions might select for analogous
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evolutionary solutions in species with different genotypical ancestors [8]. This way, totally

unrelated species evolved in similar environments can present very similar traits. “If environ-

mental conditions favor one phenotype, then populations may diverge phenotypically and

genetically through local adaptation.”([9], as cited in [10]) For instance, “strawberry poison

dart frogs are highly polymorphic, and genetic distances among populations are more strongly

associated with phenotypic differences than with geographic distances, suggesting a role for

local adaptation related to predation and aposematism.”([11], as cited in [10]). Therefore,

there are solid reasons to expect that the result of a robotic evolution process, body and brain,

and thus behavior, will depend on the environment.

The existing literature on this subject can be divided in two categories, one where the robot

bodies are fixed and only the controllers evolve and one where both the robot bodies and con-

trollers undergo evolution. Using fixed robot bodies, there is a limited number of studies

showing that different environments might produce different brains. For example, in the con-

text of collective systems, the study in [12] showed that a flat environment produced an indi-

vidual brain that did not induce complex self-organized strategies, while an environment with

slope produced complex division of labour [13], analogously to what can be observed in leaf-

cutter ants [14]. Considering the other category we can note that experimental work with

evolvable bodies is scarce and limited in scope; importantly, the lack of studies into the effects

of the environment is even more severe. The usual approach is to fix an environment and a

task and evolve robots for the given combination. Varying the environment and investigating

the effects on the evolving robots, specifically on the evolving bodies has hardly been

addressed. The only study we know about is that of [15].

In this paper we research the effect of the environment in morphologically evolving robot

systems extending our former work. In [16] we have demonstrated a case of a drastic environ-

mental change that did not induce any significant changes neither in the evolved shapes nor in

the emergent behaviors of the robots. Here we extend our work in [16] in two aspects, 1) run-

ning evolution in dynamically changing environmental conditions, further to static ones, and

2) by considering properties of robot controllers –not only morphologies and behaviour. In

particular, we investigate the following questions:

• How do environmental conditions determine behavioral properties?

• How do environmental conditions determine morphological properties?

• How do environmental conditions determine properties of the controller?

The main contributions of this work are 1) explicitly putting the issue of the effect of the

environment on the Evolutionary Robotics research agenda and noting that it is hard to find

different environments that lead to different robots, 2) providing an open source simulator

and test suite to facilitate further research, 3) new insights into environmental influences on

evolved robot traits.

Let us note that it is hard to investigate environmental influences experimentally because it

is very difficult to design environments that do induce phenotypic differentiation. That is to

say, it is hard to design diverse environments that lead to diverse phenotypes. Notably, while

we have experimented with multiple (types of) environments, the cases we present here are the

only ones that led to differentiation. Curiously, in these unpublished experiments the same

type of robots evolved in very different environments. We hypothesize that it has to do with

the relative simplicity of these environments compared to the richness of (environmental) fac-

tors that determine the selection pressure in nature. Some of these unpublished results can be

found in the supplementary material S1 Appendix.
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Our approach to the above issues is experimental. We define quantitative descriptors of

behavioral, morphological, and controller traits, specify environmental conditions and com-

pare the evolutionary dynamics and the emerging populations in the trait space.

2 Related work

Evolutionary Robotics (ER) is an active field of research with significant achievements and

many challenges [17, 18]. The conjoint evolution of robot morphologies and controllers was

first explored by Sims’ seminal work [19], but most of the ER studies concern the evolution of

the robot controllers, and only a few look into the robot morphologies [20]. This bias is regret-

table since it has been noted that advanced intelligence depends not only on the brain but also

on the body [21–23]. Still, there are some interesting studies that, not only perform morpho-

logical evolution but even propose methods of morphological development, aiming to increase

evolvability and robustness. The effect of different developmental mechanisms was studied in

[24] by developing the stiffness of soft robots according to environmental changes, while a

method for phenotypic plasticity of morphology and controller was proposed in [25]. Never-

theless, although such methods concern mechanisms regulated by the environment during

lifetime, environmental changes were mostly caused by the displacement of the robot itself,

resulting in differential sensing over time, therefore no actual ‘changing’ environment was

considered, while robots evolved always in a flat plane. In [26] though, reconfigurable robots

were evolved and managed to cope with actual changes in the environmental conditions as

they moved about, but no quantification of this effect on the morphological level was provided.

Moreover, the effect of diverse levels of gravity was investigated in [27], showing the emer-

gence of different behaviors in these different environments, but again, providing no concrete

measurements of differences in morphological traits. Finally, [15] an information-theoretic

measurement of complexity was utilized to assess virtual creatures evolved in a vast range of

environments. The authors demonstrated that increasing the complexity of the environmental

conditions might result in an increase to the morphological complexity of the creatures. How-

ever, measuring complexity does not provide clear insights concerning properties of intelligi-

ble morphological traits, for instance, the number of limbs a robot has. Importantly, two

environments could be equally complex, but induce the emergence of different phenotypic

and behavioral traits.

In previous work [16, 28–31] we carried out a handful of investigations regarding the same

robot framework utilized in this present paper. Firstly, we evolved robots that were “isolated”

from any environmental influences, using morphological novelty search as a search criterion,

which means the fitness function did not account for their performance on the task (for exam-

ple locomotion on a flat terrain environment). In this analysis, we utilized a set of morphologi-

cal descriptors that capture relevant properties of robot bodies and discovered a bias in the

search space, that is, a tendency for determined morphological traits to be more often sampled

by the reproduction operators.

This tendency is mainly characterized by robots that possess one or two limbs only,

whereby other modules, that is, smallest morphology units, contribute to making these limbs a

little longer. In summary, these robots presented an I-shape, similar to the shape of a “snake”.

To verify whether this bias would persist when environmental influences are introduced, we

evolved robots using a behavior-oriented fitness function, and, curiously, the emergent robots

presented this very same trait. Suspecting that the emergence of this trait was due to the bias,

we realized new experiments evolving robots again for this same task and environment, this

time rewarding not only locomotion, but also morphological diversity, and even explicitly

rewarding the growth of limbs. Surprisingly, while these new populations that emerged to
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locomote became indeed diverse (and multi-limb), the robots presented a worse performance

on the task. These results suggest that the emergence of these “snakes” was probably genuine,

as a superior strategy in this robot framework for this task in this environment, and not a mere

result of the search space bias alone. Rolling can be an efficient gait as long as the environment

allows for it, and similar behavior has been observed in other studies [32]. Undoubtedly, none-

theless, nature provides a plethora of examples where the complexity, in terms of limbs and

utilized gaits, is much higher than the one shown in the example above. Therefore, we

hypothesised that this complexity must be due to environmental constraints, that is, that dif-

ferent environmental pressures may lead to different morphologies and locomotion gaits. We

verified this hypothesis [16], demonstrating that in our artificial life system different environ-

ments indeed can induce populations to different traits. However, we also showed that this

biological notion should not be taken for granted when in artificial life systems, by demon-

strating one example of severe environmental change that did not reflect in any significant

changes neither in morphology or behavior. A possible reason for this case of [16] is that the

task was too difficult. This might have led the search to a local optimum that did not induce

the expected phenotypic differences while robots performed poorly on the task. This could

indicate limitations in the encoding method, evolutionary algorithm or fitness function. In the

present paper, we extend this work by performing a more general study of the effect of the

environment beyond a specific setting. We evolve robots in two new environments, and com-

pare their traits to robots evolved in the baseline environment (as in [16]). Furthermore, while

in the previous work we assessed only behavioral and body morphological properties, now we

also assess a controller property, that is, a brain property.

3 Methods

In our methodology, we use modular robots to represent the morphology (see Section 3.2) and

neural networks to represent the controllers (Section 3.3). These two together represent the

phenotypes, as they express the traits that ultimately, through the interaction with the environ-

ment, determine fitness. The evolutionary process acts on a higher level, the level of the geno-

types, whose representation is explained in Section 3.4. Genotypes are converted into

phenotypes through a mapping process, which is explained in Section 3.5. In the first genera-

tion, the genotype of the initial population is initialized according to the procedure described

in Section 3.6. Each genotype is mapped into a phenotype and is subject to the evolutionary

process explained in Section 3.9. During this evolutionary process, the operators of crossover

and mutation are applied, which are explained respectively in Section 3.7 and Section 3.8.

3.1 Simulation

Our experiments were realized using a simulator called Gazebo, interfaced through a robot

framework called Revolve [33].

3.2 Morphology

Each morphology phenotype (a ‘body’) is composed of modules [34] as shown in Fig 1. Each

module has a cuboid shape, having slots where other modules can attach. The morphologies

can only develop in 2 dimensions, that is, the modules do not allow attachment to the top or

bottom slots, but only to the lateral ones. There are five different types of modules, as reported

in Table 1: core components, bricks, vertical joints, horizontal joints, and touch sensors. Any

module can be attached to any module through its slots, except for the touch sensors, which

cannot be attached to joints. Each module type is represented by a distinct symbol (see
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Table 1), and this is also the same language used in the genotype representation, described in

Section 3.4.

3.3 Controller

A controller phenotype (a ‘brain’) is a hybrid artificial neural network (Fig 4, right), which we

call Recurrent Central Pattern Generator Perceptron [16]. This network is formed by two

types of nodes, that is, input nodes associated with the sensor modules, and oscillator neuron

nodes associated with the joint modules. For every joint in the morphology, there exists a cor-

responding oscillator neuron in the network, whose activation function is defined by Eq (1),

which represents a sine wave defined by amplitude, period, and phase offset parameters. This

activation function adjusts the output to fit the range of our servo motors, as proposed in [33]:

O ¼ 0:5 �
a
2
þ

sin 2�p

p � ðt � p � oÞÞ
� �

þ 1

2
� a; ð1Þ

where, t is the time step, a is the amplitude, p is the period, and o is the phase offset. The

parameters a, p, and o can vary from 0 to 10.

The different oscillator neurons are not directly interconnected, and every oscillator neuron

may or may not possess a direct recurrent connection.

Additionally, for every sensor in the morphology, there exists a corresponding input in the

network, and each input might connect to one or more oscillator neurons. The oscillator neu-

rons generate a constant pattern of movement, even if the robot is not sensing anything, so

that the sensor inputs can be used either to reduce or to reinforce movements.

3.4 Representation

Our robot genotype is a generative model, and is represented with an L-System inspired in

[35], conjointly encoding both morphology and controller. L-Systems are parallel rewriting

systems [36] composed by a grammar defined as a tuple G = (V, w, P), where

• V, the alphabet, is a set of symbols containing replaceable and non-replaceable symbols.

• w, the axiom, is a symbol from which the generative process starts.

• P is a set of production-rules for the replaceable symbols, having one production-rule paired

with each replaceable symbol.

Fig 1. On the left, the robot modules: Core-component with controller board (C). Which is the head of the robot;

Structural brick (B); Active hinges with servo motor joints in the vertical (A1) and horizontal (A2) axes; and Touch

sensor (T). Modules C and B have attachment slots on their four lateral faces, and A1 and A2 have slots on their two

opposite lateral faces; T has a single slot which can be attached to any slot of C or B. On the right, an example of

simulated robot.

https://doi.org/10.1371/journal.pone.0233848.g001
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Each genotype is a distinct grammar, making use of the same alphabet (Table 1), and the

alphabet is formed by symbols that represent types of morphological modules as well as com-

mands for assembling modules together and others for defining the structure of the controller.

The symbols in the category Modules are replaceable, while the symbols of all other categories

are non-replaceable.

3.5 Genotype-phenotype mapping

The mapping from genotype to phenotype, that is, development, plays out in two stages that

we call, respectively, early and late development.

Table 1. Alphabet of the grammars. Terminology is explained in Section 3.5.2.

Modules

C core-component (axiom w)

B brick

A1(wv, av, pv, ov) vertical joint

A2(wh, ah, ph, oh) horizontal joint

T(wt) touch sensor

wv, wh, wt are sampled from a uniform distribution ranging from −1 to 1

av, pv, ov, ah, ph, oh are sampled from a uniform distribution ranging from 1 to 10

Morphology-mounting commands

add_right add new module to the right of module-reference
add_front add new module to the front module-reference
add_left add new module to the left of module-reference
Morphology-moving commands

move_back move module-reference to the module at the back of module-reference
move_right move module-reference to the module at the right of module-reference
move_front move module-reference to the module at the front of module-

reference
move_left move module-reference to the module at the left of module-reference
Controller-moving commands

move_ref_I(ti, di) update input-reference with the input connected to edge di of the

neuron connected to edge ti of input-reference
move_ref_N(tn, dn) update neuron-reference with the neuron connected to edge dn of the

input connected to edge tn of neuron-reference

ti ¼ d
ffiffiffiffiffiffi
v2

1
Þ

p
e and tn ¼ d

ffiffiffiffiffiffi
v2

2
Þ

p
e, and they are used to move the reference to a temporary node

di ¼ d
ffiffiffiffiffiffi
v2

3
Þ

p
e and dn ¼ d

ffiffiffiffiffiffi
v2

4
Þ

p
e, and they are used to move the reference to a definite node

v1, v2, v3, v4 are sampled from a normal distribution with μ = 0 and σ = 1

If any of ti, di, tn, dn is greater than the number of edges of its corresponding node,

its value is updated with this number of edges.

Controller-changing commands

add_edge(we1) add an edge between input-reference and neuron-reference
loop(wl) add a recurrent edge to neuron-reference
we1, wl are sampled from a uniform

distribution ranging from −1 to 1

mutate_edge(we2) mutate the weight of the edge between input-reference and neuron-
reference

mutate_amp(ma) mutate amplitude of neuron-reference
mutate_per(mp) mutate period of neuron-reference
mutate_off(mo) mutate phase offset of neuron-reference

we2, ma, mp, mo are sampled from a normal distribution with μ = 0

and σ = 1

https://doi.org/10.1371/journal.pone.0233848.t001

PLOS ONE Environmental influences on evolvable robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0233848 May 29, 2020 6 / 23

https://doi.org/10.1371/journal.pone.0233848.t001
https://doi.org/10.1371/journal.pone.0233848


3.5.1 Mapping stage 1: Early-development. The following didactic example depicts the

process of rewriting of our L-System representing one possible genotype, that is, grammar.

Here, the axiom of the grammar is rewritten into a more complex string of symbols according

to the production-rules of the grammar. During the rewriting, for a number of iterations k = 3,

each replaceable symbol is simultaneously replaced by the symbols of its production-rule.

Given the axiom w = X, the alphabet V = {X, Y, Z, a} where the a is the only non-replaceable

symbol, and the production-rules P = {X: {X, Y}, Y: {Z, a}, Z: {X, Z}}, the rewriting follows as:

Iteration 0 : X

Iteration 1 : XY

Iteration 2 : XY Za

Iteration 3 : XY ZaXZa

The final string will contain non-repleaceble symbols (Modules) and repleaceble symbols

(everything else). All these symbols can be interpreted with the process described hereafter.

3.5.2 Mapping stage 2: Late-development. The early-developed phenotype from stage 1

is an intermediate phenotype made as a string of symbols, which must be mapped (late-devel-

oped) into a final phenotype. To aid the process of construction of the late-developed pheno-

type, multiple positional references (turtles) are kept: a) a reference to the current module in

the morphology, that we call a module-reference; b) a reference to the current oscillator neuron

of the neural network of the controller, that we call a neuron-reference; c) a reference to the

current sensor input of the neural network of the controller, that we call an input-reference; a

reference to which slot of the current module a new module should be attached to, that we call

a slot-reference.
From the beginning until the end of the string, each symbol is interpreted and developed.

Nonetheless, for multiple reasons explained below, it is possible that a symbol ends up not

being expressed in the phenotype. Furthermore, a maximum amount of m modules is allowed

in a morphology, so that during late-development, after reaching this maximum, any upcom-

ing modules are not expressed in the phenotype. The late-development of the phenotype for

morphology and controller is depicted in the fluxogram of Fig 2, and detailed hereafter, where

we reference parts of this fluxogram through Roman numerals:

• I: Because the first symbol of the string is always C, it is the first module to be added to the

morphology, and the module-reference is updated with it. At this moment, the references of

left, front, right, and back of the turtle are, respectively, left, up, right, and down (for a robot

seen from top-down).

• II: The interpretation of any Morphology-mounting command updates the slot-reference
with the slot indicated by the command. If the slot-reference is not empty, it is overwritten,

meaning that the command used for setting this previous slot into the reference is not

expressed.

• III: If the symbol is a module, it is coupled with the command in the slot-reference (if there is

one).

• IV: The addition of new modules requires both a Morphology-mounting command and a

module. If the slot-reference is empty when interpreting a module, the module is not

expressed in the phenotype, except for the C module, which is the very first module and

needs no mounting command. When the module-reference is a joint, an attempt to attach it

to the front slot is made, regardless of the mounting command. When the module-reference
is the core-component, if its left, front, and right slots are occupied, an attempt to attach it to
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the back slot is made, regardless of the mounting command. If the mounting attempt is

made to a slot that is occupied, the module is not expressed, while the command remains in

the slot-reference. If the newly mounted module intersects an existing one during the devel-

opment, both the new module and its associated network node (if there is one) are not

expressed. After mounting a new module, the module-reference remains in the parent mod-

ule, and the slot-reference is emptied.

• V: The Morphology-moving commands update the module-reference according to the slot

defined by the command. If the module-reference is a joint, any Morphology-moving com-

mand moves to the front slot.

• VI: The Controller-moving commands update the neuron-reference or input-reference
according to the steps defined by the command, and is divided into two steps. The steps are

illustrated by Fig 3.

Fig 2. Fluxogram of the late-development process. From the left to right of the string, each symbol of the early-

developed phenotype (string) goes thorough this process, being interpreted and developed (or not expressed).

https://doi.org/10.1371/journal.pone.0233848.g002

Fig 3. Illustration of command move_ref_I(ti; di), having ti = 1 and di = 1. The procedure of the command move_ref_N(tn; dn) is analogous to

this.

https://doi.org/10.1371/journal.pone.0233848.g003
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• VII: The Controller-changing commands apply changes to the neuron-reference and/or

input-reference, or to the edge connecting them. Controller-changing commands act upon

the input and neuron nodes at the top (latest) of the stack. If there are no input or neuron

nodes yet (according to the requirements of the command), the command is not expressed.

If a newly mounted module is a joint, a new neuron is created possessing a connection

weight that is drawn from a random uniform distribution between −1 and 1, and this neuron

becomes the neuron-reference. When a new neuron is created, this generates an edge

between this neuron and the input-reference. If there is no input yet, the neuron is stacked

(oldest neuron remains as neuron-reference). If there is a stack of inputs, the new neuron is

connected to all of them; for the edges, the input on the top of the list uses the weight pos-

sessed by the neuron, while all the other inputs in the stack use their own weights; finally, the

stack is partially emptied keeping only the latest neuron, which becomes the neuron-refer-
ence.
If a newly mounted module is a sensor, a new input is created possessing a connection

weight that is drawn from a random uniform distribution between −1 and 1, and this input

becomes the input-reference. When a new input is created, this generates an edge between

this input and the neuron-reference. If there is no neuron yet, the input is stacked (the oldest

input remains as input-reference). If there is a stack of neurons, the new input is connected

to all of them; for the edges, the neuron on the top of the list uses the weight possessed by the

input, while all the other neurons in the stack use their own weights; finally, the stack is par-

tially emptied keeping only the latest input, which becomes the input-reference.
For every new edge created from an input to a neuron, the edge is attributed a serial ID

within the neuron. Analogously, for every new edge created from a neuron to an input, the

edge is attributed a serial ID within the input.

An example of late-development is illustrated in Fig 4.

Fig 4. Process of decoding an early-developed phenotype into a late-developed phenotype with morphology and

controller. From the left to right of the string, symbols are interpreted and developed, making incremental changes to

the phenotype. An arrow going from the genotype to the phenotype should be interpreted as the process leading to the

creation of the phenotype component pointed at by the arrow after the interpretation of the genotype component at

the starting end of the arrow.

https://doi.org/10.1371/journal.pone.0233848.g004
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3.6 Initialization

To initialize a genotype, for each production-rule, exactly one symbol is drawn uniformly ran-

dom from each of the following categories in this order: Controller-moving commands, Con-

troller-Changing commands, Morphology-mounting commands, Modules, Morphology-

moving commands. This process is repeated s times, where is s sampled from a uniform ran-

dom distribution ranging from 1 to e. This means that each rule can end up with 1 or maxi-

mally e sequential groups of five symbols. The symbol C is reserved to be added exclusively

(and surely) at the beginning of the production rule C. (Fig 5c).

3.7 Crossover

The crossovers are performed by taking complete production-rules uniformly at random from

the parents (Fig 5a).

3.8 Mutation

Individuals are mutated by adding, deleting, or swapping one random symbol from a random

production-rule in a random position (Fig 5b). As for the addition of symbols, all categories

have an equal chance of being chosen to provide a symbol, and every symbol of the category

also has an equal chance of being chosen. An exception is made to C to ensure that a robot has

Fig 5. a) and b) are examples of reproduction operators, and c) is an example of initialization using only 1 group of symbols for all cases of rules.

https://doi.org/10.1371/journal.pone.0233848.g005
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one and only one core-component. This way, the symbol C can not be added to any other pro-

duction rules, neither removed or moved from the production rule of C. The operations add-

ing, deleting, and swapping have an equal chance to happen. All symbols have the same

chance of being removed or swapped.

3.9 Evolution

We are using overlapping generations with a population size μ = 100. In each generation, λ =

50 offspring are produced by selecting 50 pairs of parents through binary tournaments (with

replacement) and creating one child per pair by crossover and mutation. From the resulting

set of μ parents plus λ offspring, 100 individuals are selected for the next generation, also using

binary tournaments. The evolutionary process is stopped after 100 generations, thus all

together we perform 5050 fitness evaluations per run. For each environmental scenario, the

experiment was repeated 20 times independently. A summary of the parameters for the evolu-

tionary algorithm is provided in Table 2.

4 Experimental setup

The code needed to reproduce our experiments and analysis in available on GitHub https://

github.com/ci-group/revolve/tree/a0a6496812cbec1208c3eb9fa4a0a21598ecb732/

experiments/Environmental_influences_on_evolvable_robots. The resulting data is available

in the supplementary material S1 Dataset, and also in the server ssh.data.vu.nl inside the kari-

nemiras-plosone directory.

4.1 Environments and fitness functions

We experimented with two different environments, which are a) Flat: it is a plane flat floor; b)

Tilted: it is a plane floor tilted in 5 degrees. The environments are depicted in Fig 6.

In the Flat and Tilted environments, the fitness function was defined by Eq (2):

f1 ¼

sx if sx > 0

sx
10

if sx < 0

� 0:1 if sx ¼ 0;

8
><

>:
ð2Þ

where sx is the speed of the robot as defined by Eq (4). This function measures the speed of the

robots only in the x axis, so to discourage robots to exploit locomotion in the y axis, avoiding

the proposed challenge of climbing the Tilted environment. Additionally, there are two

Table 2. Parameters for the evolutionary algorithm.

Population size 100

Offspring size 50

Number of generations 100

Mutation probability 80%

Crossover probability 80%

Rewriting iterations k 3

Maximum number of groups of symbols e 4

Connections of the network range from −1 to 1

Oscillator parameters range from 1 to 10

Maximum amount of modules m 15

Experiment repetitions 20

https://doi.org/10.1371/journal.pone.0233848.t002
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penalties. The first penalty is the division by 10 used when the speed is negative, which aims at

preventing that a “safe strategy” be much more beneficial than falling completely down the

hill. This “safe strategy” is characterized by trying to avoid to fall too far from the starting point

(due the effect of gravity), but without really climbing. The second penalty is the constant −0.1

used when speed is zero, which aims at disincentivizing robots that do not develop joints (and

thus can not move) so to avoid the risk of falling.

4.2 Environmental conditions

We carried out two types of experiment using the same experimental setup, except for the

environmental conditions in which the robots were evolved.

• Static: Robots live their whole lifetime in one same environment. Their lifetime, that is, sim-

ulation time, lasts 50 seconds.

• Seasonal: Robots live their lifetime across two different environments. They spend their first 50

seconds of lifetime in the Flat environment, and after that they spend 50 more seconds in the

Tilted environment. Because in this case robots are evaluated in multiple environments, we

treat this problem as multi-objective, where the fitness of each environment represents one of

the objectives. The consolidation of these objectives into the final fitness is defined by Eq (3):

fc ¼
Xn

i¼1

di; ð3Þ

where in each generation, di is the number of individuals in the population that are dominated

by individual i, where individual is said to dominate another if it is better in both objectives.

Importantly, all robots are evaluated in each environment regardless their performance in the

other environment.

4.3 Robot descriptors

For quantitatively assessing morphological, control, and behavioral properties of the robots,

we utilized a set of descriptors.

4.3.1 Behavioral descriptors.

1. Speed: Describes the speed (cm/s) of the robot along the x axis as defined by Eq (4):

sx ¼
ex � bx

t
; ð4Þ

Fig 6. The Flat and Tilted environments.

https://doi.org/10.1371/journal.pone.0233848.g006
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where bx is x coordinate of the robot’s center of mass at the beginning of the simulation, ex
is x coordinate of the robot’s center of mass at the end of the simulation, and t is the dura-

tion of the simulation.

2. Balance: We use the rotation of the head in the x–y plane to define the balance of the robot.

In general, the rotation of an object can be described in the dimensions roll, pitch, and yaw.

We consider the pitch and roll of the robot head, expressed in degrees between 0 and 180

(because we do not care if the rotation is clockwise or anti-clockwise). Perfect Balance

belongs to both pitch and roll being equal zero, so that the higher the Balance, the less

rotated the head is. Formally, Balance is defined by Eq (5):

B ¼ 1 �
r þ p

t � 180 � 2
; ð5Þ

where r ¼
Pt

i¼1
j ri j, representing the roll rotation accumulated over time, p ¼

Pt
i¼1
j pi j,

representing the pitch rotation accumulated over time, and t is the duration of the

simulation.

4.3.2 Morphological descriptors. 1. Size: Total number S of modules in the morphology.

2. Proportion: Describes the 2D ratio of the morphology and is defined with Eq (6):

P ¼
ps

pl
; ð6Þ

where ps is the shortest side of the morphology, and pl is the longest side, after measuring

both dimensions of length and width of the morphology (Fig 7).

3. Relative Number of Limbs: The number of extremities of a morphology relative to a practi-

cal limit. It is defined with Eq (7):

L ¼

l
lmax

; if lmax > 0

0 otherwise

8
>><

>>:

lmax ¼

2 � b
ðm � 6Þ

3
c þ ðm � 6Þ ðmod 3Þ þ 4; if m >¼ 6

m � 1 otherwise;

8
>><

>>:

ð7Þ

where m is the total number of modules in the morphology, l the number of modules which

have only one face attached to another module (except for the core-component) and lmax is

the practical limit. This limit is the maximum amount of modules with only one face

attached, that is, modules that represent a limb, which a morphology with m modules could

have if containing the same amount of modules arranged in a different way. This limit

Fig 7. Morphology (a) is disproportional and (b) is proportional.

https://doi.org/10.1371/journal.pone.0233848.g007
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results logically from the nature of the possible connections in our system of Fig 8) presents

examples.

4. Relative Number of Joints: This describes how movable the body is and is defined with

Eq (8):

J ¼
j

jmax
; if m >¼ 3

0 otherwise;

8
<

:
ð8Þ

where m is the total number of modules of the body, j is the number of effective joints, that

is, joints which have both of its opposite faces attached to the core-component or a brick,

and jmax = b(m − 1)/2c—the maximum amount of modules with two opposite faces

attached that a body with m modules could have, in an optimal arrangement (Fig 9).

5. Symmetry: This describes the reflexive symmetry of the body with Eq (9):

Z ¼ maxðzv; zhÞ; ð9Þ

where zh = oh/qh—is the horizontal symmetry, and zv = ov/qv—the vertical symmetry. For

calculating each of these symmetry values, a referential center for the body is defined as the

core-component. For both horizontal h and vertical v axes, a spine is determined as a line

dividing the body into two parts according to the center and this axis. Each value is the

number o of modules that have a mirrored module on the other side of the spine (each

match of modules accounts for two), divided by the total number q of compared modules.

The spine is not accounted for the comparison (Fig 10).

A complete search space analysis of the utilized robot framework and its descriptors is avail-

able in [28, 29], demonstrating the capacity of these descriptors to capture relevant robot prop-

erties, and proving that this search space allows high levels of diversity.

4.3.3 Controller descriptor. Average period: Describes the average (median) of the

parameter Period among the oscillators of the controller (Fig 11). The higher this value, the

slower the oscillation pattern, and thus slower the movement of the motors. It is defined with

Fig 8. Morphology (a) has four modules that could be extremities (considering the limit determined by the size of the morphology), but only the

two indicated by green arrows are; (b) has the maximum number of extremities it could have.

https://doi.org/10.1371/journal.pone.0233848.g008

Fig 9. Although both morphologies have two joints, in (b) the second joint is not effective, and would be only if the module indicated by the green

arrow was switched with the one indicated by the orange arrow.

https://doi.org/10.1371/journal.pone.0233848.g009
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Eq (10):

Dap ¼
MdðPlÞ

m
; ð10Þ

where Pl is the set of all Period values of a robot controller defined as Pl = {pl 8 l 2 L}, and m is

the maximum value Period can assume, given that a controller has a set L of oscillators defined

as l 2 L.

5 Results and discussion

In this section we analyze the effects of evolving robots under different environmental condi-

tions on phenotypic and behavioral properties. We utilize two behavioral descriptors, five

morphological descriptors, and one controller descriptor.

5.1 Static environmental conditions

Here we compare two populations of robots that evolved in the Static environmental condi-

tion, meaning they spent their whole life in one same environment. One population evolved in

the Flat environment, while the other evolved in the Tilted environment. Differently from our

previous work [16], the inclination in the Tilted environment is not 15 degrees, but 5. Still, we

observe very similar effects of the inclination on the behavioral and morphological properties

of the population when in comparison to the Flat environment.

We started by analyzing the effects of the environment on the behavior that is directly

rewarded into the fitness function, that is, Speed. Through an initial intuition, we considered

that the challenge of the task in the Tilted environment is greater than in the Flat environment,

because its whole ground is (gradually) elevated, requiring a robot to climb it. Following this

initial intuition, the level of difficulty of the locomotion task in Tilted is indeed higher than in

Flat, since robots presented a Speed approximately three times lower (Fig 12) in the former.

Because Speed is the target behavior incorporated in our fitness function, we analyzed an

extra behavioral descriptor, that is, Balance. Balance is not directly rewarded in the fitness but

Fig 10. Morphology (a) has the modules indicated by green arrows horizontally reflected by the modules indicated by orange arrows; (b) has no

modules reflected; (c) has the module indicated by the orange arrow vertically reflected by the modules indicated by the green arrow, but no

reflection for the module indicated by the pink arrow.

https://doi.org/10.1371/journal.pone.0233848.g010

Fig 11. Example of controller.

https://doi.org/10.1371/journal.pone.0233848.g011
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emerges to cope with the environment and the task. When the terrain in Tilted is inclined,

while the terrain in Flat has no inclination, the natural state of non-moving robots would be

rotated for the first, and non-rotated for the second. Nonetheless, the populations of robots

evolved in Flat converged to unbalanced (rotated) robots, while the populations in Tilted con-

verged to balanced (non-rotated) robots (Fig 12). Therefore, the convergence to these behav-

iors is not a mere artifact that any robot could achieve just by “being” in the environment, but

also results directly from morphologies and controllers selected to cope with each environ-

mental condition. The result of this behavioral descriptor agrees with the observed gaits, which

in Flat are mostly rolling, while in Tilted mostly rowing or dragging. Apparently, “recklessly”

rolling their bodies to boast away from the starting point is a good strategy when in a simple

flat environment. On the other hand, maintaining a more stable rotation of their morphologies

is more successful when the task concerns climbing. A video showing some of the evolved

robots in each environment can be found in the supplementary material S1 Video, and also in

the link https://youtu.be/HQcnmtMzb5U.

The previously observed differences in behavior are evidence of the effects of the environ-

ment on the robots. However, given that behavior is what emerges from the interaction among

Fig 12. Comparison of behavioral properties in different environmental conditions. Line plots show the

progression of the mean of the population (quartiles over all runs), while boxplots show the mean of the population in

the final generation. Significance levels for the Wilcoxon tests in the boxplots are � < 0.05, �� < 0.01, ��� < 0.001.

https://doi.org/10.1371/journal.pone.0233848.g012
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morphology, controller, and environment, it is difficult to clearly separate how much of the

behavior is an indirect result of the environment, and how much is a direct result. By indirect

we mean its influence on changing the body and brain (hence, its behavior) evolutionarily,

and by direct we mean its influence on the behavior in real-time during this interaction. Hav-

ing such a challenge in mind, we additionally assessed a set of morphological properties, aim-

ing to verify the indirect influence of the environment on the behavior. Fig 15 shows the

progression of the average value for the morphological descriptors across the generations and

the comparison of their average in the final generation. These charts show that the predomi-

nant morphological properties of the population of robots evolved in the Tilted environment

are different from the ones evolved in the Flat environment, except for Symmetry. While in

Flat evolution seems to be exploiting highly-actuated big disproportional morphologies, this

strategy appears less suitable when the robots have to climb under the risk of falling down the

hill with the help of gravity (Tilted), so they actually ended up smaller, more proportional, and

with more limbs. The directional change for some of the curves of Tilted around generation 10

is due to a local optimum. It results from a strategy that seems to “assume it to be safer” to

reduce movement than to risk falling during the climbing attempt. Therefore, in the early

stages of evolution, the population converges to tiny robots that do not (or hardly) move. In

later stages, it progresses for bigger robots, although these robots are smaller than the ones in

Flat.

To better illustrate the differences between the properties of the final populations we plotted

density maps with three example pairs of descriptors in Fig 13, allowing a multidimensional

perspective. These charts show that the fittest robots evolved in Tilted spread to different areas

of the space than those that evolved in Flat. Note that robots in Tilted have a higher Balance, a

higher Rel. Number of Limbs, and a higher Proportion, demonstrating that it is hard to main-

tain a stable gait for climbing a hill when a robot has a single limb or when it is disproportion-

ate. Robots in Flat instead do not possess many limbs, are disproportionate, and have a low

Balance, because stability is less necessary to locomote on a plane flat floor. For visual inspec-

tion, Fig 14 shows the morphology of the best robot in the final generation of each run for

both environments.

Finally, Fig 15 depicts the controller descriptor Average Period, but there was no significant

difference between Flat and Tilted.

Fig 13. Density maps for pairs of morphological descriptors in the final populations (all runs).

https://doi.org/10.1371/journal.pone.0233848.g013
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5.2 Static versus Seasonal

Here we compare the two populations of robots presented in Section 5.1 to a new population.

The new population was evolved in a Seasonal environmental condition, meaning that robots

spent part of their lives in the Flat environment, and the remaining part in the Tilted environ-

ment. Importantly, this Seasonal setup can also be interpreted as robots having to perform

multiple tasks and thus having multiple objectives. This is true because locomoting on a hill is

a different task from locomoting on a flat terrain. In accordance to the “no free lunch” theo-

rem, we expected a degradation on the Speed regarding at least one of the environments. In

fact, because in the Seasonal environmental condition the search is trying to succeed in loco-

moting in both environments, this degradation indeed happened, and it took place for both

environments. For both Flat and Tilted, the average Speed when evolving in Seasonal condi-

tions was approximately half than when evolving in Static conditions (Fig 12). Interestingly,

the Tilted environment, which proved more difficult as discussed in the previous section,

degraded less severely than the Flat environment.

One probable cause for this is that, being a greater challenge, the Tilted environment

applied a stronger selection pressure on the population. Another explanation is that the prop-

erties induced by the Tilted environment are more likely to generalise to both locomotion

tasks than the ones induced by the Flat environment. This explanation is supported by experi-

ments we presented in a previous paper [31], where we compared the robustness between pop-

ulations evolved in the Flat environment and then tested in the Tilted environment (and vice

versa). In this robustness test, we showed that robots evolved in Tilted could still perform loco-

motion to the side rewarded by the fitness function, while robots evolved in Flat and tested in

Tilted were mostly falling down the hill.

In the Seasonal experiments, the median Speed is approximately three times lower in the

Tilted than Flat. Although this is also true in the in the Static, the significance level obtained

testing the difference between Seasonal Tilted and Static Tilted is ten times lower than the one

obtained testing the difference between Seasonal Flat and Static Flat. Therefore, when in a Sea-

sonal environmental condition, Speed is more similar to when in Static Tilted than when in

Static Flat.

The emergent behavior measured with the Balance descriptor corroborates these observa-

tions. While Static Flat presents a much lower Balance than Static Tilted, this difference is less

intense when comparing Seasonal Flat with Seasonal Tilted, while Seasonal Flat and Static Flat

are very different. More importantly, Static Tilted and Seasonal Tilted present the same

Fig 14. Best robot of each experiment repetition in the different environmental conditions.

https://doi.org/10.1371/journal.pone.0233848.g014
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Balance. Again, the behavior in Seasonal is more similar to the behavior in Static Tilted than to

the behavior in Son-season Flat.

Beyond behavioral characteristics, the morphological properties exhibit this same dynam-

ics. For every descriptor where Static Flat is different from Static Tilted, no difference exists

between Static Tilted and Seasonal. One more time, in the Seasonal environmental condition,

evolution favored the traits that are usually favored when evolving solely in the Tilted environ-

ment. Fig 14 illustrates how robots evolved in Seasonal resemble more robots evolved in Static

Tilted than in Static Flat.

This result contrasts with a previous work [31] where we measured the effects of changing

the environment throughout the evolutionary period. In that study, we started by evolving

populations in the Flat environment, and in later generations, little by little we increased the

Fig 15. Comparison of morphological properties in different environmental conditions. Line plots show the progression of the

mean of the population (quartiles over all runs), while boxplots show the mean of the population in the final generation. Significance

levels for the Wilcoxon tests in the boxplots are � < 0.05, �� < 0.01, ��� < 0.001. Note that because phenotypic properties are the

same in both environments for Seasonal, it is displayed only once in each chart.

https://doi.org/10.1371/journal.pone.0233848.g015
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inclination of the floor towards 15 degrees. Interestingly, the traits of the populations that

would normally emerge in the earliest stage, that is, the Flat environment, took over, even later

on when evolving in the Tilted environment. Here, because we always evaluate every individ-

ual in both environments independently, the timing of when the environmental conditions

take place does not matter. After all, the traits that took over were not the ones from Flat, but

from Tilted. This possibly happened for the reasons we discussed above concerning difficulty

and generalization.

Finally, we analyzed the Average Period, which is a property of the controller. Curiously

and differently from all other descriptors, in this case, Seasonal and Static Tilted are different,

while Seasonal is not different from Static Flat. In practice, this means that in Seasonal the

movements of the motors happen faster than in Static Tilted, while not faster than in Static

Flat. Meanwhile, it is not clear for us what this means. While morphological properties are

intelligible and easily observable, controller properties seem less material and harder to

interpret.

6 Conclusion

This paper studied the effects of diverse environmental conditions on behavioral, morphologi-

cal, and controller properties of evolvable modular robots. We experimented with two envi-

ronments: a) Flat: a plane flat floor; and b) Tilted: a plane floor tilted in 5 degrees. Our

experiments investigated two types of environmental conditions. The first environmental con-

dition was called Static, where an evolving population of robots spent its whole lifetime in the

same environment. The second environmental condition was called Seasonal, where an evolv-

ing population of robots spent half of their lifetime in the Flat environment, and half in the

Tilted environment.

Similarly to our previous work [16], also here we observed that, in the Static environmental

conditions, each one of the environments created a different selection pressure to the popula-

tions. These selection pressures resulted in differentiation for behavioral and morphological

properties, which we measured using several descriptors. Although evidence in natural systems

would make these results look logical, previous work demonstrated that this dependence on

the environment is very difficult to reproduce in an artificial evolutionary system. The paper

[16] demonstrated an example of a drastic environmental change that did not induce any sig-

nificant changes neither on morphology nor on behavior.

More importantly, in this paper we answered a new research question through the experi-

ments with the Seasonal environmental condition. In this case, the emergent traits in the pop-

ulation gave in to the selection pressure existent in the Tilted environment, which is not only

the most difficult one, but also the one that seems to induce a more general behavior for loco-

motion [31]. To more substantially define the implications of these findings, more research is

certainly needed. For instance, if it is true that when having to deal with multiple environments

the selection pressure of the most difficult environment will be the strongest pressure, then

this should be taken into consideration when designing the maintenance of evolvable robot

systems. Despite knowing that the environment is immensely determinant in any evolutionary

process [6], experiments of Evolutionary Robotics that take the environment into consider-

ation are very meager. Importantly, keeping the environment out of the investigatory loop

could severely limit the conclusions of a great part of what has been experimented within the

field. Therefore, the contribution of this work is a relevant stepping stone towards helping to

increase the quality of artificial life systems, through trying to understand the influence of such

a fundamental factor: the environment.
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Furthermore, evolutionary robotics is not only concerned with creating utilitarian artificial

life, that is, an autonomous robot system to perform some task, but is also useful for trying to

understand how natural life evolved. While, knowing that the environment has a great influ-

ence on natural lifeforms [6], still little is known about how exactly it happens [37]. Control-

ling the environmental conditions, as we did in this paper, can be a useful tool to answer these

questions through artificial evolution rather than with controlled lab experiments with natural

evolution. Notably, while the natural evolutionary process is too slow to be experienced in a

lab artificial evolution is much faster.

For future work, we propose to extend our encoding method with the capacity of pheno-

typic plasticity, that is, environmentally regulated phenotypes. This means that the encoding

method will allow robots to develop morphologies and controllers, and thus behavior, accord-

ing to the environmental conditions they face during their lifetime. Because in the current

experiments robots demonstrated a degradation in the average performance when having to

face multiple environments, we expect that our new encoding will help to reduce this degrada-

tion. Moreover, to increase the relevance of this investigation, more types of environments

should be experimented with in the future. Finally, an analysis of the complexity [38] of the

environments in relation to the complexity of the phenotypes would provide deeper insights

into this subject.
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