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Abstract

Limited resources and increased patient flow highlight the importance of optimizing healthcare

operational systems to improve patient care. Accurate prediction of exam volumes, workflow

surges and, most notably, patient delay and wait times are known to have significant impact on

quality of care and patient satisfaction. The main objective of this work was to investigate the

choice of different operational features to achieve (1) more accurate and concise process

models and (2) more effective interventions. To exclude process modelling bias, data from

four different workflows was considered, including a mix of walk-in, scheduled, and hybrid facil-

ities. A total of 84 features were computed, based on previous literature and our independent

work, all derivable from a typical Hospital Information System. The features were categorized

by five subgroups: congestion, customer, resource, task and time features. Two models were

used in the feature selection process: linear regression and random forest. Independent of

workflow and the model used for selection, it was determined that congestion feature sets lead

to models most predictive for operational processes, with a smaller number of predictors.

Introduction

The quality of patient care is largely determined by our ability to manage its resources [1]. As

patient footfall in hospitals continues to rise [2–4], hospitals find themselves under perpetual

pressure to maintain and improve patient care standards. A traditional approach to this would

be to keep offering more services but, as with many other industries, it is not feasible for

healthcare providers to continually add more work to already limited resources.

As a result, it becomes imperative to optimize and redistribute the operational systems

already in place, while avoiding negative impacts on quality of care, safety, and patient satisfac-

tion [5]. A large part of this work can be done by predicting critical operational events–such as

patient wait times, exam volumes, and workload surges–to improve on-time resource manage-

ment and performance [6–8]. In particular, predicting workload surges and wait times in

advance can be used to redistribute limited workforce more efficiently. For instance, previous

research highlights the importance of delay time predictions in emergency departments (ED)
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[9,10]; with statistical evidence suggesting that keeping patients updated on their status made

the ED stay more bearable and subsequently deterred patients from leaving before receiving

treatment. Furthermore, wait time prediction was found to beneficially influence customer sat-

isfaction in other industries, according to [11–13] and [14].

However, all these workflows and processes are commonly influenced by multiple diverse

factors, which makes them too complex to be tracked by humans. Therefore, advanced predic-

tive models are required to provide reliable results, and variables must capture the local envi-

ronment to keep the models accurate. As a result, numerous feature sets and modelling

approaches have been proposed in previous literature for the most common workflow predic-

tion types, such as wait/delay time predictions. These included the average wait times for the

last k customers [15], queue-length-based and delay-history based features with time varying

components [16], model-based features [17,18] and historic wait times [19]. The authors of

these approaches used a range of workflow modeling paradigms, from time series to queueing

theory, each with its own advantages and limitations. This variety of possible approaches leads

to the practical challenge of choosing the best, and studying whether several of them can be

united into a single stronger predictive mode.

Nowadays, machine learning offers a new powerful opportunity to model operational

events with the ability to capture complex data and environment variabilities. Moreover, using

the unifying machine learning paradigm, we can view all previously proposed modeling vari-

ables as different choices of predictive feature sets. It is common knowledge that the quality of

machine learning models is dependent on the choice of their features [20]. Then, can we iden-

tify a common set or type of features for predicting healthcare operational processes?

The main goal of our work was to answer this question.

Methods

Data collection and compilation

The importance of accurately predicting wait and process delay times can hardly be overstated,

with benefits ranging from improved customer satisfaction to optimal resource allocation.

Therefore, we have chosen this task to study the best predictive feature sets. Our work took place

in a large academic center with close to one million patient examinations per year. To study dif-

ferent operational scenarios, we considered the two most common prediction tasks: predicting

wait time for walk-in patients and predicting process delay time for scheduled patients.

To identify the best predictive features for wait/delay time with the least bias towards any par-

ticular site, we considered four differently organized outpatient imaging facilities: F1 (magnetic

resonance imaging), F2 (ultrasound imaging), F3 (computed tomography), and F4 (X-Ray). F1

and F2 had scheduled appointments, and as a result servicing of the queue is not necessarily

FIFO. F3 was mostly scheduled, with a few walk-ins interspersed. F4 was walk-in patients only.

Real-time and historical wait/delay times were taken from our Hospital Information System

(HIS). For F1, F2 and F3 we predicted delay times as patients were arriving based on a sched-

ule. Here, delay time was defined as the difference between scheduled time of the exam and

the time the exam began (for the patients seen before their scheduled time, their delay time

was a negative number.) In the case of F4, we predicted wait times, which is the difference

between the arrival time of the patient and the time the exam began (always positive by defini-

tion). Although there are intrinsic differences between the scheduled and walk-in workflows,

they share two fundamental properties: (1) The same patient experience, when the patient per-

ceives any wait (whether it be from a scheduled exam or walk in exam) as their wait time; (2)

The same staff experience, when any idling and delays should be reduced to ensure steady

patient processing.
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Facility data used in our analysis included all patient visit records from November 2017 to

July 2019. All patient-identifying data was completely excluded from the dataset and subse-

quent analysis, and all features were aggregated across multiple patients per each visit time, to

remove any patient-specific information. There were, on average, between 25 (F1) and 120

(F4) visits per day at the facilities which amounted to 15494 observations for F1; 36154 for F2;

30173 for F3; 69469 for F4.

Feature set

It’s important to realize that the role of any single feature in a model does not depend on this

feature alone, but also on the other features included in the model. As a result, looking for the

best process predictors means identifying the best predictor sets, rather than picking best fea-

tures individually.

Thus, by testing several models with different combinations of features, we aimed at discov-

ering the best feature sets as the combination of features that make a good model. Looking for

best sets instead of single features certainly complicates the task, as the number of all possible

subsets grows exponentially as the number of features increases. Moreover, there may be many

feature subsets with very similar predictive quality. However, if some feature sets can be identi-

fied as consistently associated with superior model quality, it can greatly simplify optimal

model design, and provide more insights into the key process drivers.

With this rationale, our main goal was to consider all previously suggested features that we

have found in the earlier research, as well as the features discovered by our group, to see if any

particular feature subsets can be identified as the most predictive for operational events. 84 fea-

tures were collected for analysis, which were categorized by five feature groups: congestion,

customer-specific, resource-specific, task-specific and time features, as illustrated in Table 1.

Note that some features were not directly transferrable to all types of workflows we had: for

example, features containing information about scheduled appointments were not applicable

to walk-in F4, and some examination-specific features available in F1 and F3 (such as Cardiac-

Count and NeuroCount) were not applicable to F2. In such cases, some feature values could be

extended by using defaults or proxies (such as using arrival time in F4 as a substitute for the

scheduled time), to create a universal, scalable, facility-independent feature set.

Also note that we did not use individual patient predictors (such as patient age or time to

complete for each patient). Patients can arrive in different orders and exhibit different behav-

ior, and we intentionally wanted our models to be independent of individual patient properties

or preferences. Instead, we are predicting expected delay/wait for the next patient, whoever it

will be. We have, however, included similar features for patients currently being serviced by

the system (such as SumTimeToCompleteInProgress).

The counts for individual exams (CardiacCount, NeuroCount, etc.) are based on the

patients waiting in line for a single type of exam. However, some patients come for multiple

exams which are performed directly after one another. For instance, some patients come to F3

and have a chest, abdominal and pelvis scan consecutively. This combination of exams will

have a unique exam code and therefore these patients will not be included in the individual

exam features. It is most common for patients to come for a single type of exam and therefore

we have only included counts for the individual exams.

Models

To identify the most predictive features, independent of possible model bias, two entirely dif-

ferent models were considered for each facility: linear regression and random forest. Linear

regression was selected as the most classical model type, while random forest was used because
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Table 1. Feature set divided into 5 groups.

Group Name Description

Congestion LineCount0Strict Number of patients in line with scheduled times after current time.

LineCount0/1/2/3/4 Number of patients in line measured when a patient arrives, 15, 30, 45 & 60 minutes before.

FlowCount30/60 Number of patients starting exams in the 30- and 60-minute window before patient arrived.

ScheduledFlowCount30/60 Number of patients scheduled in the 30- and 60-minute window before patient arrived.

FutureFlowCount30/60 Number of patients scheduled in the 30- and 60-minute window after patient arrived.

AheadCount Number of patients scheduled before current patient for the day.

IsFirst First scheduled patient for the day.

IsLast Last scheduled patient for the day.

NoneInLine No patients in line.

SumWaits Sum of the wait times for patients in line.

NumCustomersLast30/60/120 Number of customers who have arrived in the last 30, 60 & 120 minutes.

NumScheduledNextSlot Number of patients scheduled in next slot.

NumScheduledNext60 Number of people scheduled in next 60 minutes.

AvgWaitForDay Average delay/wait for patients for that day.

NumCompletedInLast30/60/120 Number of exams completed in last 30, 60 and 120 minutes.

NumCompletedToday Number of exams completed up to current of day.

DelayedInLine The number of patients in line who are delayed.

MinTime Minimum wait time for the day.

MaxTime Maximum wait time for the day.

DelayCount Number of delayed exams up to current time of day.

DelayCountLastHour Number of delayed exams in last hour.

AvgWaitLast30/60/120 Average wait time last 30, 60 and 120 minutes.

SumTimeToCompleteNextSlot Expected time to completion of exams in next slot.

SumTimeToCompleteNext60 Expected time to completion of exams scheduled in next hour.

InProgressSize Number of exams in progress for facility.

SumTimeToCompleteInProgress The sum of the expected times to complete of the exams in progress

NoneCompleted No exams completed that day.

NoneInProgress No exams in progress.

SumInProgress Sum of length of time exams have been in progress.

MostRecent1/2/3/4/5 Delay/wait time for most recent patient, 2nd, 3rd, 4th & 5th most recent patients.

AvgWaitLast2/4/8Customers Average wait for the last 2, 4 and 8 customers.

Median5 Median delay/wait time for 5 most recent customers.

NumAddOnsToday Number of people who have been added to the schedule for today.

NumAddOnsLast60 Number of people who have been added to the schedule in last 60 minutes.

SumHowEarlyWaiting Sum of how early the patients in line are for their appointment.

AvgHowEarlyWaiting Average of how early the patients in line are for their appointment.

SumDelayWaitingInLine Sum of delays/waits of patients in line.

SumDelayInProgress Sum of delays/waits of exams in progress.

Customer AvgAgePeopleWaiting Average age of the patients in line.

OutpatientWaitingCount Number of outpatients waiting in line.

Resource NumScannersInUseToday Number of scanners in facility that have been used on that day.

Task WithContrastCountWaiting Number of patients waiting for an exam with contrast.

WithandWithoutContrastCountWaiting Number of patients waiting for an exam with and without contrast.

WithContrastCountInProgress Number of exams in progress with contrast.

WithandWithoutContrastCountInProgress Number of exams in progress with and without contrast.

ExpectedDelayNextExam Expected delay of the next scheduled exam.

SumDelayWaitingByExamCode Sum of delays of patients in line by exam type.

AvgWaitByTaskTypeLine Average waits of patients in line by exam type.

SumWaitByTaskTypeLine Sum of waits of patients in line by exam type.

MSKCount Number of patients waiting for musculoskeletal exam.

CardiacCount Number of patients waiting for cardiac exam.

VascularCount Number of patients waiting for vascular exam.

AbdominalCount Number of patients waiting for abdominal exam.

NeuroCount Number of patients waiting for neuro exam.

PediatricCount Number of patients waiting for pediatric exam.

ThoracicCount Number of patients waiting for thoracic exam.

(Continued)
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of its ability to model highly nonlinear dependencies, variable interactions, and tree-like deci-

sion making, so common in operational logic. The dependent variable was delay time for F1,

F2 and F3; and wait time for F4. In both cases, the dependent variable was continuous by

nature and denominated in minutes.

All analysis was carried out using R-3.6.1 (www.r-project.org).

Stepwise feature selection with linear regression

To avoid exponentially expensive best subset search, stepwise linear regression was used to

pre-identify the most promising feature subsets, for each of the four facilities F1-F4 (Fig 1).

However, to avoid data bias in a single “greedy” stepwise selection result, the selection process

was repeated on multiple subsets of the original data (Fig 1). For each facility, a random conse-

cutive sample of six months of visits was used as the training (sub)set; and a further consecu-

tive two weeks of visits were used as the test set. At each step, the feature that offered the

largest decrease in out-of-bag mean-squared error (MSE) was added to the linear regression

model based on predictions made using 10-fold cross validation on the training set.

Fig 2 shows the percentage reduction in model test error (Testing Percentage Error) as

more model features (N) are added to the linear regression model for each facility. Test error

was the resulting MSE after making predictions, using the model of size N, on the test set. The

percentage reduction in test error was calculated by comparing predictions made by the linear

regression model of size N to predictions made by the linear regression model containing only

the intercept (average delay/wait time in this case). A Testing Error value of 100% indicates the

error made by the intercept only model. As is clear from Fig 2, the test error improves at a dif-

ferent rate for each facility, with F1 requiring the most features (20) for the test error to pla-

teau. Therefore, 20 features were added to each model, for each facility, in order to make the

feature sets directly comparable.

This process was repeated for 100 train/test data pairs, for each facility, and the number of

times each variable appeared in the 100 linear regression models was recorded. In this way, we

significantly broadened the plain stepwise search, identifying many more potential good fea-

ture set candidates to consider.

Random forest-based feature selection

The second model considered was random forest. Before fitting each random forest, hyper-

parameters for the number of variables to be considered at each split, maximum depth of the

trees and number of trees per random forest were optimized using 10-fold cross validation.

Since stepwise feature selection cannot be done with random forests (for example, it is hard to

build forests with only one or two variables), we took another feature set pre-selection

Table 1. (Continued)

Group Name Description

Time DayOfYear The day of the year the exam is scheduled.

Month The month of the year the exam is scheduled.

DayOfWeek The day of the week the exam is scheduled.

StartTime/2/3/4 Hour of arrival, and 2nd, 3rd & 4th powers of hour of arrival to account for nonlinear trends.

BeforeSlot Time since last appointment slot.

AfterSlot Time until next appointment slot.

https://doi.org/10.1371/journal.pone.0233810.t001
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approach. First, a random forest was fitted for each facility. Then the built-in MSE-driven

importance feature [21] in the random forest algorithm was used to record the effectiveness of

each feature. This was repeated for 100 train/test pairs, for each facility, and the features were

ranked based on cumulative importance.

Results

Most predictive features for each facility

Fig 3 provides a summary of features identified as the most frequently associated with the opti-

mal linear regression models. Note that the majority of these features belong to the congestion

feature group (colored in blue), with a few from the time feature group (colored in orange).

Given that most of the features are from the congestion group, we sought about further

reducing the common size of the optimal feature set without a deterioration of more than two

minutes in predictive quality for each facility. The comparison of predictions made by the lin-

ear regression model containing the full feature set, to the predictions made by the linear

regression model containing the reduced, best 10-feature set, are shown in Table 2.

As displayed in Table 2, the difference in predictive quality between the model with the full

feature set and the model with the best 10-feature set was under two minutes for F1, and even

less for F2-F4. Therefore, we decided to study only the best 10-feature sets chosen for each

facility. Unsurprisingly, the difference in the predictions made by the two sets was greatest for

F1 (1.6 minutes), as it required the most features for the test error to plateau (Fig 2). Addition-

ally, the similarity in the predictions made by the models containing the two different feature

sets justifies identifying the best predictive features based on frequency of appearance.

Fig 1. Feature selection process for linear regression, which was performed separately for each facility, on multiple data subsets. Features were added to the best

model, at each step, based on predictive performance. This process was repeated 100 times, each with different subsets of the data, to avoid data bias.

https://doi.org/10.1371/journal.pone.0233810.g001
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We also noticed that there was significant overlap between the features selected for F1, F2,

and F3 (Fig 3), most likely because the three facilities are primarily schedule driven. Therefore,

we considered the union of the top 10 best predictive features from each of the three facilities,

resulting in 17 features (Table 3).

As mentioned previously, it was interesting to observe that almost all the best predictive fea-

tures in this list turned out to be congestion-related and did not contain any exam-specific fea-

tures. Only two different types of line count appeared, both of which are measured

immediately on arrival of the patient, indicating that continued measurement of line size

before the patient arrives for their exam is not necessary. Additionally, there were a few fea-

tures selected that provide information about the next scheduled slot (NumScheduledNextSlot,

NumScheduledNext60 and AfterSlot). Furthermore, delay- and wait-history-based features

were prominent in the selection which justifies their inclusion as suggested in [16].

Walk-in F4 was considered separately to the union of features given in Table 3 as several

variables selected for F1, F2 and F3 depended on information from a schedule which, as men-

tioned, was not part of the F4 workflow. Table 4 gives the best predictive features for F4 as

selected by the linear regression model.

Again, it became evident that the best F4 predictors remained congestion variables even

though F4 was a completely different, walk-in workflow.

Fig 2. Reduction in the percentage of test error (Testing Percentage Error) as features (N) are added to the linear regression model. Testing error refers to the ratio

of the test MSE of the model of size N to the test MSE of the model with the intercept only; with a Testing Percentage Error of 100% indicating the error made by the

intercept only model. As features are added to the model, we can see that after 20 features the test error for all four facilities has plateaued, with F1 being the last facility

to do so.

https://doi.org/10.1371/journal.pone.0233810.g002
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Feature transferability

Transferability of features is one of the most practically important properties of machine learn-

ing applications: we would like model feature sets to remain optimal or nearly optimal in dif-

ferent environments, so that the time-consuming feature engineering does not need to be

Fig 3. Features selected in the linear regression model for each facility. The congestion features are highlighted in blue and the time features highlighted in orange; no

other feature types were identified by the selection algorithm. 100% on the horizontal axis indicates that a variable was selected in all the linear regression models for that

facility.

https://doi.org/10.1371/journal.pone.0233810.g003
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repeated at each site. Feature transferability also serves as an indicator that the selected feature

set captures the essence of the underlying process.

Therefore, the transferability of best predictive features across facilities was investigated, to

discover if features selected by the algorithm for one facility could be used to make predictions

for the other facilities without large differences in predictive performance. The top 10 features

from each facility were used to predict delay/wait times for the other facilities and the predic-

tions from the transferred 10-feature set were then compared to predictions made using the

facility optimal 10-feature set. We also used the union of features from Table 3 to make predic-

tions for each facility. Table 5 gives the transferability of features that were selected by linear

regression.

As seen in Table 5, the features we identified for each facility proved to be transferable, but

the optimal features from the Union set (Table 3) provided an exceptionally good match for all

four facilities, including walk-in F4. Thus, although F4 was originally considered separately,

the results in Table 5 demonstrate that the features in Table 3 are transferable across inherently

different workflows.

The same experiment was repeated using random forest: the predictive performance of the

random forest with the full feature set was compared to a random forest fitted with the best 10

predictive features for each facility, selected based on cumulative importance (Table 6). A

Table 2. Predictive performance, measured by mean absolute error, of reduced feature and full linear regression

models for each facility. The mean absolute errors of both models are denominated in minutes.

Facility Full feature set (minutes) Best 10-feature set (minutes)

F1 17.60 19.20

F2 8.55 9.32

F3 22.95 23.07

F4 3.91 3.91

https://doi.org/10.1371/journal.pone.0233810.t002

Table 3. Union of features for F1, F2 and F3 as selected by forward stepwise linear regression.

Best features for F1, F2 and F3

Feature Group

LineCount0Strict Congestion

AheadCount Congestion

StartTime4 Time

DelayedInLine Congestion

InProgressSize Congestion

NumCompletedToday Congestion

NumScheduledNextSlot Congestion

LineCount0 Congestion

NumScheduledNext60 Congestion

AvgWaitForDay Congestion

SumHowEarlyWaiting Congestion

AfterSlot Time

SumWaits Congestion

ScheduledFlowCount30 Congestion

SumDelayInProgress Congestion

BeforeSlot Time

IsFirst Congestion

https://doi.org/10.1371/journal.pone.0233810.t003
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reduced set of 10 features was chosen in this case in order to make it directly comparable to

the feature sets selected by the linear regression model. With random forest, it is even more

apparent than linear regression that, using a reduced model with only one eighth of the total

feature set can produce a model nearly as accurate as the full model.

The same unification process was then carried out for the variables that were identified by

the random forest. The union of the top 10 features for F1, F2 and F3 are given in Table 7.

As seen in Table 7, the nature of the features selected by the random forest was very similar

to those selected by the linear regression. There were eight features in common between the

two sets of features: LineCount0Strict, AheadCount, StartTime4, NumCompletedToday,

DelayedInLine, SumWaits, SumDelayInProgress and BeforeSlot. Again, the congestion fea-

tures had a notable presence with the absence of any task specific features. Interestingly, the

random forest also selected the four StartTime features from the time group. Only line sizes

when the patient arrived were deemed important, which was also the case with the linear

regression; and the random forest placed almost all emphasis on delay- and wait-history-based

features rather than taking future exams into account.

Again, the F4 features were considered separately to the union of features for random forest

as there were features selected for F1, F2 and F3 that did not apply to F4. The features Delaye-

dInLine and DelayCount were not suitable as wait time, and not delay time, was measured for

F4. However, SumDelayInProgress was relevant as it was measuring the sum of the waiting

Table 4. Best predictive features for F4 as selected by linear regression.

Best Features for F4

Feature Group

LineCount0 Congestion

AheadCount Congestion

NoneInLine Congestion

NoneInProgress Congestion

NoneCompleted Congestion

StartTime4 Time

InProgressSize Congestion

NumCompletedToday Congestion

NumCompletedInLast30 Congestion

AvgWaitLast30 Congestion

https://doi.org/10.1371/journal.pone.0233810.t004

Table 5. Transferability of features selected by linear regression: How well the features selected as optimal for

each facility (columns) approximate the data from each facility (rows). The ratio represents the mean of the predic-

tions made by the transferred feature set compared to the predictions made by the facility optimal feature set. A ratio of

1 indicates that the predictions are equivalent and a ratio of 1.06 indicates that the predictions made by the transferred

set are 6% worse than the predictions made by the facility optimal feature set.

Features

F1 F2 F3 F4 Union
Data F1 - 1.14 1.09 1.15 1.02

F2 1.12 - 1 1.07 1
F3 1.08 1.08 - 1.14 1
F4� 1.02 1.02 1.01 - 1.02

�When using F1, F2 and F3 features to predict F4, the best 10 predictive features that were suitable for F4 were used.

When using the Union to predict F4, there were 8 features that were applicable to F4.

https://doi.org/10.1371/journal.pone.0233810.t005
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times of the people currently in exams. Given that arrival time of patients was used as sched-

uled time for F4 patients, delay in this case was measuring the difference between arrival time

and begin time of the exam, which is the length of time the patient waited before the exam

began. Table 8 gives the top 10 best predictive features as selected by the random forest for F4.

Like linear regression, F4 was predicted with features mainly from the congestion group

even though it is completely different to F1, F2 and F3. The transferability of the features

selected by the random forest was investigated and the results are presented in Table 9.

As seen in Table 9, the features are again transferable between F1, F2 and F3 and in some

cases the Union set of features produces better predictions than the facility optimal features. A

potential explanation for this is that the Union contains 14 features and is larger than each

facility optimal 10-feature set allowing the random forest to split on more optimal variables. F4

features perform relatively well when predicting the other facilities despite the different system

dynamics.

Additional to the investigations into the transferability of features between facilities, the

transferability of features between the two models was then investigated. The features that

were selected by the linear regression were used in the random forest and vice-versa. Using the

union of 14 best predictive features selected by the random forest algorithm, in a linear regres-

sion model, resulted in a mean prediction error of 18.32 minutes for F1, 9.93 minutes for F2,

23.93 minutes for F3. Notably, the prediction error here for F1 is slightly better than the pre-

diction error using the top 10 features as selected by the linear regression. This is to be

expected as the prediction performance for F1 does not plateau until after 20 features. Using

Table 6. Predictive performance, measured by mean absolute error, of reduced feature and full feature random

forest models for each facility. The mean absolute errors of both models are denominated in minutes.

Facility Full feature set (minutes) Best 10-feature set (minutes)

F1 19.23 18.24

F2 9.92 10.02

F3 24.47 24.55

F4 3.98 3.98

https://doi.org/10.1371/journal.pone.0233810.t006

Table 7. Union of features for F1, F2 and F3 as selected by importance in random forest.

Best features for F1, F3, and F2

Feature Group

LineCount0Strict Congestion

AheadCount Congestion

StartTime Time

StartTime2 Time

StartTime3 Time

StartTime4 Time

NumCompletedToday Congestion

DelayedInLine Congestion

AvgWaitLastK3Customers Congestion

Median5 Congestion

SumDelayInProgress Congestion

BeforeSlot Time

SumWaits Congestion

DelayCount Congestion

https://doi.org/10.1371/journal.pone.0233810.t007

PLOS ONE Identifying the most predictive features in healthcare operational processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0233810 June 11, 2020 11 / 14

https://doi.org/10.1371/journal.pone.0233810.t006
https://doi.org/10.1371/journal.pone.0233810.t007
https://doi.org/10.1371/journal.pone.0233810


the union of 17 best predictive features selected by the linear regression model, in the random

forest, resulted in mean prediction error of 18.08 minutes for F1, 9.92 minutes for F2, 23.92

minutes for F3. The results indicate that, although the two models selected different features,

the features were transferable without losing predictive power as they were of the same nature.

To further investigate the generalizability of the feature set across healthcare operational

processes, the best predictive features for another vital workload indicator–waiting line size–

were selected using the cumulative importance method of the random forest. This resulted in

the set of best predictive features, once again, being comprised of features from the congestion

group. The selection of congestion features, not only independent of selection method and

facility, but also independent of operational process, emphasizes their importance in health-

care workflow predictions.

Conclusions

In this study, a large set of conceptually different features was gathered from the previous

research and our independent work, to identify the most predictive feature sets for common

healthcare operational processes. To exclude model and facility bias, two different machine

learning models (linear regression and random forest) were applied to four different opera-

tional facilities (workflows). Optimal feature selection in both models demonstrated that the

most predictive operational process feature sets are made up of mostly congestion features

(with a few features from the time group). This finding was further emphasized by cross-

model validation, when the features selected by one model were used in the other, still

Table 8. Best predictive features for F4 as selected by random forest.

Best Features for F4

Feature Group

LineCount0 Congestion

AheadCount Congestion

StartTime Time

StartTime2 Time

StartTime3 Time

StartTime4 Time

SumTimeToCompleteInProgress Congestion

SumDelayInProgress Congestion

NumCustomersInLast30 Congestion

SumWaits Congestion

https://doi.org/10.1371/journal.pone.0233810.t008

Table 9. Transferability of features selected by random forest. Given the random nature of the tree-based algorithm, 95% confidence intervals are provided in parenthe-

ses. The ratio represents the mean of the predictions made by the transferred feature set compared to the predictions made by the facility optimal feature set (a ratio of 1.06

indicates that predictions made with the transferred set are 6% worse).

Features

F1 F2 F3 F4 Union

Data F1 - 1 (0.9,1.17) 0.99 (0.91,1.08) 1.04 (0.95,1.15) 0.97 (0.88,1.07)

F2 1.03 (0.95,1.1) - 1 (0.97,1.03) 1.04 (0.96,1,13) 0.98 (0.9,1.02)

F3 1.05 (0.99,1.13) 1.04 (0.98,1.11) - 1.1 (0.99,1.21) 1 (0.96,1.07)

F4� 1.02 (0.97,1.06) 1 (0.96, 1.05) 1.02 (0.99,1.07) - 0.99 (0.96,1.05)

�When using F1, F2 and F3 features to predict F4, the best 10 predictive features that were suitable for F4 were used. When using the Union to predict F4, there were 12

features that were suitable for F4.

https://doi.org/10.1371/journal.pone.0233810.t009
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producing (nearly) optimal results, and transferability of congestion based operational models.

The same importance of congestion predictors was confirmed by considering different types

of processes and operational predictions. Even though F4, a walk-in facility, was an inherently

different operational system compared to scheduled F1, F2 and F3; congestion features were

identified as the most predictive for both scheduled and walk-in models.

As a result, it can be concluded that the best feature set for the most common operational

models in healthcare can be built from a rather standard list of congestion features. This is

non-trivial: for instance, the inclusion of environment and task specific features (such as exam-

ination types) in our case did not seem to improve the accuracy provided by the congestion

feature set. This means that one can avoid complex model customization for operational work-

flows running inherently different tasks. Instead, a small set of very standard congestion fea-

tures can be used to create accurate and scalable machine learning models, naturally

generalizable to different operational environments.
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