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Abstract

Equinus deformity is one of the most common gait deformities in children with cerebral

palsy. We examined whether estimates of gastrocnemius length in gait could identify limbs

likely to have short-term and long-term improvements in ankle kinematics following gastroc-

nemius lengthening surgery to correct equinus. We retrospectively analyzed data of 891

limbs that underwent a single-event multi-level surgery (SEMLS), and categorized out-

comes based on the normalcy of ankle kinematics. Limbs with short gastrocnemius lengths

that received a gastrocnemius lengthening surgery as part of a SEMLS (case limbs) were

2.2 times more likely than overtreated limbs (i.e., limbs who did not have short lengths, but

still received a lengthening surgery) to have a good surgical outcome at the follow-up gait

visit (good outcome rate of 71% vs. 33%). Case limbs were 1.2 times more likely than con-

trol limbs (i.e., limbs that had short gastrocnemius lengths but no lengthening surgery) to

have a good outcome (71% vs. 59%). Three-fourths of the case limbs with a good outcome

at the follow-up gait visit maintained this outcome over time, compared to only one-half of

the overtreated limbs. Our results caution against over-prescription of gastrocnemius

lengthening surgery and suggest gastrocnemius lengths can be used to identify good surgi-

cal candidates.

Introduction

Equinus or “toe-walking” gait, characterized by excessive ankle plantarflexion in stance-phase

of the gait cycle, is one of the most common gait patterns observed in patients with cerebral

palsy (CP) [1]. This gait pattern is thought to arise from contracture and/or spasticity in one or

more of the major plantarflexor muscles—the uniarticular soleus and biarticular gastrocne-

mius heads [2]. Clinical management of equinus gait includes conservative and surgical
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intervention to address these underlying mechanisms [2, 3]. Physical therapy, serial casting,

and botulinum toxin type-A injections are often tried first to stretch and strengthen the mus-

cles, improve ankle range of motion, and/or chemically denervate the muscles to dampen the

effects of spasticity. If these approaches are unsuccessful, the gastrocnemius tendon is surgi-

cally lengthened, often as part of a single-event multi-level surgery (SEMLS) [4–6].

While gastrocnemius lengthening surgery is an effective intervention to improve gait for

many patients with equinus, there is variability in patient response to surgery. Many patients

exhibit improvements in static ankle range of motion [4, 7], ankle gait kinematics and kinetics

[8], and other spatiotemporal parameters [9] at the post-operative clinical gait visit, and main-

tain these positive improvements into early adulthood [9, 10]. Unfortunately, others, either

soon after surgery or in early adulthood, lose range of motion, develop crouch gait, or have

recurrent equinus [4, 7, 9]. Previous work has identified several factors that influence likeli-

hood of a good surgical outcome, including age at surgery and CP diagnosis subtype [4, 11].

However, it is unknown what other factors might differentiate patients who are likely to

respond positively to surgery from those who are not.

We sought to understand the ability of model-based estimates of gastrocnemius muscle-

tendon length (hereafter referred to as gastrocnemius length) during gait to predict short-term

and long-term outcomes following a gastrocnemius lengthening surgery. Surgical recommen-

dations are typically made using information collected at a clinical gait analysis, including

kinematic, kinetic, electromyography, and physical exam data [12]. Previous work has shown

how information derived from musculoskeletal modeling can complement these traditional

datasets (e.g., [13–15]). Arnold and colleagues estimated peak muscle lengths during gait for

the hamstrings using a computational musculoskeletal model that employed experimentally

measured hip and knee kinematics [13]. This estimate of length, either on its own or as part of

a statistical model, was an excellent predictor of improvements in crouch gait following a ham-

strings lengthening surgery [13, 14], though less effective in predicting outcomes for those

who required a repeat hamstrings lengthening surgery [15]. Similarly, we expect that a model-

based estimate of peak gastrocnemius length in gait could measure if contracture of the gas-

trocnemius limits muscle length during walking and may indicate how likely a patient is to

benefit from a gastrocnemius lengthening surgery.

We investigated two questions: (i) Do model-based estimates of gastrocnemius lengths dif-

ferentiate which limbs are likely to receive a short-term benefit from a gastrocnemius length-

ening surgery? and (ii) For the limbs that do achieve short-term benefits from surgery, are

those benefits maintained long-term? We defined a good outcome from surgery to be an

improvement in ankle kinematics with respect to the pre-surgical gait visit. These improve-

ments were quantified using the Ankle Deviation Index, a metric we developed to capture the

normalcy of ankle flexion kinematics during gait. We also created a gastrocnemius length “cal-

culator” that can be used in a gait analysis clinic to help inform treatment decisions and

improve long-term outcomes for patients undergoing a gastrocnemius lengthening surgery.

Methods

Data

We retrospectively analyzed the affected limb(s) of ambulatory patients with a diagnosis of CP

seen at Gillette Children’s Specialty Healthcare Center for Gait and Motion Analysis. Institu-

tional Review Boards (IRB) at Stanford University and Gillette Children’s Specialty Healthcare

both approved this study. Patients, and guardians, where appropriate, gave informed written

consent at the clinical visit for their data to be included in future studies. In accordance with

IRB guidelines, all patient data was de-identified prior to any analysis.
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To be included in this study, the analyzed limb had to have at least one pair of gait visits in

its clinical history with an intervening SEMLS (defined as having at least two orthopedic sur-

geries at a single surgical event). Exploratory or hardware removal surgeries were not consid-

ered to be therapeutic surgeries and did not contribute to this count (see Fig 1 for surgeries

that met the inclusion criteria for a SEMLS). All treatment decisions were made based on rec-

ommendations from an interdisciplinary team of physicians, orthotists, and engineers upon

review of gait analysis (i.e., kinematic, kinetic, and physical exam) data, medical history, and

family and patient preferences. We split limbs into two groups. The “+GL” group were those

limbs that underwent a gastrocnemius lengthening surgery at some point in their treatment

history following their first gait visit (542 limbs from 398 patients). The “- GL” group were

those limbs that did not undergo any gastrocnemius lengthening surgeries in between any pair

of clinical gait visits (349 limbs from 252 patients). In total, we analyzed 891 limbs (650 indi-

viduals) over roughly 2,400 clinical visits. To our knowledge, this is the largest retrospective

study to date examining outcomes from gastrocnemius lengthening surgery [9, 11].

Fig 1. Intervening surgeries between analyzed gait visits. For the short-term analysis, each limb underwent at least two of the orthopedic procedures tabulated above

(not including the “Contralateral Limb” count). Limb cohorts generally had similar intervening surgeries, though the case and overtreated limbs tended to have more

concurrent surgical procedures at the foot and ankle level than the control and other limbs.

https://doi.org/10.1371/journal.pone.0233706.g001
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For the short-term analysis, we examined one pair of consecutive pre- and post-surgery gait

visits per limb. For the +GL limbs, we analyzed the pair of gait visits that surrounded the first

surgical event that included a gastrocnemius lengthening procedure. For the -GL limbs, we

chose a pair of gait visits that surrounded a surgical event that did not include a gastrocnemius

lengthening. If a -GL limb underwent multiple orthopedic surgical events, we randomly chose

one surgical event and the corresponding pre- and post-surgery gait visits for analysis.

Computation of normalized gastrocnemius lengths in gait

Gastrocnemius lengths for each analyzed limb at the selected pre-surgery gait visit and for 147

typically developing limbs were estimated from ankle dorsiflexion and knee flexion kinematics

and a computational musculoskeletal model (Fig 2). Kinematic data for the typically develop-

ing limbs were collected on healthy children (average age, 10.6 years) walking at self-selected

speed [16]. These kinematic data were collected using a Vicon (Vicon, Oxford, UK) system

and Plug-in-Gait marker set, and included three rotational degrees of freedom at the knee

(flexion, adduction, and internal/external rotation) and ankle (flexion, inversion, and foot pro-

gression). The kinematic data collection protocol used for the typically developing and patient

populations is described in detail by Schwartz et al. [16]. The ankle and knee flexion kinemat-

ics measured from the clinical gait analysis were normalized to the gait cycle and prescribed

into a generic (i.e., unscaled) musculoskeletal model [17]. The model was implemented in

OpenSim [18], an open-source musculoskeletal simulation software, and characterized the

bony geometry, joint axes, and muscle attachments of the lower extremity. The model

Fig 2. Method to estimate gastrocnemius length. Motion capture kinematics for knee flexion and ankle dorsiflexion were input to an unscaled

OpenSim model [17, 18] to estimate gastrocnemius medialis muscle-tendon length over the gait cycle. These lengths were normalized to the average

peak length computed for typical gait. Limbs whose peak length was at least 2 standard deviations below the typical mean (i.e., under the gray band

in right the panel) were labeled as having a “short” gastrocnemius. Our supplemental “gastrocnemius length calculator” spreadsheet (S1 Worksheet)

takes as input the motion capture kinematics pictured in the left panel and produces a gastrocnemius length graph as shown in the right panel. Two

sample knee and ankle kinematic trajectories are shown. Subject 1 (solid lines) has increased knee flexion and ankle plantarflexion and a short peak

gastrocnemius length. Subject 2 (dotted lines) has increased plantarflexion in early stance and throughout swing but attains normal peak

gastrocnemius length in late stance.

https://doi.org/10.1371/journal.pone.0233706.g002
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included a 1 degree-of-freedom knee joint (flexion/extension) with translational and non-sag-

ittal rotational degrees-of-freedom coupled to the knee flexion angle, and a 1 degree-of-free-

dom revolute joint at the ankle (dorsiflexion). Non-sagittal ankle degrees-of-freedom in the

model were locked for this study. Details of the musculoskeletal model are described by Raja-

gopal et al. [17]. OpenSim was used to compute the model’s gastrocnemius medialis muscle-

tendon length over the gait cycle from the specified kinematics.

From these computations, we extracted the peak muscle-tendon length per observation

over the gait cycle. For the set of typically developing limbs, we computed the mean (μTD) and

variance (s2
TD) of these peak muscle-tendon lengths. CP limbs were labeled as having a “short”

gastrocnemius if the peak muscle-tendon length for that limb (lCP) was at least two standard

deviations below the typical gait peak length (i.e., lCP�μTD−2σTD). We said a limb “met the cri-

terion” for a gastrocnemius lengthening surgery if the limb was labeled as having a short

gastrocnemius.

Definition of limb treatment groups

All analyzed limbs were cross-classified based on if the limb met our defined criterion for sur-

gery and if the limb underwent a gastrocnemius lengthening surgery. This resulted in four

treatment groups, named based on our hypothesized surgical outcomes: case limbs (n = 160),

that had a short gastrocnemius and underwent gastrocnemius lengthening surgery; control
limbs (n = 61), that had a short gastrocnemius but did not undergo gastrocnemius lengthening

surgery; overtreated limbs (n = 288), that did not have a short gastrocnemius but underwent

gastrocnemius lengthening surgery; and other limbs (n = 382) that did not have a short gas-

trocnemius and did not undergo gastrocnemius lengthening surgery. We hypothesized case
limbs would have better surgical outcomes than the control limbs whose peak pre-operative

gastrocnemius lengths suggested good candidacy for a gastrocnemius lengthening surgery. We

also hypothesized case limbs would have better outcomes than the overtreated limbs whose

peak pre-operative gastrocnemius lengths did not indicate a need for a gastrocnemius length-

ening surgery.

Summary statistics about limbs in the four groups are included with the supplementary

materials (S1 Data). Notably, the ages at the pre-surgical visit were similar between the four

groups; the mean (standard deviation) ages, in years, for the case, control, overtreated, and

other limbs were 9.1 (3.3), 10.1 (3.5), 9.8 (3.1), and 10.5 (3.2), respectively. The mean (standard

deviation) elapsed time between the pre-surgical and post-surgical gait visits was 1.6 (0.6)

years and mean elapsed time between the surgery and post-surgical gait visits was 1.2 (0.5)

years. Other than gastrocnemius lengthening, limbs in each of these four groups underwent

similar orthopedic surgical procedures between the pair of analyzed gait visits, though the case
and overtreated limbs tended to have more concomitant soft tissue and bony foot- and ankle-

level surgeries (Fig 1).

Outcome analysis

As gastrocnemius lengthening surgery is commonly prescribed as an intervention to improve

ankle kinematics, we defined an ankle-specific outcome metric—the Ankle Deviation Index

(ADI)—that measures the normalcy of the ankle flexion kinematics time series with respect to

typical gait (Fig 3). Computation of the ADI followed a method similar to the Gait Deviation

Index [19], but used only the ankle flexion kinematics time series. For reference, in typical gait,

ADI ~ N ðm ¼ 100;s2 ¼ 100Þ, and every 10-point decrement from 100 represents 1 standard

deviation away from typical gait. Sample kinematic time-series curves and their associated

ADI are provided for the reader to develop an intuition for the mapping between the original
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kinematic data and the computed ADI (Fig 3A). We verified that as ADI increases, key bio-

mechanical parameters of gait, e.g., dorsiflexion angle at initial foot contact (Fig 3B), peak dor-

siflexion angle in stance and swing, and others, are closer to their respective normative values.

Thus, an improvement in ADI can simultaneously capture improvements in the multiple key

ankle kinematic metrics that are often targets of gastrocnemius lengthening surgery.

For this study, we labeled a post-surgery gait visit as having a “good” outcome if there was

either at least a 5-point improvement in ADI compared to the pre-surgery gait visit (i.e., one-

half standard deviation closer to normal post-surgery compared to pre-surgery), or any

improvement in ADI from the pre-surgery gait visit, with a final ADI of above 90 (i.e., within 1

standard deviation of typical gait mean ADI). All other outcomes were labeled as “poor”. This

definition was based on definitions of good outcomes using other similar gait metrics [20, 21].

With this definition, a good outcome label indicated ankle kinematics were strictly closer to

normal post-surgery compared to pre-surgery. For example, a limb in excessive plantarflexion

throughout gait that had a pre-surgery ADI of 75 and post-surgery ADI of 80 would be labeled

as good, regardless if the post-surgery ankle kinematics were on the dorsiflexed or plantar-

flexed side of normal.

To estimate the efficacy of the gastrocnemius peak lengths as a predictor of short-term

improvement in ankle kinematics following gastrocnemius lengthening surgery, we computed

the fraction of limbs in each of the case, control, overtreated, and other groups that were labeled

as good outcomes at the post-surgical visit. We used Pearson’s χ2 analysis to test for association

between our defined surgical selection criterion (short vs. not short gastrocnemius) and post-

surgery good outcome rate. In each group, we also computed change from the pre- to post-sur-

gical values of ADI, mean stance dorsiflexion, and mean stance knee flexion to test for magni-

tude of improvement from surgery and risk for devolvement into crouch gait for over-treated

Fig 3. Ankle Deviation Index as indicator of ankle kinematics normalcy. The Ankle Deviation Index (ADI) is a summary metric that

quantifies the normalcy of the ankle dorsiflexion angle time series with respect to typical gait. Typical gait has a mean ADI of 100, with every

10 point decrement representing one standard deviation away from the mean. (A) Sample kinematic trajectories and the corresponding ADI

are shown. (B) Improvement in ADI is associated with improvements in key biomechanical parameters of gait, including ankle dorsiflexion

angle at initial contact (pictured), mean stance dorsiflexion angle, peak dorsiflexion angle in swing, and others. Each point represents an

observation used in the development of the ADI.

https://doi.org/10.1371/journal.pone.0233706.g003
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individuals. We used the Tukey method [22] to test for significant differences in the pre- to

post-surgical change between the case limbs and control, overtreated, and other limbs.

In the case and overtreated limbs, we characterized the ability of pre-surgery gastrocnemius

peak length to track the long-term maintenance of benefits from gastrocnemius lengthening

surgery. Because we analyzed a retrospective, observational dataset, we could not specify the

time nor frequency with which a limb is called back to the clinic for re-evaluation. Conse-

quently, each limb has a variable number of irregularly spaced observations at the clinic (illus-

trative examples with variable quantity and temporal spacing of gait visits shown in Fig 4A).

To address our question about long-term maintenance, we took two separate approaches:

First, for each of the case and overtreated groups, we binned observations in our dataset based

on the number of years elapsed since the gastrocnemius surgery and computed the fraction of

limbs in each group and time bin labeled as a “good outcome”. To examine if observed good

outcomes at the initial post-surgical gait visit were maintained at repeat visits, we repeated this

analysis after further cross-classifying limbs based on the post-surgical gait visit outcome. This

method provides an estimate of conditional good outcome rate in each group as discrete func-

tion of the time bin queried. In other words, “how likely is a good outcome over time, given a

good outcome initially?”. Finally, in the case and overtreated groups, we used a sparse-longitu-

dinal matrix completion [23] to estimate the mean progression of the ADI as a function of

years elapsed from the pre-surgery gait visit. Briefly, this method organizes the infrequently

and irregularly observed data into a sparse matrix (Fig 4B) and imputes the unobserved data

using low-dimensional matrix factorization. Once the missing observations are imputed, the

group’s average trajectory can be estimated as the mean of the imputed individual limb trajec-

tories. In our case, even though we only have, on average, 1.9 and 2.5 post-surgery gait visits

per case and overtreated limb, respectively, the irregular spacing of these visits works to our

advantage as we can leverage information from the available observations to impute the miss-

ing observations. To estimate the confidence bounds for both the case and overtreated group

means, we ran 200 bootstraps, with a random 75% of the respective limbs in each run. We

used the Hotelling T2 test [24] with the mean curves sampled each year after the initial gait

visit to test if these curves were statistically different.

Gastrocnemius length calculator spreadsheet

We created an easy-to-use workbook to aid gastrocnemius length calculation from clinical gait

analysis data (S1 Worksheet). To generate a gastrocnemius length plot (e.g., as in Fig 2, right

panel), users simply enter the experimentally measured knee and ankle flexion kinematics

(e.g., the data visualized in Fig 2, left panel) into the main spreadsheet. Gastrocnemius lengths

are automatically plotted from these entered kinematics using a reference table of gastrocne-

mius lengths as a function of knee flexion and ankle dorsiflexion angle that is included with

the workbook. The workbook also includes reference mean and standard deviation of typical

gait gastrocnemius lengths over the gait cycle.

Results

The case-control-overtreated-other classification was able to distinguish likelihood of a good

short-term (i.e., at the post-surgery gait visit) outcome (χ2 = 66, p = 3.8e-16). The good out-

come rate in case limbs, 71% (standard error = 3.6%), exceeded that in the overtreated limbs,

33% (standard error = 2.4%), the control limbs, 59% (standard error = 6.3%), and the historical

good outcome rate, 44%, estimated from retrospective data (Fig 5A). The mean ADI improve-

ment from pre- to post-surgery in the case limbs was 11.6 points, which was greater than the

mean 0.9-point drop in the overtreated limbs (p = 9.3e-14) and the 6.3-point improvement in
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the control limbs (p = 0.004). Other limbs had a 1.2-point improvement in ADI from the pre-

to post-surgery visit (Fig 5B). These ADI changes were consistent with improvement in other

measures of ankle kinematics, such as mean stance ankle dorsiflexion (Fig 5C). For the limbs

that underwent a gastrocnemius lengthening surgery (case and overtreated), changes in mean

stance knee flexion from pre- to post-surgery were not significantly different, and not signifi-

cantly different from 0 (Fig 5D).

When examining long-term outcomes of the gastrocnemius lengthening surgery (i.e., time

points after the first post-surgery visit), the fraction of case and overtreated limbs that were

labeled as “good” relative to the pre-surgery visit remained roughly constant (Fig 6A). When

limiting this analysis to only those limbs that had a good outcome at the first post-surgery visit,

we found that over three-fourths of the case limbs maintained their good short-term outcome

over the long-term, compared to only half of the overtreated limbs (Fig 6B). The mean longitu-

dinal trajectories for the case and overtreated limbs indicate that the observed short-term

changes in ADI (i.e., the 11.6-point improvement in the case limbs and the 0.9-point loss in

the overtreated limbs) are maintained over time; and the average improvement in ADI for the

case limbs was higher than the average improvement in ADI for the overtreated limbs at equiv-

alent times (Fig 7A). Uncertainty in these trajectory estimates increase with elapsed time as the

number of available observations decreases (Fig 7B).

Discussion

We have defined a surgical selection criterion for gastrocnemius lengthening surgery based on

whether the peak gastrocnemius length in gait was “short” (i.e., at least 2 standard deviations

below the mean peak length reached in typical gait). Of the limbs that underwent a gastrocne-

mius lengthening surgery, the case limbs that met our criterion were 2.2 times more likely to

have a good short-term outcome than the overtreated limbs that failed our criterion (71% vs.

33%) (Fig 5). Of the limbs that met our surgical criterion, the case limbs that had a

Fig 4. Longitudinal data for long-term analysis. Patients are seen for a gait analysis multiple times throughout their clinical history. (A) The number and

frequency of these visits are variable per limb but serve as valuable sparse observations of a limb’s longitudinal development following orthopedic surgery. (B) These

observed data can be stored in a sparse matrix. Matrix completion algorithms [23] can be used to estimate the unobserved values by borrowing strength from the

available observed values and compute a robust mean patient trajectory following surgical treatment.

https://doi.org/10.1371/journal.pone.0233706.g004

PLOS ONE Predicting gastrocnemius lengthening surgery outcomes in children with cerebral palsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0233706 June 5, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0233706.g004
https://doi.org/10.1371/journal.pone.0233706


gastrocnemius lengthening surgery were 1.2 times more likely to have a good short-term out-

come than the matched control limbs that did not have a gastrocnemius lengthening surgery

(71% vs. 59%). The case limbs were also far more likely than the overtreated limbs to maintain

a good outcome observed at the post-surgery gait visit (Fig 6B). These results caution against

over-prescribing a gastrocnemius lengthening surgery, and suggest that estimating gastrocne-

mius lengths during gait could be a valuable evaluation tool when considering whether a

patient should undergo a gastrocnemius lengthening surgery. We provide an easy-to-use

spreadsheet to generate these muscle length estimates from ankle flexion and knee flexion

kinematics (S1 Worksheet).

Fig 5. Cross-classified short-term improvements following gastrocnemius lengthening surgery. Limbs were cross-classified based on those

that underwent a gastrocnemius lengthening surgery (case and overtreated) and those labeled as having a short pre-surgery gastrocnemius (case
and control). (A) Good outcome rates, defined as the fraction of limbs that had at least a 5-point improvement in ADI, or an improvement in

ADI with post-surgery ADI> 90, were computed per group. The current good outcome rate was computed from retrospective data from all

limbs that underwent gastrocnemius lengthening surgery. Changes in the (B) ADI, (C) mean stance ankle dorsiflexion angle, and (D) mean

stance knee flexion angle were computed from the pre-surgery to post-surgery clinical gait visit. Kinematic improvements in the case limbs

exceeded those of the overtreated and control limbs. Limbs, on average, did not tend to devolve into a crouch gait, even within the overtreated
limbs. In all panels, error bars represent ± 1 standard error of the mean.

https://doi.org/10.1371/journal.pone.0233706.g005
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While the average improvements in kinematic variables among all limbs that underwent a

gastrocnemius lengthening surgery in our dataset were similar to those reported in the litera-

ture (e.g., [7, 9, 11, 25, 26]), our simple surgical selection criterion was able to separate out the

limbs that achieved significantly larger improvements. For example, Dreher and colleagues

conducted a longitudinal study of 82 limbs that underwent a gastrocnemius lengthening pro-

cedure and found that mean stance ankle dorsiflexion angle improved by 9˚ from pre- to post-

surgery [9]. This average improvement is comparable to the 7˚ improvement in our dataset

among all limbs that underwent a gastrocnemius lengthening surgery. However, the magni-

tude of improvement was not constant between the case and overtreated limbs: in our study,

the case limbs improved by, on average, 18˚ from pre- to post-surgery, while the overtreated
limbs improved by only 2˚ (Fig 5C). This pattern of improvement (i.e., the larger observed

improvements in the case limbs compared to the overtreated limbs) was consistent among

other key ankle kinematic metrics (e.g., dorsiflexion angle at initial contact and peak dorsiflex-

ion angle in stance) and in the ADI (Fig 5B).

Fig 6. Long-term outcomes following gastrocnemius lengthening surgery in case and overtreated limbs.

Observations were labeled as good outcomes if either the improvement in ADI with respect to the pre-surgery gait visit

was at least five points, or if the ADI was greater than the pre-surgery visit ADI and at least 90. (A) These observations

were binned based on years elapsed following the gastrocnemius lengthening procedure, and rate of good outcome in

each bin was computed. (B) Observations were filtered based on whether the limb was labeled as a good outcome at the

post-surgical gait visit to examine if the observed outcomes immediately following surgery were maintained over time.

The error bars represent ± 1 standard error for the computed fraction. The areas of the dots in (A) and (B) are

proportional to the number of observations included in that bin.

https://doi.org/10.1371/journal.pone.0233706.g006
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Our selection criterion also differentiated the limbs that were likely to have long-term bene-

fits from gastrocnemius lengthening surgery. When estimating likelihood of a good long-term

outcome using only information from the pre-surgery gait visit (i.e., gastrocnemius length),

we found that case limbs had at least a two-thirds likelihood of being labeled as “good” relative

to the pre-surgery visit, while overtreated limbs had at most a one-third likelihood (Fig 6A).

Further conditioning the long-term analysis on the observed short-term outcomes gives more

Fig 7. Longitudinal estimates of ADI in case and overtreated limbs. (A) The mean ADI improvement following

surgery was estimated as a function of time elapsed since the pre-surgery gait visit. Case limbs had a greater

improvement in ADI than the overtreated limbs at equivalent times. The shaded bands represent the 95% confidence

interval for the case and overtreated group mean trajectories. (B) These longitudinal case and overtreated group

estimates were based on available observations, which decrease in number as time from surgery increases.

https://doi.org/10.1371/journal.pone.0233706.g007

PLOS ONE Predicting gastrocnemius lengthening surgery outcomes in children with cerebral palsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0233706 June 5, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0233706.g007
https://doi.org/10.1371/journal.pone.0233706


information about how likely it is for a good post-surgery outcome to be maintained in the

long-term. Of the case limbs that had a good short-term outcome, over three-fourths main-

tained their good outcome in the long-term, while only half of the overtreated limbs with a

good short-term outcome maintained their good outcome in the long-term (Fig 6B). This sug-

gests that any short-term improvements observed in the case limbs are more likely to be main-

tained over the long-term than improvements observed in the overtreated limbs. These results

are consistent with our estimates of mean improvement in ADI in the case and overtreated
limbs as a function of time elapsed since the pre-surgical gait visit (Fig 7A).

Given these findings, a possible interpretation of our estimated normalized gastrocnemius

lengths is as a kinematically-derived functional measure of the severity of a limb’s plantarflexor

contracture. As contracture severity, and therefore passive resistance to muscle stretch,

increases, the expected peak attained length of the gastrocnemius in gait decreases. In this

study, our musculoskeletal model served as a biomechanical transfer function between experi-

mentally measured ankle and knee flexion kinematics and lengths of the biarticular

gastrocnemius.

Even with simplifications in our musculoskeletal modeling pipeline, our estimated gastroc-

nemius lengths were able to define meaningful surgical criteria that could improve current

rates of success from surgery. The musculoskeletal model used in this study did not capture

any effects of patient-specific musculoskeletal geometry on muscle length. Our analysis did

not exclude any patients based on abnormal clinical measurements of skeletal geometry (e.g.,

excessive tibial torsion), nor did we exclude patients based on prior osteotomies that may have

altered their skeletal geometry. Moreover, the motion capture data used in this study treated

the foot as a rigid segment and did not capture effects of mid-foot breakdown on measured

ankle flexion angle [27]. Future work that incorporates these patient-specific variations in

musculoskeletal geometry, such as using patient-specific models built from imaging data (e.g.,

[28, 29]), along with more nuanced measurements of foot-segment kinematics may be able to

derive more discriminatory power from calculated gastrocnemius lengths on surgical

outcomes.

It is important to note that, even with the incorporation of patient-specific geometry, the

normalized gastrocnemius length is a geometric calculation, and does not provide any infor-

mation about the muscle fiber length, force, or force-generating capacity. To capture this

information, we would need to incorporate patient-specific measurements of muscle architec-

ture including optimal fiber length, muscle volume, tendon slack length, muscle and tendon

passive stiffness, and muscle activation levels. Encouragingly, researchers have shown how

modeling the effects of elements such as muscle contracture, weakness, or spasticity within a

simulation pipeline may reproduce some experimental observations in muscle activity and gait

(e.g., [30–32]). However, muscle architecture parameters and neural control vary widely

among individuals with cerebral palsy [33, 34], and we do not currently have a means for accu-

rately measuring them.

Some limitations of our study should be noted. First, we only analyzed data from a single

center. Other clinical centers likely have differing treatment philosophies, including ages when

surgery is prescribed, frequency of single-level vs. multi-level surgery, and variations in surgi-

cal technique. For example, in our dataset, most gastrocnemius lengthening surgeries were

performed using the Strayer procedure [35]. Historically, this procedure has been reported to

have relatively low rates of poor outcomes [11], and likelihood of adverse outcomes may differ

with different surgical techniques. We suggest centers retrospectively validate our predictions

on their own data before adopting our model for prospective use, and we encourage other cen-

ters to share conclusions learned from analyzing their own data.
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Second, the knee and ankle kinematic degrees-of-freedom differed between the Plug-in-

Gait model used as part of the gait analysis protocol to compute joint kinematics [16] and the

OpenSim musculoskeletal model [17] used to compute gastrocnemius lengths from these kine-

matics. Previous work has shown that differences in the underlying skeletal model used to

compute joint kinematics can impact knee and ankle flexion angle estimates by an average of

2˚ to 6˚ [36], and these differences in joint angles may have impacted our estimated gastrocne-

mius lengths. Future work that characterizes the impact of this error on the predictive power

of muscle lengths on surgical outcomes would be valuable.

Third, deviations in ankle kinematics may be a consequence of more than just gastrocne-

mius contracture, and improvement in ankle kinematics likely depends on appropriate surgi-

cal correction of concomitant musculoskeletal abnormalities [37]. For our dataset 42% of all

gastrocnemius lengthening procedures were performed with accompanying soft tissue surgery

around the foot and ankle, and 59% with accompanying bony surgery around the foot and

ankle (Fig 1). The confounding effect of these simultaneous surgical procedures on short-term

and long-term outcomes was not analyzed in this study but is important to consider when

interpreting our results.

Fourth, much of our analysis focused on the diverging outcomes of the case and overtreated
limbs, but the outcomes of the control limbs need to be further examined. The control limbs

were identified to have short gastrocnemii, but, unlike the case limbs, did not undergo a gas-

trocnemius lengthening surgery. While the rate of short-term good outcomes (59%) and aver-

age short-term ADI improvement (6.3) in the control limbs was lower than in the case limbs

(71% and 11.6, respectively), many of the control limbs had improvements in ankle kinematics

following surgery (Fig 5). It is unclear what treatment and patient-intrinsic effects in the con-
trol limbs are driving these improvements, but it is likely the multi-level surgeries have cou-

pled, beneficial effects at the ankle that merit further investigation. Natural progression,

especially at younger ages [38], could also affect the perceived benefits of surgery, but we

expect these effects are similar between the groups analyzed since the average ages at the pre-

surgery gait visit were similar. Our dataset contained too few control observations to do an

effective, long-term analysis tracking how these control limbs evolved in relation to the case
limbs. Future work to address these open questions on short-term and long-term effectiveness

of multiple approaches to improve ankle kinematics would be valuable.

Fifth, we analyzed the marginal effectiveness of a gastrocnemius lengthening surgery as part

of a SEMLS but did not analyze the effectiveness of surgical intervention to improve gait com-

pared to no surgical intervention. The natural progression of gait with age in the cerebral palsy

population is variable—after the initial gait maturation through approximately the first seven

years of life [38], gait function stabilizes with age for some patients [38, 39] but declines with

age for others [40, 41]. Similarly, studies examining the effect of surgery relative to natural pro-

gression have reported that surgery is an effective intervention for improving gait that can off-

set expected gait decline for some patients [42] but may provide limited clinically meaningful

improvements relative to natural progression for other patients [21]. Results from our study

should be considered in parallel with these other findings to build a more robust estimate of

the potential effectiveness of surgery.

Finally, we analyzed a relatively simple measure of outcome—improvement in the ADI rel-

ative to the pre-surgery gait visit. This outcome metric was designed to specifically track nor-

malcy in ankle kinematics. While more normal ankle kinematics are associated with better

stance foot stability, better swing foot clearance, and healthier loading patterns on the foot

[43], they are not direct measures of functional capacity. Future work that examines the pre-

dictive capacity of the surgical criteria we defined in our study on functional outcomes would

be valuable.
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Conclusion

We have built and shared a simple tool to inform clinical decisions about the inclusion of a

gastrocnemius lengthening surgery to improve ankle kinematics. Our findings suggest that

limbs with a short gastrocnemius in gait (case limbs), as estimated by our model, are more

likely than the limbs without a short gastrocnemius (overtreated limbs) to have and maintain

meaningful improvements in ankle kinematics over time following a gastrocnemius lengthen-

ing surgery. Our retrospective case-control analysis suggests that some of the ankle kinematic

improvements seen in the case limbs are likely due to other concomitant surgeries, and future

work to identify the effectiveness of multiple approaches to improve ankle kinematics would

be valuable. We encourage clinical centers to test these findings and share their results.

Supporting information

S1 Data. Kinematic data analyzed in this study. This file contains two Microsoft Excel

spreadsheets: (1) “data”, which contains longitudinal data on limb age, elapsed time since pre-

surgery gait visit and since surgery, ADI, mean stance ankle dorsiflexion, mean stance knee

flexion, peak gastrocnemius length, class (i.e., case/control/overtreated/other), and outcome

label (i.e., good/bad); and (2) “summary-stats”, which contains summary data describing

patient demographics, clinical severity, and surgical treatment.

(XLSX)

S1 Worksheet. Clinical worksheet to estimate gastrocnemius lengths from gait analysis

data. This file contains four Microsoft Excel sheets: (1) “Surgery Calculator”, where users

enter knee and ankle flexion kinematics normalized to the gait cycle; a plot of gastrocnemius

length over the gait cycle is generated from these input data; (2) “GasMed_Lengths_REF”,

which contains a reference table of gastrocnemius lengths computed from the musculoskeletal

model used in this study; (3) “GasMed_Lengths_TD”, which contains reference data for the

mean and standard deviation of gastrocnemius length over the gait cycle for typical gait; and

(4) “Summary Statistics”, which contains summary data describing patient demographics,

clinical severity, and surgical treatment.

(XLSX)
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