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Abstract

A genetic algorithm (GA) cannot always avoid premature convergence, and multi-population

is usually used to overcome this limitation by dividing the population into several sub-popula-

tions (sub-population number) with the same number of individuals (sub-population size). In

previous research, the questions of how a network structure composed of sub-populations

affects the propagation rate of advantageous genes among sub-populations and how it

affects the performance of GA have always been ignored. Therefore, we first propose a

multi-population GA with an ER network (MPGA-ER). Then, by using the flexible job shop

scheduling problem (FJSP) as an example and considering the total individual number

(TIN), we study how the sub-population number and size and the propagation rate of advan-

tageous genes affect the performance of MPGA-ER, wherein the performance is evaluated

by the average optimal value and success rate based on TIN. The simulation results indicate

the following regarding the performance of MPGA-ER: (i) performance shows considerable

improvement compared with that of traditional GA; (ii) for an increase in the sub-population

number for a certain TIN, the performance first increases slowly, and then decreases rap-

idly; (iii) for an increase in the sub-population size for a certain TIN, the performance of

MPGA-ER first increases rapidly and then tends to remain stable; and (iv) with an increase

in the propagation rate of advantageous genes, the performance first increases rapidly and

then decreases slowly. Finally, we use a parameter-optimized MPGA-ER to solve for more

FJSP instances and demonstrate its effectiveness by comparing it with that of other algo-

rithms proposed in other studies.

1. Introduction

The genetic algorithm (GA) is a widely used evolutionary algorithm [1–3]. When solving prob-

lems with GA, feasible solutions are first encoded in individuals, which can then be conve-

niently processed by operators (e.g., crossover and mutation). A certain number of individuals

constitute a population, wherein the individuals communicate with each other, and advanta-

geous genes propagate and accumulate in the population. Finally, a satisfactory solution is
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obtained. To avoid premature convergence, which is the main disadvantage of standard GA, a

multi-population method that is effective in improving GA is used. This results in a different

algorithm: the multi-population genetic algorithm (MPGA) [4, 5]. The MPGA divides the pop-

ulation of a standard GA into N sub-populations (the sub-population number is denoted by

N) that each include the same number of individuals (the sub-population size is denoted by S).

Here, elite individuals migrate among different sub-populations with a certain frequency (R),

thereby resulting in advantageous genes propagating among and within sub-populations. Con-

cepts such as distributed GAs [10] and parallel GAs [11] are similar to MPGA because they

maintain several sub-populations during the process of evolution. If sub-populations are

regarded as nodes, and the migrations of elite individuals between them as edges connecting

different nodes, then MPGA can be depicted as a network. Studies have shown that a network

structure formed by the edges of a network has a significant impact on its behavior. For exam-

ple, cooperative evolution [6, 7], risk propagation [8], and distress propagation [9] have shown

that network structures indeed have a significant impact on their behaviors. Similarly, a net-

work structure formed by the propagation mode of advantageous genes among sub-popula-

tions of MPGA also affects the behavior of the MPGA itself. In fact, some scholars have

studied GA and other evolutionary algorithms by using various networks. For example, in

[10], different crossovers were used in different sub-populations, and a GA with a better per-

formance was proposed by using a regular network. In [11], a GA was proposed using regular

networks, such as fully connected networks, and the influence of migration frequency and

other parameters on its performance was studied. In [12], the selection pressures of evolution-

ary algorithms were studied using one- and two-dimensional regular networks. In [13], graph-

based evolutionary algorithms were proposed using networks such as complete graphs, com-

plete bipartite graphs, n-cycles, and trees. In the aforementioned studies, scholars often used

regular networks to study GA and other evolutionary algorithms; however, some studies have

shown that real networks (e.g., the Internet network) are mostly irregular scale-free networks

[14]. Furthermore, some scholars have used scale-free networks to study evolutionary algo-

rithms. For example, in [15], the authors studied the propagation dynamics behavior of an

evolutionary algorithm using scale-free networks from a theoretical perspective (it was mea-

sured by takeover time, i.e., the duration it takes until advantageous genes fill the whole popu-

lation), thereby revealing the influencing mechanisms of different network structural

parameters on the selection pressures of the algorithm. However, only two fitness values (0

and 1) were considered in that study, which limits the practical applications of its results. In

[16], the authors indicated that evolutionary algorithms designed by scale-free networks do

not perform better than those designed by regular networks. In [18], the authors stated that

the performance of evolutionary algorithms designed by scale-free networks is worse than

those designed by random and small-world networks [19] while solving the double-objective

problem. An evolutionary algorithm designed by a scale-free network tends to perform better

when the number of optimization objectives increases. In [20], a multi-objective evolutionary

algorithm with improved performance was designed using control graphs. Additionally, in

our previous research [17], we used seven different networks to design MPGAs and then stud-

ied how different network topologies affected the performance of the MPGAs.

As summarized in Table 1, in the existing literature, mainly regular [10–13], scale-free [15–

18], random [18], and small-world networks [18] have been used to study GA or other evolu-

tionary algorithms. In addition, these networks have been mostly used to control propagation

behaviors of advantageous genes between individuals [13, 15, 16, 18, 20], and have rarely been

used to control the propagation behaviors of advantageous genes among sub-populations.

Therefore, it is still not clear how the propagation behavior (this study mainly refers to the

propagation rate) of advantageous genes among sub-populations affects the performance of
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MPGA. Meanwhile, existing literature [12, 15] mainly includes studies on the propagation

behaviors of advantageous genes in evolutionary algorithms from a theoretical perspective.

However, the relationship between the propagation rate of advantageous genes and the perfor-

mance of algorithms while solving practical problems was rarely studied. Moreover, existing

Table 1. Examples of evolutionary algorithms using different networks.

Studies Networks Descriptions

Herrera et al.

[10]

▪Regular hypercube. ▪Apply different crossover operators to different

sub-populations to distinguish between these

sub-populations.

▪Use the network to control sub-populations.

Cantu-Paz

[11]

▪Fully connected topology.

▪Uni- and bi-directional rings.

▪Regular hypercube.

▪Apply different topology to design GAs, and

then study how some parameters, such as the

number of populations, their size and the

migration rate affect the performance of these

GAs.

▪Use the network to control sub-populations.

Giacobini

et al. [12]

▪One-dimensional lattice.

▪Two-dimensional lattice.

▪Apply regular one- and two-dimensional (2-D)

lattices to design evolutionary algorithms, and

then study their selection pressures.

▪Use the network to control sub-populations.

Bryden et al.

[13]

▪Twenty-six types of networks, such as

complete graph, complete bipartite graph,

n-cycle and tree.

▪Apply different graphs to limit possible

crossover partners in a population, and then

study the performance of differently obtained

evolution algorithms.

▪Use the network to control individuals.

Payne et al.

[15]

▪Scale-free network ▪Apply scale-free networks with different

parameters to limit possible crossover partners

in a population, and then reveal the

influencing mechanisms of different network

structural parameters on the selection

pressures of the evolution algorithm.

▪Use the network to control individuals.

Giacobini

et al. [16]

▪Scale-free network

▪Small-world network

▪Apply scale-free and small-world networks to

limit possible crossover partners in a

population, revealing that evolutionary

algorithms designed by scale-free networks are

not better than those designed by regular

networks.

▪Use the network to control individuals.

Kirley et al.

[18]

▪Scale-free network

▪Small-world network

▪Random network

▪Apply scale-free, small-world and random

networks to limit possible crossover partners in

a population, and then study the performance

of differently obtained algorithms on multi-

objective optimization problems.

▪Use the network to control individuals.

Mateo et al.

[20]

▪Directed domination graphs ▪Use directed domination graphs to represent the

domination relations between individuals in

the population, obtaining a multi-objective

evolutionary algorithm with an improved

performance.

▪Use the network to control individuals.

Shi et al. [17] ▪Seven kinds of networks, including scale-free,

block-diagonal, centralized, random,

hierarchical, local and small-world

networks.

▪Apply seven networks to design MPGAs, and

then study how different network topologies

affect the performance of MPGAs.

▪Use the network to control sub-populations.

https://doi.org/10.1371/journal.pone.0233759.t001
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literature rarely includes studies on how parameters N and S affect MPGA while considering a

certain total individual number (TIN) [4]. Therefore, by using the example of the flexible job

shop scheduling problem (FJSP) [21], this work studies how parameters N, S, and the propaga-

tion rate of advantageous genes among sub-populations affect the performance of MPGA. In

recent years, some scholars have used MPGA to solve FJSP [4, 22]; however, the number of

sub-populations in their studies was very limited.

To this end, first, the network generated by the ER model [23] and the migration frequency

are used to control the propagation behaviors of advantageous genes among sub-populations.

Then, for simplicity, easy realization, and a wide applicability of GA, we use the ER network to

design the MPGA, obtaining a multi-population genetic algorithm with the ER network

(MPGA-ER). In [17], we used seven networks, including the ER network, to design the

MPGA, whereas the connection probability (P) of the ER model was a constant. We found

that the propagation rate of advantageous genes among sub-populations was limited by these

network topologies; hence, how the propagation rate affects the performance of MPGA over a

wider range is still not clear. Fortunately, when the connection probability of the ER model

changes from 0 to 1, the corresponding network gradually transforms from a graph that only

includes isolated points to a complete graph. Therefore, the propagation rate of the advanta-

geous genes changes from considerably low to high. P and R can conveniently be used to con-

trol the propagation rate of advantageous genes over a wide range. Accordingly, as an

extension of our previous research [17], the ER model is used in this study to design the

MPGA, thereby revealing how the propagation rate affects the performance of the MPGA over

a wide range. Second, an evaluation index, the Hamming distance evaluator (HDE) [17], was

used to evaluate the propagation rate of advantageous genes. Third, MPGA-ER is used to solve

an FJSP instance, and how the propagation rate of advantageous genes affects the performance

of MPGA-ER is also studied. Meanwhile, the influence of parameters N and S on the perfor-

mance of MPGA-ER based on TIN (which is defined as the total individual number used by

the algorithm during an entire searching process) is also studied. Finally, the parameter-opti-

mized MPGA-ER is used to solve more FJSP instances. A comparison of this MPGA-ER with

other algorithms proposed in other studies demonstrates its effectiveness.

2. Basic problems and solution methodologies

2.1 Flexible job shop scheduling problem

For the realization of a cost-effective and reliable production, many scheduling problems have

been studied in recent years, such as the flexible job shop scheduling problem [4, 17], job shop

scheduling problem [24], flow shop scheduling problem [35], and stable maintenance tasks

scheduling [36]. Among them, FJSP was initially proposed by Brucker et al. [21], wherein an

operation can be processed on multiple machines. Therefore, this FJSP becomes a more com-

plex NP-hard problem than the basic job shop scheduling problem, in which an operation can

only be processed on a single machine [24]. Owing to its complexity, FJSP has attracted the

attention of several scholars, and many corresponding mathematical models have been estab-

lished [4, 17, 25–27]. Hence, we investigated FJSP in this study. In comparison to these models

[4, 17], FJSP can be described as follows:

There are n jobs (J1, J2, . . ., Jn) that can be processed on m machines (M1, M2, . . ., Mm),

whereas the ith job (Ji) comprises ni operations (Oi1, Oi2, . . ., Oini). The total number of opera-

tions of all jobs is denoted by Jt. The jth operation of the ith job (Oij) can be processed on a can-

didate machine set (Sij). The processing time of Oij on the kth machine (Mk) is denoted by Pijk.

The processing times of an operation on different machines can be different; all machines are

available at the starting time, regardless of machine failure. All materials were prepared at the
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starting time, regardless of the handling time. An operation at a given time can only be pro-

cessed on one machine without interruption. One machine can only process one operation at

a time. The processing order of the given job is known and fixed (this is known as a processing

constraint). FJSP comprises two sub-problems: (i) machine selection, which refers to the selec-

tion of suitable machines for each operation and (ii) operation arrangement, which refers to

the arrangement of a reasonable processing sequence that meets the processing constraints for

all the operations assigned to a machine. Therefore, FJSP must determine the start and com-

pletion times of each operation on the selected machine under the premise of meeting the pro-

cessing constraints to meet the given targets. Common goals of FJSP include minimizing the

maximum completion time, minimizing the machine load, etc. For simplicity, the most widely

used goal, minimizing the maximum completion time, is adopted here. The mathematical

model of FJSP is as follows [4, 17]:

minFmax ¼ minðmaxjðFijÞÞ ð1Þ

s.t.

Fij � Fiðj� 1Þ � Pijk � Xijk � 0;8i; j; k ð2Þ

X

k2Sij
Xijk ¼ 1 ^ Fijk � Bijk ¼ Pijk; 8i; j ð3Þ

Fi 0 j 0k � Bijk _ Fijk � Bi 0 j 0k; 8i
0; j0 6¼ i; j ð4Þ

i; j; k; i0; j0 2 f1; 2; 3; . . .g ð5Þ

Xijk 2 f0; 1g; 8i; j; k ð6Þ

Fij � 0;8i; j ð7Þ

Pijk � 0;8i; j; k ð8Þ

Fijk � 0; 8i; j; k ð9Þ

Bijk � 0; 8i; j; k ð10Þ

In Eq (1), which is an objective function, “min ()” and “max ()” represent the functions that

set the minimum and maximum values, respectively. Fmax represents the maximum comple-

tion time, and Fij represents the completion time of Oij. Eq (2) represents the processing con-

straints: Fi(j-1) represents the completion time of the previous operation of Oij, and symbol “8”

represents “any.” When Oij is processed on Mk, Xijk is set to 1; otherwise, it is set to 0. Eq (3)

guarantees that an operation can only be processed on one machine at a time without inter-

ruption, where Fijk and Bijk represent the start and the completion times of Oij on Mk, respec-

tively, and symbol “^” represents a “Logical AND”. Eq (4) indicates that one machine can only

process one operation at a time, where symbol “_” represents a “Logical OR”. Eqs (5)–(10)

denote the domains of these variables. For clarity, the symbols used in the aforementioned

FJSP model are summarized in Table 2.
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Table 3 presents an FJSP example with two jobs and five machines, wherein symbol “/” indi-

cates that the corresponding operation cannot be processed on the corresponding machine.

2.2 Multi-population genetic algorithm with ER network

A network can simply be regarded as a graph G = (V, E), where V represents the node set and

E is the edge set. If there exists an edge (eij) between nodes Vi and Vj, then eij 2 E. The ER

model is a classic model for generating random networks. The generated ER network is used

in this study to design the MPGA, thereby obtaining the MPGA-ER. The ER model can be

described as follows: (i) given a graph G0 with N isolated nodes; (ii) given a predefined connec-

tion probability P; (iii) for each pair of nodes (Vi and Vj) in G0, if rand(1)< P, the two nodes

are connected by using an edge eij (multiple edges and rings are not allowed), where “rand(1)”

refers to a random number between 0 and 1; and (iv) if all pairs of nodes adhere to “(iii)”, an

ER network with a given P is obtained. As mentioned above, nodes represent the sub-popula-

tions of MPGA-ER, and edges are the migrations of elite individuals among sub-populations.

In Fig 1, an MPGA-ER with five sub-populations, each of which includes four individuals is

Table 3. Example of FJSP.

Jobs Operations M1 M2 M3 M4 M5

J1 O11 2 5 / 5 /

O12 1 5 9 7 4

J2 O21 / 1 / 4 /

O22 / / 1 5 5

O23 5 / / 2 /

https://doi.org/10.1371/journal.pone.0233759.t003

Table 2. Symbols of FJSP.

Symbols Descriptions

n The number of jobs.

Ji The ith job, i = 1, . . ., n.

ni The number of the ith job.

Oij The jth operation of the ith job, j = 1, 2, . . . ni.

Jt The total number of operations of all jobs.

m The number of machines.

Mk The kth machine, k = 1, . . ., m.

Sij The candidate machine set of Oij, wherein Oij can be processed on these machines.

Pijk The processing time of Oij on Mk.

Fmax The maximum completion time of all jobs.

Fij The completion time of Oij.

Fi(j-1) The completion time of the previous operation of Oij.

Fijk The start time of Oij on Mk.

Bijk The completion time of Oij on Mk.

min () The function that sets the minimum value.

max () The function that sets the maximum value.

8 Denotes “any”.

Xijk When Oij is processed on Mk, it is set to 1, otherwise it is set to 0.

^ Denotes “Logical AND”.

_ Denotes “Logical OR”.

https://doi.org/10.1371/journal.pone.0233759.t002
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illustrated, wherein advantageous genes are propagated among these sub-populations through

the migrations of elite individuals.

The details of the MPGA-ER are as follows.

Step 1: This is the initialization step. Here, each of the N sub-populations, each comprising S
individuals, is randomly initialized according to the coding rules, which are described later.

Step 2: If the algorithm has executed the given maximum number of iterations (Imax), exit the

execution, and output the best solution for all sub-populations; otherwise, go to Step 3.

Step 3: For each sub-population, the fitness of each individual is decoded by the decoding

algorithm, which is described later, and elite individuals are selected and stored in the elite

set.

Step 4: For each sub-population, a standard competition selection of GA is used to generate

the next sub-population, thereby keeping the sub-population size unchanged.

Step 5: For each sub-population, individuals are randomly divided into pairs that will undergo

a crossover, which is described below, thereby obtaining the next generation of each sub-

population.

Step 6: For each sub-population, a mutation, which is described below, occurs according to

the mutation probability (Pr).

Step 7: Repeat Steps 3 to 6 N times and obtain an elite set with N elite individuals.

Step 8: If rand(1) > = Pc, go to Step 9, otherwise go to Step 2. Here, “rand(1)” refers to a ran-

dom number between 0 and 1, and Pc can be expressed as:

Pc ¼ ð
Imax � Inow

Imax
Þ
R
; ð11Þ

Fig 1. Schematic diagram of MPGA-ER.

https://doi.org/10.1371/journal.pone.0233759.g001
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where Inow represents the current number of iterations of the algorithm, and R is a term

used to control the migration frequency of elite individuals among sub-populations. For

R = 0, there are no migrations of elite individuals among sub-populations, and the greater

the value of R, the higher the migration frequency of elite individuals.

Step 9: Randomly select a sub-population (Vi), find all neighboring sub-populations of Vi

according to the given ER network, find the best elite individual of all selected neighboring

sub-populations (including Vi itself), place the best elite individual randomly into all

selected neighboring sub-populations, and return to Step 2.

2.3 MPGA-ER for solving FJSP

The main operators for solving FJSP using an MPGA-ER are coding, decoding, crossover, and

mutation. They are explained as follows:

2.3.1 Coding. Integer coding described in [27] is used to generate an individual. It com-

prises of two parts: machine coding and operation coding. (i) Machine coding: it is represented

as an integer string of length Jt, for which the position of integer represents the operation, and

the integer itself determines which machine of the candidate machine set is selected. For exam-

ple, a machine coding for the FJSP example in Table 3 is [3 1 2 3 2]. This FJSP has five opera-

tions; therefore, the machine coding string has exactly five integers. The first integer, 3, means

that O11 selects the third machine from its candidate machine set, S11 = {M1, M2, M4}, that is,

M4 rather than M3, and so on. (ii) Operation coding: it is also expressed as an integer string of

length Jt, for which the position of the integer represents the processing order, and the integer

itself represents the job number. The operation coding of the FJSP example shown in Table 3

is [2 1 2 1 2]. J2 comprises of 3 operations; therefore, integer 2 appears exactly three times. The

first integer, 2, denotes that O21 will be processed first, and so on. The machine and operation

coding are then combined to represent individuals such as [3 1 2 3 2 2 1 2 1 2].

2.3.2 Decoding. The description of the decoding algorithm [4] adopted in this study is as

follows.

Step 1: Initialize a matrix (F) containing six columns and Jt rows. Each row represents an opera-

tion. According to the coding rules, the machine selected for each operation and the corre-

sponding processing time can easily be obtained. For example, consider the aforementioned

individual, [3 1 2 3 2 2 1 2 1 2], as an example. The corresponding F is [2 1 4 4 0 0; 1 1 4 5 0

0; 2 2 5 5 0 0; 1 2 1 1 0 0; 2 3 4 2 0 0]. The first row, [2 1 4 4 0 0], means that O21 is processed

on M4, and P214 is 4, and the start and completion times of the operation are unknown (rep-

resented by 0s).

Step 2: Consider each row of F. If the operation represented by the row (set to Oij) is the first

operation of Ji and no other operations are arranged on the machine selected by Oij (set it to

Mk), then Bijk = 0, and Fijk = Bijk + Pijk. Store Bijk and Pijk in columns 5 and 6 of F, respec-

tively. If Oij is the first operation of Ji and other operations have been arranged on Mk, then

all free intervals on Mk denoted by [sq, eq] (q = 1, 2, . . .) can be found. Find the first interval

with a length greater than or equal to Pijk, then Bijk = sq, and Fijk = sq + Pijk. If Oij is not the

first operation of Ji, and no other operation is arranged on Mk, then Bijk = Fij-1k, and Fijk =

Bijk +Pijk. If Oij is not the first operation of Ji, and other operations have been arranged on

Mk, then find all free intervals of Mk. Consider each free interval, [sq, eq], in turn, if eq-sq>
= Pijk and Fij-1k< = sq, then Bijk = sq, Fijk = Bijk +Pijk; if eq-sq> = Pijk, Fij-1k> = sq and eq- Fij-

1k> = Pijk, then Bijk = Fij-1k, Fijk = Bijk +Pijk (The last interval is infinite; therefore, we can

always find an interval that satisfies one of these conditions). For example, if the individual,
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[3 1 2 3 2 2 1 2 1 2], is decoded by the above algorithm, then F = [2 1 4 4 0 4; 1 1 4 5 4 9; 2 2

5 5 4 9; 1 2 1 1 9 10; 2 3 4 2 9 11], representing a schedule. The Gantt chart of the schedule

represented by F in the example in Table 3 is shown in Fig 2.

2.3.3 Crossover. According to the characteristics of the aforementioned integer coding,

crossover can be divided into two stages: machine and operation crossover. (i) Machine cross-

over: two machine codings (Parent M-1 and Parent M-2) are randomly selected; two integers

less than Jt are randomly generated, and they are considered to be the points of the two-point

crossover (as shown in Fig 3). In Fig 3, Parent M-1 [2 2 1 2 5 2 2 4] and Parent M-2 [1 1 2 2 3 4

5 5] are crossed. If the two randomly selected integers are less than Jt and are 3 and 6, respec-

tively, the integers of Parent M-1 between the 3rd position and 6th position, that is, (1 2 5 2),

and the integers of Parent M-2 between the 3rd position and 6th position, that is, (2 2 3 4), are

exchanged. Thus, Offspring M-1 and Offspring M-2 obtained using the two-point crossover

are [2 2 2 2 3 4 2 4] and [1 1 1 2 5 2 5 5], respectively. (ii) Operation crossover [27]: two opera-

tion codings (Parent O-1 and Parent O-2) are randomly selected the jobs are randomly divided

into two groups (Group 1 and Group 2); the integers of Parent O-1 (Parent O-2) which belong

to Group 1 are copied to Offspring O-1 (Offspring O-2), where their positions are preserved;

the integers of Parent O-2 (Parent O-1) which belong to Group 2 are copied to Offspring O-1

(Offspring O-2), where their order is preserved (as shown in Fig 4). In Fig 4, Parent O-1 [1 2 1

2 3 3 3 4] and Parent O-2 [2 1 3 2 1 4 3 3] are crossed. Jobs 2 and 4 are considered to be Group

1, and the remaining jobs Group 2. First, integers (2, 2, 4), which belong to Group 1 of Parent

O-1 (Parent O-2), are copied to Offspring O-1 (Offspring O-2), where the positions are pre-

served. Then integers (1, 1, 3, 3, 3) of Parent O-1, which belong to Group 2 are copied to Off-

spring O-2, where the order is preserved. Finally, integers (1, 3, 1, 3, 3) of Parent O-2, which

belong to Group 2, are copied to Offspring O-1, where the order is preserved.

2.3.4 Mutation. Mutation is also divided into two stages: machine and operation muta-

tion. (i) Machine mutation: randomly select some individuals according to Pr; for each individ-

ual, an integer r less than Jt is randomly generated to represent a position; for this position, an

integer smaller than the number of the corresponding candidate machines is randomly gener-

ated, and the generated integer is placed in the selected position. (ii) Operation mutation:

Fig 2. The Gantt chart of a schedule for the example in Table 3.

https://doi.org/10.1371/journal.pone.0233759.g002
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some individuals are randomly selected according to Pr; for each individual, an integer r0

smaller than Jt/2 is randomly generated; two integers smaller than Jt representing two positions

are generated randomly; the two integers in the selected two positions are exchanged, and this

process is repeated r0 times.

Fig 3. Schematic diagram of two-point crossover.

https://doi.org/10.1371/journal.pone.0233759.g003

Fig 4. Schematic diagram of operation crossover.

https://doi.org/10.1371/journal.pone.0233759.g004
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2.4 Evaluation index

To explore the influencing mechanisms of the propagation rate of advantageous genes on the

performance of MPGA-ER, it is necessary to know how to measure this rate. Most existing lit-

erature measured the propagation rate of advantageous genes based on takeover time [12, 15],

and then studied the algorithm’s selection pressure from a theoretical perspective. However,

the selection pressure of an algorithm is not related to the performance of the algorithm when

solving practical problems; therefore, the takeover time proposed in these studies cannot be

directly used to measure the propagation rate of advantageous genes in our study. According

to the coding characteristics, HDE is proposed to measure the propagation rate of advanta-

geous genes within and between sub-populations. When individuals in a sub-population

evolve through the operators of GA, advantageous genes accumulate gradually, and good indi-

viduals gradually fill the whole sub-population. Then, the “differences” between these individ-

uals in a sub-population are also reduced over time. Meanwhile, elite individuals migrate

between sub-populations; therefore, advantageous genes propagate from one sub-population

to another. Then, the “differences” between these elite individuals of different sub-populations

are reduced over time. Therefore, the Hamming distance between all elite individuals of differ-

ent sub-populations can be used to measure their differences in order to measure the propaga-

tion rate of the advantageous genes. However, measuring the propagation rate with the

average of the Hamming distances of all individual pairs in the elite set is time-consuming.

Therefore, in this study, X individual pairs are randomly selected from the elite set to form a

sample set, and the sample set mean then replaces the population mean. Consequently, HDE is

defined by Eq (12) [17]:

HDE ¼ ð
XX

i¼1

X2�Jt

j¼1

ð1 � dðh1

ij; h
2

ijÞÞ=ðX � 2� JtÞ ð12Þ

where δ(.,.) is the Kronecker delta. When two independent variables are identical, then δ(.,.)

equals 1; otherwise, 0. hij
1 and hij

2 represent the two integers at the jth position of the ith pair of

the elite individuals. In this study, X is set to 100.

As described in [4], GA is actually a random search algorithm with some control strategies.

The larger the TIN of a GA, the better is the solution found by this GA. In other words, if two

algorithms find the same solution, the algorithm with a smaller TIN performs better. There-

fore, while comparing the performances of different algorithms, especially while studying the

influences of parameters on their performance, a constant, here, TIN, should be considered.

Therefore, an average optimal value (AOV) and a success rate (SR) based on TIN are used in

this study to measure the performance of MPGA-ER. For a given TIN, every algorithm runs

several times (denoted by Ntol) independently. The AOV is defined as in Eq (13):

Average Optimal Value ¼
1

Ntol

XNtol

i¼1

AOVi ð13Þ

where AOVi refers to the best solution of the corresponding FJSP problem found by the algo-

rithm in a single run. Ntol is 10 in this study. SR is defined in Eq (14):

Success Rate ¼
Nsuc

Ntol
� 100% ð14Þ

where Nsuc denotes the number of times MPGA-ER can find the optimal value (the optimal

value herein refers to the best solution for the corresponding FJSP problem that could be
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found in the literature to date) of the corresponding FJSP problem among Ntol independent

runs.

Finally, the size of the maximum connected sub-graph (SMCS) and average shortest path

(ASP) are used to measure the ER network structures. Furthermore, the relationship between

the network structure and the propagation rate of advantageous genes is explored. SMCS is

defined as the number of nodes of the maximum connected sub-graph in a network [28]. ASP

is calculated as shown in Eq (15):

Average Shortest Path ¼
XN

i;j¼1;i6¼j

Lij=ðN � ðN � 1ÞÞ ð15Þ

where Lij represents the shortest path between nodes Vi and Vj; the definition of the shortest

path is similar to that used in [28]. When an ER network is not connected (SMCS is smaller

than the total number of nodes), ASP is defined to be infinity.

3. Simulation study

First, we study how the sub-population size, S, and the sub-population number, N, affect the

performance of MPGA-ER with a certain TIN. Subsequently, we address how the connection

probability, P, and the migration frequency, R, affect the performance of MPGA-ER. Finally,

the effectiveness of solving FJSP by MPGA-ER is verified by solving more FJSP examples.

3.1 Effect of sub-population size on MPGA-ER

A 10×10 FJSP instance [29] is considered as an example for studying the influence of the

sub-population size, S, on the performance of MPGA-ER. This instance is a medium-size

FJSP and has been widely studied in several studies [4, 17, 29]. This instance is neither too

simple nor too difficult, giving us the opportunity to investigate the performance of

MPGA-ER under quite different parameters. To connect all sub-populations together, P is

set to 0.02, thereby obtaining a connected ER network. To ensure that the migration fre-

quency, R, does not affect the results, R is set to a large number, for example, 10,000. In [17],

in which they solved the same FJSP instance, the TIN was 1,600,000. To provide more

chances for communication among sub-populations, we set TIN to be 2,000,000. The

remaining parameters are set as follows: N = 100, Pr = 0.08, and S changes from 10 to 150

with a step size of 10. Each algorithm runs independently 10 times, and we use the average of

the values of these runs to measure the performance of MPGA-ER. Fig 5 shows the simula-

tion results. In Fig 5, the X-axis, Y-axis (left), and Y-axis (right) represent S, AOV, and SR,

respectively. For S = 10, the performance of MPGA-ER is extremely poor for AOV is 10.1.

The optimal value of 7 cannot be found at this point (the optimal value of 10×10 FJSP is 7,

and Fig 6 shows its Gantt chart). For increasing S, the performance of MPGA-ER improved

rapidly. For S = 40, the optimal value of 7 is found (AOV is 7.9, and SR is 20%). For S = 50,

MPGA-ER shows an improved performance with an AOV of 7.4, and SR is 60%. When S is

80 or 100, MPGA-ER performs best, and AOV is 7.3, and SR is 70%. However, as S continues

to increase, the performance of MPGA-ER slowly decreases; however, the optimal value, 7,

can still be found. Therefore, it can be concluded that, under certain TIN, the performance

of MPGA-ER improves rapidly with increasing S, and then decreases slowly. To obtain an

improved MPGA-ER, the value of S cannot be too small; more specifically, a value greater

than or equal to 50 is an appropriate choice.
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3.2 Effect of sub-population number on MPGA-ER

The aforementioned 10×10 FJSP example is considered again. First, we study the influence of

the sub-population number, N, on the performance of MPGA-ER. N is changed from 20 to

200 with a step size of 20, and S = 80. The rest of the parameters are similar to those chosen in

Section 3.1. Fig 7 presents the simulation results.

Fig 5. Effect of sub-population size on MPGA-ER.

https://doi.org/10.1371/journal.pone.0233759.g005

Fig 6. Gantt chart of the 10×10 FJSP example.

https://doi.org/10.1371/journal.pone.0233759.g006
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In Fig 7, the X-axis, Y-axis (left), and Y-axis (right) represent N, AOV, and SR, respectively.

For N = 20, the performance of MPGA-ER is poor and AOV is 7.8, and SR is 20%. The perfor-

mance of MPGA-ER increases slowly with increasing N. For N = 40, AOV is 7.4, and SR is

60%. For N is 100 or 120, MPGA-ER performs the best, AOV is 7.3, and SR is 70%. As N con-

tinues to increase, the performance of MPGA-ER rapidly decreases. For N = 180, MPGA-ER

cannot find the optimal value of 7. Therefore, it can be concluded that, with certain TIN, the

performance of MPGA-ER first improves slowly and then decreases rapidly with increasing N.

To obtain an improved MPGA-ER, the value of N should not be too small or too large; more

specifically, a value between 40 and 120 is an appropriate choice.

3.3 Effect of connection probability on MPGA-ER

Considering the aforementioned example of 10×10 FJSP again, we study the influence of the

connection probability, P, on the performance of MPGA-ER. The related parameters are set

as follows: TIN = 2,000,000; N = 100; S = 80; Pr = 0.08; R = 10,000; P = 0, 0.001, 0.002, 0.003,

0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Each algorithm runs 10 times independently, and we use

the average of the optimum values of these runs to measure the performance of MPGA-ER.

Table 4 lists the values of AOV, SR, ASP, and SMCS for each P value. Fig 8 illustrates the

curves of HDE against the iteration times (IT) for several values of P. In Fig 8, the X- and Y-

axes represent the values of IT and HDE, respectively. For TIN = 2,000,000, S = 80, N = 100,

then IT is 250. Consequently, each curve in Fig 8 should have 250 points. To clearly express

these curves, we consider a point every 10 generations; therefore, there are approximately 26

Fig 7. Effect of sub-population number on MPGA-ER.

https://doi.org/10.1371/journal.pone.0233759.g007
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points in each curve. For P = 0, the corresponding ER network is a graph that includes only

isolated points (at this time, MPGA-ER is equivalent to 100 standard GAs running simulta-

neously). The advantageous genes propagate only within the sub-populations; therefore,

HDE declines very slowly with the evolution of the algorithm. Combined with Table 4, the

AOV of this algorithm is 9.5, whereas the optimal value, 7, cannot be found. Meanwhile, the

ASP of the corresponding ER network is infinite, and the propagation rate of the advanta-

geous genes is extremely low. As P increases, SMCS gradually increases, and advantageous

genes begin to propagate among different sub-populations; therefore, the propagation rate

becomes higher. For P = 0.001, SMCS is 4. There will be some migrations of elite individuals

between these four sub-populations; therefore, HDE will decline faster. The AOV of this

algorithm is 8.4, which is obviously smaller than 9.5 for P = 0; however, the optimal value of

7 cannot be found. Table 4 shows that for P = 0.002, MPGA-ER starts to find the optimal

value, 7 and AOV is 8.1 and SR is 10%. When P = 0.005, SMCS is 30, the propagation rate is

larger, and HDE eventually drops to approximately 0.2. However, the ER network is still not

connected; therefore, advantageous genes do not fill all sub-populations, and the HDE value

does not drop to 0. The AOV of this algorithm is 7.4, and SR is 70%, which indicates that the

performance of MPGA-ER improves as the propagation rate increases. For P = 0.009, SMCS

Table 4. Values of AOV, SR, ASP, and SMCS for different values of P.

P AOV SR (%) ASP SMCS

0 9.5 0 1 0

0.001 8.4 0 1 4

0.002 8.1 10 1 10

0.003 8 10 1 12

0.004 7.6 40 1 22

0.005 7.4 70 1 30

0.006 7.7 40 1 65

0.007 7.4 60 1 72

0.008 7.1 90 1 75

0.009 7.1 90 1 83

0.01 7.3 70 1 91

0.02 7.4 60 3.4584 100

0.03 7.4 60 2.8527 100

0.04 7.2 80 2.3653 100

0.05 7.5 50 2.2194 100

0.06 7.5 50 2.1077 100

0.07 7.8 20 1.9937 100

0.08 7.8 20 1.9083 100

0.09 7.8 20 1.8591 100

0.1 7.9 10 1.8273 100

0.2 8 0 1.6372 100

0.3 8.1 0 1.4812 100

0.4 8 0 1.3479 100

0.5 8.1 0 1.2501 100

0.6 8 10 1.1591 100

0.7 8 10 1.0883 100

0.8 8.1 0 1.0391 100

0.9 8 0 1.0113 100

1 8.2 0 1 100

https://doi.org/10.1371/journal.pone.0233759.t004
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is 83, for which the ER network is close to the connected network. At this point, the propaga-

tion rate of the advantageous genes is faster, and the HDE drops to approximately 0.07. At

this time, MPGA-ER performs best for an AOV of 7.1, and SR is 90%. For P = 0.02, SMCS is

100, the network is a connected network, and the value of ASP is 3.4584. At this time, the

HDE becomes 0 at approximately the 250th generation, at which point the advantageous

genes fill all sub-populations. Additionally, the algorithm performs satisfactorily for AOV is

7.4, and SR is 60%. As P continues to increase, ASP continues to decrease, and the advanta-

geous genes propagate faster over time. For example, for P = 0.1, ASP is 1.8273, and HDE

drops to 0 at approximately the 100th generation. The performance of this algorithm

becomes worse whenever SR is only 10%. For P = 0.5, ASP is only 1.2501, and HDE drops to

0 at approximately the 50th generation. The propagation rate of the advantageous genes is

considerably high; the performance of this algorithm is extremely poor because it cannot

find the optimal value of 7. Finally, for P = 1, the network becomes a complete graph, and

each sub-population communicates with all other sub-populations in each generation. Fur-

ther, the advantageous genes propagate the fastest, and the corresponding algorithm per-

forms very poorly; however, it is still better than the standard GA. Therefore, it can be

concluded that as P changes from 0 to 1, the network gradually changes from a graph includ-

ing just isolated points (for P = 0) to a connected network (for P = 0.02), and further to a

complete graph (for P = 1). The propagation rate of advantageous genes increases over time;

however, the performance of MPGA-ER first increases rapidly, and then begins to decrease

slowly. To obtain an improved MPGA-ER, the value of P should be greater than 0 but con-

siderably less than 1; more specifically, a value between 0.004 and 0.04 is an appropriate

choice.

Fig 8. HDE curves over the iteration times for several values of P.

https://doi.org/10.1371/journal.pone.0233759.g008
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3.4 Effect of migration frequency on MPGA-ER

The aforementioned example of a 10×10 FJSP is considered again, and the influence of R on

the performance of MPGA-ER is studied. To eliminate the effect of P on the results in this sub-

section, P is set to 1. The other parameters are set as follows: TIN = 2,000,000; N = 100; S = 80;

Pr = 0.08; R = 0, 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9, 20, 40, 60, 80, 100. Every algorithm runs 10 times

independently. Fig 9 illustrates the HDE curves over the ITs for several values of P. Table 5

lists the values of AOV, SR, and the communication times (CT) for different values of P.

The data points in Fig 9 are selected to be similar to those in Fig 8, thereby resulting in 26

points. For R = 0, the condition is similar to when P = 0 in Fig 8. Here, no elite individuals

propagate between different sub-populations; therefore, the HDE values remain almost

unchanged (as shown in Fig 9). As R increases, the CT increases, and the propagation rate

accelerates. For R = 0.2, CT is 41. HDE decreases rapidly with increasing IT; it drops to 0 at

approximately the 140th generation. Combined with Table 5, the algorithm can find the opti-

mal value of 7, thereby achieving 30% success. For R = 0.6, CT is 93, and the advantageous

genes propagate faster; therefore, HDE decreases to 0 at approximately the 70th generation.

Fig 9. HDE curves over the iteration times for several values of R.

https://doi.org/10.1371/journal.pone.0233759.g009

Table 5. Values of AOV, SR, and CT for different values of R.

R 0 0.2 0.4 0.6 0.8 1 3 5 7 9 20 40 60 80 100

AOV 9.3 7.8 7.6 7.4 7.5 7.6 7.4 7.5 7.4 7.7 8 8 8.1 8.2 8.2

SR (%) 0 30 50 60 50 40 60 50 60 30 10 10 0 0 0

CT 0 41 75 93 112 126 187 210 217 225 238 244 246 247 248

https://doi.org/10.1371/journal.pone.0233759.t005
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However, the algorithm can still find the optimal value of 7 and achieves a 60% success. For

R = 9, CT is 217, and the propagation rate of the advantageous genes is extremely high; there-

fore, HDE decreases to 0 at approximately the 30th generation, which is similar to the propaga-

tion rate for P = 0.5 (it decreases to 0 at approximately the 40th generation). The algorithm still

performs satisfactorily in this case and achieves 60% success. However, for P = 0.5 shown in

Table 4, the algorithm shows extremely poor performance, and the optimal value cannot be

found. This means that the performance of MPGA-ER with a tunable communication strategy,

that is, less communication at an earlier stage and more communication at a later stage is bet-

ter than that of MPGA-ER with an invariant communication strategy. For R greater than 20,

the performance of MPGA-ER becomes extremely poor, which is similar to that of MPGA-ER

with an invariant communication strategy. Therefore, it can be concluded that a tunable com-

munication strategy with less communication at an earlier stage and more communication at a

later stage is an effective strategy for improving the performance of MPGA-ER. Here, a value

of R between 0.6 and 7 is an appropriate choice.

3.5 Effectiveness of MPGA-ER in solving FJSP

To verify the effectiveness of MPGA-ER, it is employed to solve more of the FJSP instances

mentioned in [30], and is compared with that of other algorithms (AIA and HHS in [31], M2

in [32], MILP in [33], and HA in [34]). These instances, including small-size FJSP (SFJS01 –

SFJS10) and medium- and large-size FJSP (MFJS01 –MFJS08), have been widely used in previ-

ous studies [30–34]; hence, it is convenient to solve them by using MPGA-ER and then com-

pare it with results obtained using other algorithms directly. These algorithms were chosen

due to their simplicity and wide applicability. In line with previous researchers, we use the

optimal value found by an algorithm to measure its performance. The optimal values found by

other algorithms are cited directly from the relevant papers. According to Sections 3.1–3.4, the

related parameters of MPGA-ER are set as follows: Pr = 0.08, P = 0.009, S = 100, N = 80, R = 3,

and IT = 1,000. Table 6 lists the results of the comparison.

As shown in Table 6, when solving MFJS02 using MPGA-ER, the optimal value is 446,

which is better than the value of 448 found by the AIA algorithm. When solving MFJS05 using

MPGA-ER, the optimal value is 514, which is better than the value of 527 that was found by

the AIA algorithm. When solving MFJS06 using MPGA-ER, the optimal value is 634, which is

better than the value of 635 that was found by the AIA algorithm. While solving MFJS04 using

MPGA-ER, the optimal value is 554, which is better than the value of 564 found by the algo-

rithm M2. When solving MFJS07 using MPGA-ER, the optimal value is 879, which is better

than the value of 928 that was found by algorithm M2. Meanwhile, the optimal values of all 18

FJSP instances can be found with MPGA-ER. Therefore, the effectiveness of MPGA-ER could

be verified. Fig 10 illustrates the Gantt chart of MFJS08.

4. Analysis of results and discussion

As described in Section 3.1, for a certain TIN, the performance of MPGA-ER first increases

rapidly and then decreases slowly with increasing sub-population size. When S is small, a sub-

population consists of few individuals; therefore, the gene pool of the small sub-population

is naturally uniform. Consequently, the performance of the corresponding MPGA-ER is con-

siderably poor. As S increases, there are enough individuals in a single sub-subpopulation for

the maintenance of population diversity; therefore, the performance of the corresponding

MPGA-ER improves. This implies that when an algorithm engineer wants to design an

improved multi-population GA, the sub-population size cannot be too small.
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As described in Section 3.2, for a certain TIN, the performance of MPGA-ER first increases

slowly, and then decreases rapidly with increasing sub-population number. A small value of N
is not conducive to maintaining population diversity; however, the number of individuals in a

single sub-population is moderate (the number of individuals in a single sub-population in

Section 3.2 is 80), which is conducive to maintaining gene diversity. Therefore, the perfor-

mance of the corresponding MPGA-ER is not very poor. With increasing N, the number of

individuals used in an iteration is very large (for N = 200, the number of individuals used in an

iteration is 16,000); therefore, the total number of iterations is very small (for N = 200, the

number of iterations is only 125). Individuals do not have enough time to accumulate advanta-

geous genes. Therefore, the performance of the corresponding MPGA-ER worsens. This

implies that N should not be too small or too large when an algorithm engineer wants to design

an improved multi-population GA.

As described in Section 3.3, for P = 0, MPGA-ER is equivalent to 100 standard GAs run-

ning simultaneously. The main operator of the GA is a crossover that readily accumulates

advantageous genes without being destroyed, thereby leading to premature convergence.

Fig 10. Gantt chart of MFJS08.

https://doi.org/10.1371/journal.pone.0233759.g010

Table 6. Results of the 18 FJSP instances.

Problems AIA and HHS [31] M2 [32] MILP [33] HA [34] MPGA-ER

Optimal Value (AIA) Optimal Value (HHS) Optimal Value Optimal Value Optimal Value Optimal Value

SFJS01 66 66 66 66 66 66

SFJS02 107 107 107 107 107 107

SFJS03 221 221 221 221 221 221

SFJS04 355 355 355 355 355 355

SFJS05 119 119 119 119 119 119

SFJS06 320 320 320 320 320 320

SFJS07 397 397 397 397 397 397

SFJS08 253 253 253 253 253 253

SFJS09 210 210 210 210 210 210

SFJS10 516 516 516 516 516 516

MFJS01 468 468 468 468 468 468

MFJS02 448 446 446 446 446 446

MFJS03 468 466 466 466 466 466

MFJS04 554 554 564 554 554 554

MFJS05 527 514 514 514 514 514

MFJS06 635 634 634 634 634 634

MFJS07 879 879 928 879 879 879

MFJS08 884 884 /a /a 884 884

aSymbol “/” indicates that the corresponding value is not provided in the corresponding paper.

https://doi.org/10.1371/journal.pone.0233759.t006
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The performance of the corresponding MPGA-ER is very poor. As P increases, the sub-

graph of the network gradually becomes larger; therefore, advantageous genes propagate

among different sub-populations, thereby causing a larger propagation rate. Individuals of

different sub-populations can use the advantageous genes of the other sub-populations to

improve their fitness; therefore, the performance of the corresponding MPGA-ER gradually

improves. For P = 0.008, MPGA-ER performs the best; however, the network is still not a

connected network. When P is greater than 0.02, the network starts to become a connected

network. At this time, individuals in a sub-population have the opportunity to communicate

with all other sub-populations to improve their fitness; therefore, the performance of

MPGA-ER is still considerably good. However, as P continues to increase, the neighboring

sub-populations of a sub-population also increase. In each communication, the advanta-

geous genes of a sub-population propagate to other sub-populations; therefore, the

propagation rate increases over time, which leads to the advantageous genes filling all sub-

populations more quickly. Therefore, the corresponding MPGA-ER is similar to the stan-

dard GA, thereby causing advantageous genes to accumulate rapidly without being

destroyed. Therefore, the performance of MPGA-ER starts to decrease again. As shown in

Table 4, the performance of MPGA-ER for P = 0 (equivalent to 100 standard GAs running

simultaneously) is not better than that of MPGA-ER for P = 1, let alone that of MPGA-ER

when P = 0.009, which is the best, implying that its performance shows considerable

improvement compared with traditional GA. This implies that to obtain an improved

multi-population GA, an appropriate value of P should be adopted to ensure that the propa-

gation rate is neither so slow that individuals cannot benefit from other sub-populations

nor too fast so that a single elite individual quickly fills all sub-populations. Additionally, in

previous studies (such as [9, 15]), to obtain a limited takeover time, all networks involved

were connected. However, according to our simulation results, to obtain an improved

MPGA-ER, network connectivity is not necessary. For example, the performance of

MPGA-ER for P = 0.009 (the corresponding ER network is not connected completely) is

better than that of MPGA-ER for P = 0.02 (the corresponding ER network is connected

completely). When P = 0.009, the maximum connected sub-graph of the corresponding ER

network was 83, and the advantageous genes could then be propagated among these sub-

populations. However, there are still 17 sub-populations that are not connected with the

maximum connected sub-graph; hence, the advantageous genes of these 17 sub-populations

cannot be communicated with the sub-populations in the maximum connected sub-graph.

This means that the advantageous genes can be propagated among most sub-populations;

however, they cannot be propagated among a small number of sub-populations, which

ensures that the propagation rate is neither so slow that individuals can benefit from other

sub-populations (among 83 sub-populations) or too fast so that a single elite individual

quickly fills all sub-populations (cannot fill the other 17 sub-populations). This implies that

network connectivity is not necessary when an algorithm engineer wants to obtain an

improved MPGA-ER.

As described in Section 3.4, a tunable communication strategy with less communication in

the earlier stages and more communication in later stages is an effective strategy. Less commu-

nication in the earlier stages is beneficial for accumulating advantageous genes within a sub-

population, whereas more communication in the later stages is beneficial for accumulating

advantageous genes between different sub-populations and promoting algorithm convergence.

This implies that the performance of the corresponding MPGA-ER with the aforementioned

strategy is better than that of the MPGA-ER with an invariant communication strategy under

the same conditions. This may shed light on how an algorithm engineer should design an

improved multi-population GA when considering variable migration frequency.

PLOS ONE Multi-population genetic algorithm with ER network

PLOS ONE | https://doi.org/10.1371/journal.pone.0233759 May 29, 2020 20 / 23

https://doi.org/10.1371/journal.pone.0233759


5. Conclusion and future work

In this study, an ER network with different connection probabilities and variable migration fre-

quency was used to control the propagation rate of advantageous genes between sub-popula-

tions of a GA, thereby obtaining an MPGA-ER. Using MPGA-ER to solve an FJSP instance,

the influencing mechanisms of the propagation rate of advantageous genes on the performance

of MPGA-ER were addressed. Meanwhile, the influencing mechanisms of parameters N and S
on MPGA-ER under a certain TIN were also studied. The simulation results indicate that

MPGA-ER shows considerable performance improvement compared with the standard GA.

The propagation rate of advantageous genes has a significant impact on the performance of

MPGA-ER—when the propagation rate is extremely low or extremely high, the performance of

MPGA-ER is poor. Only a moderate propagation rate can ensure a satisfactory performance of

the algorithm. Specifically, the desired intervals for P and R are between [0.004, 0.04] and [0.6,

7], respectively. Unlike shown in previous studies, to obtain an improved MPGA-ER, network

connectivity is not necessary. Additionally, parameters N and S have a significant impact on the

performance of MPGA-ER—for a certain TIN, the performance of MPGA-ER first increases

slowly, and then decreases rapidly with increasing N. More specifically, the desired interval of N
is [40, 120]. The performance of MPGA-ER first increases rapidly and then decreases slowly

with increasing S; more specifically, the desired value of S is greater than or equal to 50. Our

results may shed light on how to use an ER network to achieve a better MPGA.

In this study, we used a multi-population to improve a standard GA for obtaining a

MPGA-ER, which may limit its performance. As described in [4], there are five main methods

(multi-population is just one of them) to improve GA and other algorithms. In our future

work, we will first use another method to improve the standard GA or other algorithms, and

then, use ER or other networks to design improved algorithms, thereby obtaining a corre-

sponding multi-population algorithm that may perform even better.
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