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Abstract

Input devices such as motor-imagery brain-computer interfaces (BCIs) are often unreliable.

In theory, channel coding can be used in the human-machine loop to robustly encapsulate

intention through noisy input devices but standard feedforward error correction codes can-

not be practically applied. We present a practical and general probabilistic user interface for

binary input devices with very high noise levels. Our approach allows any level of robustness

to be achieved, regardless of noise level, where reliable feedback such as a visual display is

available. In particular, we show efficient zooming interfaces based on feedback channel

codes for two-class binary problems with noise levels characteristic of modalities such as

motor-imagery based BCI, with accuracy <75%. We outline general principles based on

separating channel, line and source coding in human-machine loop design. We develop a

novel selection mechanism which can achieve arbitrarily reliable selection with a noisy two-

state button. We show automatic online adaptation to changing channel statistics, and oper-

ation without precise calibration of error rates. A range of visualisations are used to construct

user interfaces which implicitly code for these channels in a way that it is transparent to

users. We validate our approach with a set of Monte Carlo simulations, and empirical results

from a human-in-the-loop experiment showing the approach operates effectively at 50-70%

of the theoretical optimum across a range of channel conditions.

1 Introduction

Most mainstream devices used for human input are reliable; for example, keyboard typing has

a typical error rate of around 6-7% [1]. This has led to interaction models which apply occa-

sional corrective steps, such as backspace, to resolve infrequent errors. However, there are

marginal reliability input devices, particularly in assistive technology, where errors are suffi-

ciently frequent that this approach fails catastrophically. The classic example is a BCI where

error rates in even binary selection exceed 30% for some subjects [2]. The result is interfaces

that are susceptible to unrecoverable correction cascades where attempts to rollback previous

errors induce even more errors.

In this paper we consider the problem of implementing efficient and transparent channel

coding in human-machine control, encoding user intention robustly so it can be transferred
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without error over unreliable channels and without introducing a cognitive or perceptual bur-

den. We apply our ideas to induce robustness to a broad range of transient error sources in

human-machine interaction, including mental “slips”, noise in the human motor system, and

context-induced disturbances like electrical noise or vibration. Our approach puts designing

for error at the heart of the problem, rather than as a corrective step applied after the fact. It

makes interactive control with binary classifier accuracies <75% viable and allows for graceful

degradation of performance that does not exhibit cliff-edge drops in communication as input

reliability drops. We use reliability to refer to long term accuracy, where accuracy is 1-error

rate. An interface with binary inputs which is “90% reliable” or uses a classifier with “90%

accuracy” will result in an input error 10% of the time. We develop a theoretical model for

designing for unreliable channels which draws on information theory to map the fundamental

steps of entropy coding, channel coding and line coding onto elements of human-machine

control. This melds information theory with human factors and interface design. Using this

framework we show how closed-loop control in systems which have asymmetry between input

and feedback channels can be used to implement capacity-approaching channel codes without

the user even being aware of the process. Inspired by our frustration at making electroenceph-

alogram (EEG)-based brain-computer interfaces (BCIs) usable with standard interactions, we

specifically focus on the channel coding problem for very noisy binary inputs. We show that

posterior matching codes are highly effective and can be adapted to develop control schemes

that embed these algorithms in spatial selection tasks.

1.1 Contributions

• A theoretical framework to approach design for marginal reliability input devices.

• An adaptation of Horstein’s algorithm [3], to zooming user interfaces for asymmetric inter-

faces where input is corrupted but high-bandwidth noise-free feedback is available.

• A simple automatic online adaptation algorithm that can cope with varying channel statistics

for both biased and unbiased channels.

• Monte Carlo simulation showing the behaviour of this decoder under realistic configura-

tions including channel bias, non-stationarity and mismatched statistics.

• Experimental results with human participants showing that the interface can fuse together

binary inputs optimally across a range of reliability and channel bias levels.

1.2 Assistive technology channels

As an illustration, many text input systems use backspace as a correction system. Mis-typing a

key is relatively common (e.g. around 6% keystrokes are mistakes [1]), but each keystroke

communicates a substantial amount of information. Typing is predicated on a model where

typists never repeatedly miss backspace and cause a correction cascade [4]; an user in danger

of doing so will slow down to achieve a tolerable balance between correction and entry. How-

ever, there are many interfaces where being more careful is not possible and backspace is prov-

ably unusable as a correction modality [5]. This requires a different approach, where the

unreliability is not patched up at the end but acknowledged in the design from the start.

These high-error channels often occur in assistive technologies, where users’ motor skills are

impaired such that they cannot operate standard input devices efficiently [6]. This might arise

through underlying motor disorders, or through situational impairment (such as high vibra-

tion environments or cumbersome protective clothing). This includes input devices like EMG,
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single muscle switches, breath sensors or eye-trackers. For example, situationally-induced

interaction errors can be observed in pedestrians walking and operating pressure sensors on

mobile devices [7] or engaging in touchscreen pointing while carrying objects [8], where

pointing at standard button size targets can result in error rates exceeding 30%. Even standard

keyboard and mouse interactions can have very high error rates for motor impaired subjects

[6]. Even with appropriate sensors, standard input paradigms such as spatial targeting or tran-

sient timing can be disrupted by tremor, fatigue or spasticity. The user groups with the most

extreme needs are those who have no effective residual motor function; “locked-in patients”

[9]. These users rely on a direct neural interface which bypasses the motor system entirely [10–

12]. Unfortunately, among those systems which are sufficiently non-invasive to be practical for

widespread use, communication rates are low and noise levels are very high. Our work is pri-

marily concerned with making input practical with channels with properties akin to two class

motor imagery EEG—effectively a slow, heavily corrupted, non-stationary and biased two

state button. The principles generalise to other input devices such as single switch inputs,

breath controllers or electromyography (EMG).

1.3 Asymmetry and marginal reliability

We will tackle the problem where we may assume input involves unreliable, low-bandwidth

control signals, but there is an essentially perfect (error-free) feedback path. This is typically a

visual display where there is negligible error in the perception of the display, and the band-

width of the display dominates the bandwidth of the limited control path. Such asymmetric

human computer interfaces require specific design [13] and there are many niches in assistive

technology where input is hampered, but perception is not. Fig 1 illustrates this type of inter-

face. We concentrate on constructing interfaces for binary (two-class) systems where the

binary accuracy is between 95 and 65% (i.e. bit flip probabilities or bit error rates (BER) are in

the range f 2 (0.05, 0.35)). We refer to these as marginal reliability channels. In [5], a mini-

mum accuracy of 80% is suggested as a bound for usable interaction. This excludes many

input devices.

1.3.1 Example: Motor imagery BCI. Motor imagery (MI) EEG is a widely-used paradigm

for non-invasive non-evoked BCI [14–17]. It is a prime exemplar of the marginal reliability

input device. In this paradigm, users imagine moving different parts of the body and the corre-

sponding event-related rhythm changes in the motor cortex are detected in the electrical

Fig 1. Asymmetric user interface. An asymmetric user interface, where there is slow, unreliable input coupled with a

high-capacity, error-free feedback channel; e.g. a noisy switch with a visual display.

https://doi.org/10.1371/journal.pone.0233603.g001
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signals measured at the scalp. The lateralisation of motor function in the brain leads to a spatial

separation of imagined motions which can be classified [18, 19]. Even with modern techniques

for feature selection and classification, a motor imagery BCI can typically produce binary deci-

sions at the order of one per second, with accuracies of around 60-90% [2] being typical. One

minute of input might produce 60 binary decisions, 10 of which would be flipped.

Ahn [2] reviews motor imagery BCI systems and and finds error rates reported in the range

35% and above; Ahn [20] illustrates the very high variation in inter-subject error rates with the

same classifier from�50% to less than�5%. Padfield et al. [21] give example error levels from

the literature of 9% for visually evoked potentials; 13–31% for event-related potentials; 16% for

motor imagery BCI. Lotte [22] reviews per-decision accuracies in the literature for a broad

range of non-evoked BCIs; the key results of which are summarised in Fig 2.

There are many otherwise promising technologies which have very high error rates; for

example EMG systems with error rates of�30% [23]; or 8.1-5.6% [24]. Such high levels of

error, combined with frustratingly slow response times make conventional “undo” functional-

ity insufficient (see 4.1.1 for numerical simulation results and the theoretical analysis in [5]).

The binary motor imagery channel is an excellent exemplar of the class of niche interaction

methods we are interested in, for two reasons: it is a well-known input mechanism for which

improved interfaces could offer immediate benefits; and it is an instructive example of design-

ing for extremely challenging input devices. We do not always have the luxury of improving

the qualities of channels to be harnessed for input, and it seems likely that current non-invasive

EEG-based techniques will have a substantial subset of users for whom two-class motor imag-

ery classification accuracies will be less than 95%. Beyond brain-computer interfaces, marginal

reliability channels can be found across systems where input is impaired either physically or

situationally and the control akin to a noisy two-state button is the only functionality available.

2 Theory

We first develop a theoretical model of error-tolerant user interfaces for marginal reliability

channels. We examine the origin of errors and review established error correction techniques

Fig 2. Non-invasive BCI accuracy summary. Summary of per-classification accuracy from many binary non-invasive

BCI EEG studies, plotted from the Tables A1-A3 of Lotte et al. [22], including movement intention and mental task

imagination BCIs. This figure summarises the accuracy of classifiers used in a large number of brain-computer interfaces,

indicating that accuracies vary widely from around 65% to 95% (i.e. there are error rates of 5% to 35%). Where ranges or

bounds were given the stated numerical value is used.

https://doi.org/10.1371/journal.pone.0233603.g002
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in human-computer interaction, and reported error rates of standard user interfaces. We then

derive desiderata for widely-applicable interaction mechanisms that can tolerate consistently

high error rates. These form the design objectives for our approach. The engineering of error

tolerant interfaces is fundamentally a problem in information theory and we present a model

from an information-theoretic perspective that maps classical communication concepts of

entropy, channel and line coding onto interaction design. We illustrate how conventional user

interface elements can be understood from this stance, and how a user in a closed-loop can

effectively “code” for the interface channel without mental effort at the cost of becoming tightly

bound to feedback.

2.1 Error in human computer systems

We will consider an input error to be a change of state in a computer system which is incom-

patible with a user intention; for example a “touch down” event being emitted over a GUI tar-

get a user did not want to tap or a key press being registered that did not correspond to text a

user was trying to enter. The treatment of errors in a human-computer system is complicated

by the hierarchical layering of interface functionality and error recovery, as discussed by Niel-

sen [25]. For example, a mis-click of the mouse is an error at the mouse targeting layer (Niel-

sen’s physical layer), but may not result in an error at some higher layer (like deleting a file, at

Nielsen’s goal layer), because of an intermediate correction step like a confirmation dialog.

Similarly, raw BCI classifiers are not typically “hard-wired” to motor actuators on a wheelchair

but instead are mediated by some interpretation or shared control process [26, 27]. This paper

sets out a general intermediate layer that can be placed between an input device and a higher

layer and achieve any desired error rate at that layer with a bounded performance penalty.

There is a well-developed theory of errors in human computer interaction [28–32], and as

Wood and Kieras [29] note, “designing for human error should. . . be pervasive”. Key questions

to design for error are:

• How do errors arise and what are their causes?

• What strategies exist to mitigate them?

• What typical level of errors are encountered in established interactions?

• What level of error should be designed for?

2.1.1 Classification and origin of error. Avizienenis et al. [28] outline a detailed taxon-

omy of errors (a deviation from intended state) and faults (the proximate cause of an error) in

the context of safety-critical systems. In this work, we are focused on errors that arise because

of natural phenomena, human action, or hardware deficiencies. We do not consider robust-

ness to malicious, deliberate or adversarial actions, or robustness to enduring design and

implementation deficiencies in the software itself. We also exclude from consideration endur-

ing cognitive or perceptual issues, such as inability to identify targets or inability to form

short-term memories.

In particular, we consider:

• cognitive errors such as slips [33, 34], defined by Norman [33] as“a form of human error
defined to be the performance of an action that was not what was intended”. These are errors

in cognition, such as forgotten actions, mis-ordered sequences of action, mode identification

errors or incorrectly repeated actions.
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• performance errors [6]: random variation internal to a human user during the production

of motor action, such as poor coordination, or muscle tremor that leads motor action to

deviate from intent;

• environmental disturbances: unrelated variations external to both a user and a system, such

as power fluctuations, lighting variations, or external movement (e.g. vibration inside a vehi-

cle) that pollute control signals; and

• measurement noise: distortions originating within an observation system caused by sensing

or processing inadequacies, such as the effect of electrical noise, occlusion, quantisation,

insufficient classifier training, mis-calibration, etc.

All of these error sources are distinct in nature, but from the perspective of human-machine

control similarly lead to deviations between user intention and system state during an interac-

tion. We focus on implementing robustness to transient errors caused by essentially random

deviations, usually though not necessarily fully independent in time. In particular, we may

encounter errors correlated in time in measurement noise (e.g. a sensor getting stuck due to

loss of contact) or cognitive errors such as slips which introduce error over several interaction

steps (e.g. a user starting a sequence of actions to perform one task, before realising the task

was incorrectly chosen).

2.1.2 Mitigation strategies. In the presence of input error, mitigation strategies can be

categorised [28]:

• Rollback or backward error correction [31]: the system reverts to a previous state; this is the

undo or backspace operation and requires either automatic error detection or explicit cor-

rection actuation. Sometimes this includes larger scale correction strategies [32, 35] such as

cancel/abort to revert a higher-level task or stop to cease execution of a higher-level task.

• Rollforward or forward error correction [31]: errors are ignored and state changes anyway.

This is appropriate when the cost of an incorrect choice is smaller than the cost of correction.

For example, accidentally hitting the volume up control on a music player might change the

volume slightly but be of little consequence to the user.

• Compensation: the system has sufficient redundancy that errors in input, up to some level

of tolerance, do not lead to deviations in internal state. This is the domain of error correcting

codes.

Various forms of undo have been extensively studied in human-computer interaction [35–

37, 37–40] as a widely implementable way of establishing error tolerance. This typically

involves choices about the granularity of undo [38, 40], the structure of undo (linear/branch-

ing) [41] and the controls for actuating undo. Other approaches have looked at structuring the

finite state machines (FSMs) that define interface behaviour such that they that simply admit

fewer errors or are at least harder to drive into erroneous states [42, 43].

Our focus is on the compensation strategy via error-correcting codes that introduce exactly

enough tolerance to random deviations (for a given input channel) that the internal state

remains consistent with user intention. We also examine how to integrate this model with

undo-style rollback approaches.

2.1.3 Typical error rates in standard interfaces. We will use the term standard interface

to collect together common, widely used interfaces: mouse pointing on a desktop GUI; typing

on a physical keyboard; tapping on a touchscreen GUI; and typing on a virtual keyboard.

Targeting errors in mouse pointing in controlled tasks has been found to be relatively con-

stant around 3% for visual targets from 0.83 to 183mm [44]; studies of mouse pointing in
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realistic desktop GUI situations found error rates of 3% [45] and between 2-20% [46], with the

higher rates for an elderly population. Pointing tasks that can be modelled by Fitts’ law are

often assumed to result in a speed-accuracy trade-off that maintains a 4% error rate [47]; a

strong predictive model of error rates in pointing tasks is given by Wobbrock et al. [48, 49].

Large scale text entry studies on physical keyboards [1] have suggested fairly stable correction

(i.e. backspace) rates of 6% with 1% uncorrected errors remaining, and 1.17 keystrokes/charac-

ter (from 136M measured keystrokes). A N = 37000 user study on mobile devices with virtual

keyboards [50] found uncorrected errors from were around 2% with 1.18 keystrokes/character,

suggesting similar level of mis-keying error. Large scale studies of error rates (mis-targeting

error) in touch screen tapping have found to be between 10% (15mm targets) to 30%(9mm tar-

gets) from 100M touch events on mobile devices [51].

2.1.4 Target error rates. Shannon’s noisy channel theorem [52, 53] indicates that any

arbitrary level of transmission error can be achieved over a channel subject to noise, with some

bounded cost in pre-encoding the data. Viewing the human input problem as a noisy channel,

we can therefore theoretically mitigate any level of noise to achieve any desired level of reliabil-

ity. Perfect reliability will induce some penalty in communication, and one consideration is

the tolerable error rate for a user interface.

The studies on typing, pointing and tapping discussed above have error rates typically

around 3-10%. This suggests reducing selection error rates to around the 4% error assumed in

Fitts’ law-like pointing tasks [47] will give comparable performance to standard interactions.

This assumes a similar distribution of options and similar utility/importance per option as in a

comparable standard interaction. For reliability-critical systems, we can target much lower

error rates and accept slower interaction; for time-sensitive systems like real-time control of a

wheelchair, we can target higher error rates and trade-off increased responsiveness for occa-

sional deviations.

2.2 Objectives

What properties should a robust interface for marginal reliability input devices have? We con-

sider five key attributes that an error-tolerant interface mechanism ought to have. These form

the objectives of our interaction design.

2.2.1 Universality. A widely applicable approach should be able to couple a wide range of

noise levels to activities with a spectrum of desired error rates. For example, transforming a

noisy pressure sensor into a selection device with error rates comparable with standard mouse

GUI interaction (�4% error rate); or interfacing a BCI with low classification accuracy to a

safety-critical function such as neuroprosthesis elbow extension control [54] when pouring

boiling water, where error rates of 1 × 10−6 may be required.

2.2.2 Predictability. Evaluating designs with users is expensive. We would prefer to

know, or at least bound, the performance of a design in advance of building it. This motivates

interfaces for which there are strong, parameterised predictive models. Such models would

predict performance characteristics, like error level or entry rate, from basic estimates of the

properties of an input device. We show that there are rigorous theoretical approaches to

achieve this, and devote significant portion of this work to developing theoretical and numeri-

cal predictions validated against human behaviour.

2.2.3 Graceful degradation. An interaction method suitable for a variety of input device

error rates should not have cliff-edge performance failures. There should be smooth, parame-

terisable adjustments to the interaction which can cope with increasing error at a proportional

performance cost.
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2.2.4 Adaptability. Similarly, the interaction should be adaptable to changes in perfor-

mance, both at design time (i.e. a parameterised and well-understood performance envelope)

and online, during interactions, to cope with changing input conditions. Many user interface

contexts, especially those encountered in wet-electrode brain-computer interaction, have

input properties that vary strongly with time [55, 56] and an interaction model that can cope

with these changes by online adaptation will be more widely applicable.

2.2.5 Simplicity and uniformity. Finally, we would like to have an interaction that is con-

ceptually simple for both users (requires little working memory and minimal mental computa-

tion) and designers (straightforward, predictable parameterisation of the interaction). To

maximise transferability of skills, interfaces developed using interactions should be uniform in

their appearance and behaviour, across input devices (e.g. from BCI to pressure sensor), inter-

action contexts (e.g. from a media player to text entry) and across levels of reliability (e.g. no

special handling for high error inputs).

2.3 Information theory

The information capacity of a noisy channel is bounded by Shannon’s theorem [52, 57], and

there is a vast literature in information theory describing explicit codes for compressing and

coding for channels of all types [58, 59]. Optimal transmission on a channel—i.e. passing

information through a physical medium—involves three nested stages [60, 61], Fig 3:

• Data to be sent is compressed (entropy coded/source coded), exploiting redundant structure

to minimise the number of symbols to be transmitted.

• The compressed data is encoded (channel coded) such that the effect of noise in the channel

can be mitigated.

• The resulting discrete symbols are transformed into an analog channel via a modulation

(line coding) process.

The reverse process is performed by the receiver, which demodulates, decodes and decom-

presses the received signal.

2.3.1 Coding in user interfaces. In the case of a human-computer interface, it is the user
who must perform the compression, coding and modulation for the channel; the system

Fig 3. Entropy, channel and line coding. The nested entropy coding, channel coding and line coding stages in a communication

channel [60].

https://doi.org/10.1371/journal.pone.0233603.g003
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performs demodulation, decoding and decompression to recover user intention. User inter-

faces mediate this process by offering feedback which supports the user in these tasks. They

can, for example, make the modulation explicit via feedback (as a mouse pointer and a set of

targets, for example). They can make the compression explicit (perhaps by offering autocom-

pletions of a partially-entered phrase). Or they can make the error coding process explicit (per-

haps by requiring confirmation stages in a sequence of dialogs). Fig 4 illustrates these nested

layers of coding for input in asymmetric interfaces; note that the encoding is serial, but the

feedback at each level is displayed in parallel via a high-bandwidth noise-free display. We pro-

pose to explicitly consider these steps, and their corresponding feedback loops, when designing

an interface. Thoughts originating in a users mind must be compressed, by the user, to a small

Fig 4. Entropy, channel and line coding in the user interface. The input problem in an asymmetric user interface,

viewing the interface communication channel. The diagram shows how the feedback loop allows users to drive the

internal state of a system towards their intention, via a nested series of entropy, channel and line coding steps.

Sophisticated transport of information across an interface can be implemented by pushing the complexity of the

encoding process from the user into the system and relying on feedback to mediate the process.

https://doi.org/10.1371/journal.pone.0233603.g004
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range of state changes available to them. These must be encoded such that they can robustly

pass through the noisy processes of the body and the unreliable sensing of the system. They

then have to be realised by modulating the physical state of the world; moving a hand, twitch-

ing an eyebrow or imagining a foot tapping. The system interpreting those signals must

demodulate the sensed physical action, trying to reconstruct the intention the user attempted

to signal. This must then be decoded to reliably infer which action was intended; and this

decoded action must then be used to optimally select among the many options available

according to some probability distribution (decompression).

Designing for human communication is quite different from the issues encountered in tra-

ditional communication theory. The physiological and cognitive abilities of humans are very

different from those encountered in computer to computer communications and creating user

interfaces requires creative engineering to exploit the quirks of human memory and percep-

tion. The configuration of joints and muscles, for example, imposes complex ergonomic con-

straints on the modulation process; even simple spatial targeting has hundreds of variants to

optimise the information capacity in different contexts (see Section 2.5).

The design of a user interface implicitly embodies compression, encoding and modula-

tion. This is often obscured by the subtle interweaving of these three processes and the layers

of metaphor by which interaction designers make interfaces usable, aesthetic and practical to

implement, but it is the underlying purpose of a user interface to facilitate communication.

The class of interfaces which we are interested in are highly asymmetric: rich, high-informa-

tion-capacity, zero-noise feedback display is available but the input channel is severely

restricted.

2.4 Assistive technology user interfaces

Many conventional assistive technology interfaces have a relatively high theoretical bandwidth

(from the Shannon bound), but are very much slower in practice when performing real tasks

such as text entry. This is a failing of interface design. Our goal is to enrich the interface by

clever feedback design to facilitate efficient extraction of every fraction of a bit of information

from the input stream. Our approach to doing this is to explicitly separate these components

and to design an interface following a principled, information-theoretic approach. Interface

design must satisfy the needs of users. A strong theoretical underpinning to a user-centered

design process offers tailoring of interfaces to user needs and capabilities with confidence that

the fundamental interaction remains robust and efficient. The aesthetic and metaphorical

design considerations of an interaction can be reliably built upon the functional substrate that

our approach establishes. The attributes defined in Section 2.2 like predictability and univer-

sality can assist designers in efficiently engaging end-users in the design process. We focus on

developing interface mechanisms for channel coding, which have been less well developed

than advances in line and entropy coding.

2.5 Line coding

The line coding of a user interface involves transforming physical state changes like body

movements or neural activity into state changes within a computer system. This involves both

the physical state changes of the human body (e.g. arm motion) and the sensing of these state

changes by an electronic device. This coding needs to preserve dynamics compatible with

human behaviour, such that the system’s evolution in time is compatible with human percep-

tual and motor capabilities. A human input line coder usually includes a continuous time feed-

back loop to the user with suitably damped dynamics (e.g. smoothed cursor position) and

emits discrete symbols.
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Simple inputs typically have some form of noise-suppression/damping combined with a

thresholding operation and to discretise states, such as a leaky-integrate-and-fire unit and

some form of hysteresis (see e.g. [62], Fig 4 or the pressure-sensor control schemes of Ramos

et al. [63]). This configuration is often placed after a high-frequency noisy classifier output to

render a system controllable.

In 2D and 3D, input from a sensor is often mapped down to a point cursor for pointing

input; for example, mapping from a dense optical flow image to dx, dy pointer deltas in a con-

ventional optical mouse [64]. Post-processing is used to filter this to make it compatible with

human dynamics via transfer functions [65–67] and temporal filtering [68, 69]. Area-based

thresholding (e.g. user interface icons) is used to discretise the input, usually in conjunction

with a separate actuation channel like a mouse button. There is extensive work in developing

efficient line coding for pointing devices by manipulating control-display ratios (the gain

between input and cursor feedback displacement), for example as discussed in [70].

Approaches based on feedback matching/motion coupling, such as “pointing without a

pointer” [71], Pursuits/Orbits [72, 73] and motion-pointing [74] use principles from percep-

tual control theory [75] to perform line coding. They rely on the user reflecting displayed

motion patterns (e.g. by mimicking the movement of a target), and detect correlation between

displayed trajectories and observed state changes. This is a wholly-feedback bound approach

to line coding. Motion coupling allows flexible, adaptive mapping of input and feedback chan-

nels, but cannot easily support learning of motions.

Other approaches to line coding include gesture based systems which map discrete symbols

(gestures) into trajectory segments via open-loop movement performance [76]. A recogniser

[77–79], which is typically some form of classifier trained on exemplars, attempts to segment

these symbols in an unbounded time series (spotting [80, 81]) and discriminate the symbols

(recognition). This allows a wider range of motions to be used and is usually implemented

without formative feedback. This makes users less bound by the feedback, but can lead to

problems in revealing or learning gesture sets [82].

2.6 Entropy coding

There has been extensive work in producing interactive systems which explicitly address the

problem of designing user interfaces to facilitate transparent entropy coding by developing

probabilistic selection methods with strong priors over outcomes (for example, from predic-

tive language models.) Many of these probabilistic interfaces have been based on a spatial

zooming paradigm, starting with Dasher [83]. Dasher used an arithmetic coding approach to

subdivide a unit interval, where the interval has area widths allocated according the probability

of symbol sequences drawn from some alphabet. In Dasher, these probabilities were derived

from language models which predicted subsequent characters given prefixes. These ideas were

extended to brain computer interfaces [84], single switch interfaces [85], hybrid speech and

zooming based interfaces [86], among others. Similar ideas based on spatial representations of

probability distributions were explored in BIGNav [87, 88] which applied Bayesian updating

to efficiently zoom in on spatial layouts with a known probability distribution over targets. In

cursor-based interfaces, “intelligent pointing” approaches which dynamically manipulate the

control-display ratio such as [89, 90]combine line coding and entropy coding. By increasing

the control-display ratio over regions which are unlikely to have relevant targets, an implicit

prior distribution over targets is defined. Information theoretic models for design of interface

finite state machines (e.g. hierarchical menus) have also been explored, as in the Huffman-

coded menus of [91] which used frequency as a proxy for probability of states. This requires

careful design to balance the semantic structure of hierarchies against the information-
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theoretic optimal design. For example, [5] uses the Hu-Tucker entropy code [92] to preserve

lexicographic ordering with a slight penalty in throughput.

All entropy coding interfaces come down to a way of representing a prior probability distri-

bution over options in such a way that the input device available can provide evidence to per-

form Bayesian updates of the probability distribution as efficiently as possible. This involves a

trade-off between the efficiency of the update and the complexity of the interface.

2.7 Channel coding

Explicitly designed channel codes, error-correcting codes or error-detecting codes, are not

widely used in human computer interaction. Designing for errors is often intermingled with

line coding, as some form of post-hoc filtering of sensor inputs. Standard approaches to

increase reliability at the line coding level include lowpass filtering or moving averages, and

various forms of dynamic thresholding, including hysteresis and dead-zones. Instead, error

correction functionality is often included as part of the finite state machine (FSM) that drives

system behaviour. This often involves introducing transitions to return to previous states in

the state machine (“undo”), transitions to fully or partially reset the state or confirmations

before transitions with external consequences. Poor design of FSMs can lead to very subopti-

mal behaviour in the presence of error (e.g. as discussed in Thimbleby’s analysis of FSM prop-

erties in user interfaces [42]). Quek [93] explored Monte Carlo simulation to illustrate how

poor menu hierarchy design can have extreme effects on the usability of assistive technology

systems.

3 Definitions and information-theoretic bounds

We now consider the theoretical basis for user interface selection in a noisy binary channel.

This is a simplified model of an input device where the input is assumed to be restricted to two

“buttons” that produce sequences of binary states which are corrupted by random flipping,

usually assumed to be independent over time. That is, pressing one of the buttons may result

in the signal corresponding to the other button being sensed, and this happens as if from the

result of a biased coin flip. The notional buttons may have distinct probabilities of being

flipped—one button consistently less reliable than the other—a biased channel. This is illus-

trated in Fig 5.

These “buttons” may be quite abstract: for example, synchronous forced-choice controls

like classifier outputs from visually evoked brain-computer interfaces [94]; asynchronous con-

trols like real physical buttons, or timing based mappings like dwell [95], Morse-code style

encodings or temporal pointing [96]. The results here can be extended to q-ary channels,

where q buttons are available for input.

3.1 Bounds on the noisy binary channel

We begin by deriving the theoretical upper bounds for the noisy binary channel. If probabili-

ties of error are equal for both states, this can be modelled as a binary symmetric channel (i.e.

the input is presented as a sequence of bi 2 {0, 1} symbols, and the probability of a 0! 1 error

is equal to a 1! 0 error), we can find the maximum theoretical capacity of the channel from

the binary entropy function given an error probability f [52]:

�cðf Þ ¼ 1 � Hðf Þ ¼ 1þ f log
2
ðf Þ þ ð1 � f Þlog

2
ð1 � f Þ; ð1Þ

where �cðf Þ is a fraction of the input bits received. However, many real channels are not binary

symmetric and exhibit strong bias. For asymmetric binary channels (or Z channel [97]),
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P(0! 1) 6¼ P(1! 0)). The bias can be represented as a term fδ, −1� fδ� 1, so that P(0! 1)

= f0 = f + fδ, P(1! 0) = f1 = f − fδ, with a constant average error rate f. The maximum capacity

of the binary asymmetric channel [98] is:

�cðf0 ;f1Þ ¼
f0
fd

� �

Hðf1Þ �
1 � f1
fd

� �

Hðf0Þ þ log
2

1þ 2
Hðf0Þ� Hðf1Þ

fd

� �

; ð2Þ

where H(f) is the binary entropy function, f0 < f1, f0 < 1 − f1, (which can always be achieved by

swapping 0 and 1 as required), and fδ = 1 − f0 − f1. Fig 6 shows the limiting number of input

bits per error-free output bit for the symmetric and asymmetric channels for f 2 0.5, 1.0. The

effect of the asymmetry on maximum communication rates is shown in Fig 7. The hatched

region of Fig 6 shows the theoretical capacity of a binary symmetric and fully biased channel,

in the more user-relevant form of number of input symbols generated per correct bit

(�Rðf Þ ¼ 1

�cðf Þ) communicated against the reliability of the channel r = 1 − f. From a user’s per-

spective, this is the number of decision processes they need to go through to communicate one

binary decision.

We assume a decoder which consumes a sequence of input binary symbols [b0, b1, . . .] bi 2
{0, 1} randomly corrupted (i.e. a noisy two state button) and produces as output a sequence of

k bit output symbols [s0, s1, . . .], si 2 S from an alphabet S consisting of 2k distinct symbols.

The decoder receives symbols bi at a symbol rate of Db binary symbols per second, and emits

decoded symbols si at a rate of Ds k bits per second. The inputs are assumed to be corrupted by

Fig 5. The noisy button model of an interface. An intended input b0i is flipped with probability f0 or f1, depending on

which button was pressed, resulting in the detected input bi.

https://doi.org/10.1371/journal.pone.0233603.g005
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an independent and identically distributed (iid) Bernoulli process with a bit flip probability f
(for symmetric channels) or f0, f1 (for asymmetric channels where one button is noisier than

the other). The flip probabilities can be estimated empirically f̂0 ; f̂1 from some calibration pro-

cedure, and a decoder is configured to decode for configured probabilities f 0
0
; f 0

1
. These are typi-

cally larger than the expected true probabilities f0, f1 to make decoding more robust in varying

conditions. The difference between the expected and the configured error rates fh ¼ f 0
0
� f0 ¼

f 0
1
¼ f1 we call the headroom and is typically configured to be positive such that the decoder is

pessimistic about the channel noise. We are concerned with the effective capacity of a channel

cj(f0, f1) with a specific decoder j, where the capacity is the fraction of output bits decoded for

each input bit. More usefully for user interface design the reciprocal Rjðf0; f1Þ ¼ 1

cjðf0 ;f1Þ
is the

rate of a specific decoder j, the number of input bits to produce one correct bit of output. We

write �cðf0; f1Þ=�Rðf0; f1Þ for the theoretical maximum capacity/rate of a channel. The reliability

of a channel is 1 − f, one minus the bit error rate.

• f0 the probability of a bit flip from 0 to 1, P(0! 1) on a given channel, likewise f1 for P(1!

0); or just f if f = f0 = f1;

• f̂0 ; f̂1 empirically measured flip probabilities (e.g. from a calibration procedure).

• f 0
0
; f 0

1
the flip probabilities a decoder is configured for and fh, the “headroom”

fh ¼ f 0
0
� f0 ¼ f 0

1
� f1.

• b the relative bias, where f0 = f + fb, f1 = f − fb.

• fδ = fb the absolute bias, where f0 = f + fδ, f1 = f − fδ.

• k the number of bits in a symbol output by a decoder.

Fig 6. The Shannon bound for the noisy binary channel and classical code performance. The bound is shown in terms of numbers of

input decisions/bits per error-free output bit. The upper single hatched region shows the �Rðf Þ binary symmetric case f0 = f1 = f, and the

lower double hatched region shows the capacity of the fully biased Z-channel �Rð2f ; 0Þ with the same average error rate (one completely

reliable input and one noisy input). Curves for the classic Hamming and Hadamard codes for various word lengths are shown for

reference.

https://doi.org/10.1371/journal.pone.0233603.g006
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• β the overhead used by a decoder to confirm a decision (which may be fractional, e.g. β =

1.35 bits)

• bi the ith input bit received.

• b0i the ith input bit intended (i.e. the uncorrupted input).

• si the ith output symbol of k bits from si 2 S, the set of output symbols, |S| = 2k.

• d(s) the function mapping symbols s to the unit interval.

• c or the capacity of a channel with a specific decoder.

• ek the error rate, proportion of k bit symbols decoded incorrectly.

• R the rate of a channel, as number of input bits per decoded bit R ¼ 1

c

• R0 the rate of a channel, after backspace correction to produce error free output

• D the input bits/second; and T the time for an input bit T ¼ 1

D.

• Ds k bit symbols/second and Tk the time for each output symbol Tk ¼
k
Ds

.

• fi(x) the probability density function over the unit interval at step i; Fi(x) the cumulative den-

sity function

Fig 7. Capacity of the binary asymmetric channel. Different values of error probabilities f0 and f1 are plotted with the capacity

given by Eq 2. The white contours show lines of constant channel capacity; the dark lines indicate lines of fixed bias b 2 [−1, 1],

where f0 = f + bf, f1 = f − bf.

https://doi.org/10.1371/journal.pone.0233603.g007
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• f � 1
i ðxÞ and F� 1

i ðxÞ the inverse (cumulative) probability density function

• mi the median of the probability density function mi = F−1(0.5)

3.2 Feedback and feedforward

Shannon’s result shows that reliable communication over a noisy channel is possible with only

a bounded overhead. It can also be shown [53] that the provision of a feedback channel does

not affect the capacity of a noisy channel; there are feedforward codes which achieve just as

good performance. However, Shannon’s result is only true as the code block length k goes to

infinity. It is not feasible for a human to perform actions based on histories of thousands of

previous decisions. For practical human-computer interfaces, block lengths need to be very

small (on the order of a few bits at most) compared to block lengths required for efficient per-

formance from modern feedforward codes, which might be thousands of bits. Short feedfor-

ward codes that are viable for human interfaces have poor performance for channels with

f> 0.1. For example the classic Hamming [7, 4, 3] code can correct one error in every seven

bits (f� 0.14) at a cost of 1.75 decisions/bit [99]; the generalisation to Hadamard codes of the

family [2k−1, k, 2k−2]2 have large overheads but can correct errors up to f� 0.25, though at

severe throughput penalty (e.g. Hadamard code [32, 6, 16] used on Mariner 9 achieves a fixed

5.33 decisions/bit). These classic forward error correction (FEC) codes are shown in Fig 6.

Modern FEC codes, like turbo codes, LDPC or Reed-Solomon codes [58] have block lengths

that are impractical for user interface purposes.

Although the availability of a feedback channel does not increase the capacity of the forward

channel, it does dramatically reduce the block length required for efficient communication. If

the feedback channel is noise-free (or effectively so) then there are feedback codes which

closely approach the Shannon bound with very short block lengths. The combination of a very

unreliable forward channel with a high-capacity feedback channel is unusual, but assistive

technology interfaces have just these characteristics. Feedback codes allow the coding process

to become transparent to the user, without requiring any memory or mental computation on a

user’s part, because the state of the decoder can be updated incrementally during code entry.

4 Feedback coding

There are few hardware communication channels which have a very low-speed, high noise,

feedforward and a high-capacity (almost) noise-free feedback. However, in some interface

domains, such as brain-computer interaction, there is often a massive asymmetry in the feed-

forward and feedback channels [13]. Even in non-assistive contexts, the information capacity

of the visual system at the level of consciousness is estimated at 100-1000 bits/s [100, 101]

while the capacity of the hand is estimated at 15-25 bits/second [102]; an upper bound of 150

b/s for whole hand all-finger gesturing is suggested in [103]. A visual display can transmit a

large quantity of information very quickly, with potentially negligible error, and we can in

practice treat it as a noise-free feedback channel.

4.1 Backspace and undo

The simplest feedback error-correction approach is to introduce a “backspace” symbol which

undoes or removes the previous symbol. This is a feedback error correcting code, and we can

easily simulate its performance. The backspace channel works well until the probability of acci-

dentally removing an intended symbol, or emitting a symbol instead of backspace dominates

the entry process and a correction cascade occurs. The numerical simulations shown in Sec.

4.1.1 illustrate why backspace or undo-like actions are ineffective at higher error rates. Many
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systems only support this mode of error correction, which explains their cliff-edge perfor-

mance drops when binary symbol reliability drops significantly below 90%. Given the typically

encountered error rates of 3-10% (Section 2.1) in standard interfaces this form of correction is

well suited and extremely efficient (e.g. with a keyboard-like input with 63 options + backspace,

backspace correction is extremely close to the Shannon bound until error rates increase above

6%, at which point it catastrophically fails).

In systems like hierarchical menus, there may be multiple types of undo (for example,

“go back” versus “reset to start”); similarly, text correction may offer single character, single

word or whole entry removal via different commands. The application of these correction

approaches to brain-computer interaction is discussed in [93], which illustrates how poor

choices can lead even relatively reliable input to frequent uncorrectable error cascades.

4.1.1 Simulating backspace. We consider the problem of entering a sequence of n sym-

bols, using an alphabet S of size 2k, where S = s1, s2, . . ., s . One symbol is backspace s , and

2k−1 are unique terminal symbols. Decoding the backspace symbol “undoes” the previous

symbol decoded. The performance of this backspace channel can be characterised as the num-

ber of bits required to perfectly enter a string of n symbols for a given alphabet size 2k. The

number of binary decisions required from the user to produce one correct bit with backspace

coding on a binary symmetric channel is Rb(k, f) with bit flip probability f and residual error

eb(f, k) = 0. Empirical results for simulated backspace-entry from N = 10000 random trials for

various values of f and k are shown in Fig 8. The decisions per correct bit for the backspace

channel Rb(k, f) is approximated by a Gamma function (Fig 8):

Rbðk; f Þ � dkðGð2pk � 1Þ þ 1 � pkÞ; ð3Þ

where dk ¼
2k

2k � 1
, the cost of assigning one of the symbols to backspace and pk = (1 − f)k, the

probability of correctly entering one k bit symbol correctly given a bit error rate of f. In regimes

where the backspace decoder does not function this formula gives negative values which we

Fig 8. Capacity of the binary symmetric channel with backspace Rb(k, f). Capacity of backspace for alphabets with k = 2,

3, 4, 6 for N = 10000 simulated entries of a n = 32 symbol sequence. Throughput is shown as the number of input bits per

correct bit R; solid lines shows the mean throughput, and the shaded region shows the standard deviation. The hatched

region is the Shannon bound for the binary symmetric channel. Even with k = 2 bit symbols, capacity goes to zero as the

reliability drops below 75%. Dashed lines show the fit of Eq 3.

https://doi.org/10.1371/journal.pone.0233603.g008
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treat as infinite. From numerical simulation, the mean absolute error of this approximation is

approximately 3% for f 2 [0.0, 0.5], k 2 [2, 16]. It is quite clear that although introducing a

backspace character makes entry on an unreliable channel possible, the performance is very far

from optimal, and works very poorly indeed for f> 0.1. Even if we settle with entering from

four symbol alphabet S = {A, B, C, }, channels with error rates f> 0.25 have effectively zero

capacity. This is on top of the mental effort the user must apply to remap those three symbols

onto the desired input. Unfortunately, this is often the only error correction available in many

assistive technology systems, either as a literal backspace in text entry, or an undo functionality

in a more general user interface context. Our problem is to create an input metaphor with a

rate R(k, f)>Rb(k, f) for f> 0.2, and thus make usable interfaces for channels with reliabilities

in the 60%–80% range. As well as the strictly limited range of f for which a coding with back-

space is useful there are several other issues which make backspace a restrictive error correc-

tion technique:

• There is no obvious way to deal with Z channels, with f0 6¼ f1.

• Users must alternate between entering symbols and editing to correct errors. These are dis-

tinct tasks which require separate mental attention and can become frustrating as errors

increase.

• For low-reliability channels (f< 0.1), the only effective control has three symbols plus back-

space. In most cases users have to concatenate two codes: first a mapping to three symbol

+backspace and then onto some higher level symbols such as characters.

4.1.2 Predicting error-free rates from non-zero ek. If we devise a new channel code with

some residual uncorrected error rate ek, we can always augment it by adding backspace to

reduce the error to zero, if ek is low enough. We concatenate the inner code with the backspace

code. We can predict the number of bits/error-free symbol for this concatenated decoder

using Eq 3:

R0ðk; f Þ ¼ Rðk; f ÞdkðGð2ð1 � ekÞ � 1Þ þ ekÞ: ð4Þ

4.2 Horstein’s algorithm

Horstein [3] showed a simple and efficient error correcting code for binary channels where a

noise-free feedback channel is available. In [104], a discretization of this code was developed,

creating “back off” trees for undoing previous steps. This code is much more amenable to static

analysis, but is less efficient than Horstein’s original code. A code very similar to Horstein’s is

described in [105], and a generalisation to an entire class of codes including Horstein’s, termed

posterior matching feedback schemes is given in [106] and also proves that Horstein’s code is

optimal for discrete memoryless channels—no other code can exceed the rate of Horstein’s

code where there is an unlimited noise-free feedback channel. These posterior matching feed-

back schemes are the fundamental basis of our interfaces.

4.2.1 Optimal noisy bisection. From the point of view of a user, Horstein’s code is a gen-

eralisation of bisection to noisy inputs. Bisection is the optimal way to identify a point (within

some tolerance) on a bounded interval with noise-free binary input. Options—target symbols

that a user might select—are laid out on the interval [0, 1], and there is a “cursor” which

divides the interval into two, initially placed at 0.5. Input is sequential, where the user indicates

via the input device if the symbol they wish to input is left or right of the cursor. The same

approach is used in Horstein’s algorithm, but by accumulating inputs over a whole sequence,
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the process will reliably converge to an intended target in the fewest possible inputs even when

the input is corrupted by random flipping, if the algorithm is configured with knowledge of

the true error rate.

4.2.2 Algorithm. A Horstein decoder maintains a continuous probability density over the

unit interval [0, 1]. For each step i we define:

• pi(x) = P(x = θ) The probability distribution for possible values of the unknown target θ;

• fi(x) the probability density function (PDF) and Fi(x) the cumulative distribution function

(CDF) that define pi(x);

• F� 1
i ðxÞ the inverse cumulative distribution function.

Fi is stored as a piecewise linear function, and so the probability density fiðxÞ ¼
dFiðxÞ
dx is a

mixture of uniforms.

Typically we begin the process with a uniform prior p0(x)�U(0, 1) but any other prior

could be used instead. Algorithm 1 shows the complete algorithm.

Algorithm 1 Horstein’s algorithm.
1: function HORSTEIN(k, β, f0, f1)
2: p  (1 − f0)/((1 − f0) + f1)
3: q  (1 − f1)/((1 − f1) + f0)
4: CDF F0(x)  line segment [(0, 0), (1, 1)]
5: while H(fi(x)) < (k + β) do
6: mi  F� 1

i ð0:5Þ (median from inverse CDF)
7: Display mi
8: Receive bi from input device
9: if bi = 0 then
10: Fi+1[0: mi]  pFi[0: mi]
11: Fi+1[mi:]  (1 − p)Fi[mi:]
12: else
13: Fi+1[0: mi]  (1 − q)Fi[0: mi]
14: Fi+1[mi:]  qFi[mi:]
15: end if
16: end while
17: return mi
18: end function

4.2.3 Horstein’s algorithm as a Bayesian update. Horstein’s algorithm process is

simply the recursive Bayesian updates of a probability distribution pi+1(x|bi) given an

noisy input bi that indicates whether the target θ<mi. The median mi, is defined such that
R mi

0
piðxÞ ¼ 0:5 ¼ F� 1ð0:5Þ. Then we use the distribution at the previous step pi(x) as a prior,

and the posterior is given by:

piþ1ðxjbiÞ ¼
qipiðxÞ if x < mi

ð1 � qiÞpiðxÞ if x � mi

(

ð5Þ

(Alg. 1 9-15), where

qi ¼
Pðy < mijbi ¼ 0Þ if bi ¼ 0

Pðy < mijbi ¼ 1Þ if bi ¼ 1

(

ð6Þ

(Alg. 1 2-3).
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Because we always divide at the median mi, we can assume that there is an equal probability

of θ<mi at any step i; then the prior P(θ<mi) = P(θ�mi) = 0.5.

Pðy < mijbi ¼ 0Þ ¼
Pðbi ¼ 0jy < miÞPðy < miÞ

Pðbi ¼ 0jy < miÞPðy < miÞ þ Pðbi ¼ 0jy � miÞPðbi ¼ 0Þ

¼
ð1 � f0Þ0:5

ð1 � f0Þ0:5þ f10:5

¼
1 � f0

ð1 � f0Þ þ f1

ð7Þ

and by symmetry:

Pðy < mijbi ¼ 1Þ ¼ 1 �
1 � f1

ð1 � f1Þ þ f0
: ð8Þ

4.2.4 Horstein decoding in the human-machine loop. The algorithm elicits a “left” (bi =

0) or “right” (bi = 1) decision from the user for each input step, by sending the targets and the

current median mi of the cumulative density function (CDF). The user inputs a “left” (bi = 0) if

the desired target is less than the median, and right (bi = 1) otherwise. Fi(x) is then distorted

according to how reliable the input is regarded as being. These distortion steps gradually

steepen the cumulative density function Fi(x), or equivalently, concentrate the probability den-

sity. Fig 9 illustrates the key update step of the algorithm.

4.2.5 Block coding. We present a slight modification of Horstein’s original stream code,

using fixed length symbols (though in practice we can relax this to variable length codes to

accommodate arbitrary priors over targets). To use this code, we choose a symbol length k,

and an adjustable confidence level β (measured in bits). We then map each of the 2k symbols

onto an interval in [0, 1] of length 2−k, i.e. each codeword onto a subsection the unit interval.

Fig 9. The key step of the Horstein algorithm: Distorting the CDF. The CDF transition is shown for the case where the initial

transition is b0 = 0. The CDF Fi(x) is initially a line segment with gradient 1. It is partitioned at the point mi where Fi(x) = 0.5 and the left

and right gradients are scaled by factors p and 1 − p. In the case b1 = 1, the respective factors would be 1 − q and q.

https://doi.org/10.1371/journal.pone.0233603.g009
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We can of course introduce a non-uniform prior over outcomes (e.g. as in arithmetic coded

interfaces), such that the codewords are then assigned to non-equal sub-divisions of the unit

interval (Fig 10).

Because of this change, our termination condition differs slightly from the original given by

Horstein, which terminates when a region around the median becomes sufficiently dense. We

instead continue until the entropy of the distribution over the interval drops by a set level:

HiðxÞ � H0ðxÞ > kþ b ð9Þ

At the termination, we now have a new distribution over the unit interval, and conse-

quently over the symbol set. This transformed into a symbol by choosing the symbol whose

interval which contains the median mi at termination. Under a uniform subdivision, given a

target symbol si of length k, we compute si = [2k mi]. Fig 11 shows an illustration of evolution

of the probability density function (PDF) and cumulative density function under the Horstein

algorithm with k = 5, β = 0 for the noise-free and noisy cases. An illustration of how the updat-

ing inverse PDF at each step of the Horstein algorithm can be used to remap the unit interval

to “stretch out” areas of higher density is shown in the sequence of steps in Fig 13.

The Horstein decoder is only optimal for discrete memoryless channels where the channel
statistics are known. Section 6.1 presents empirical results which show how the decoder

throughput varies against the mismatch between the expected and actual channel statistics.

4.2.6 Biased channels. If the channel under consideration is not symmetric but is biased

(i.e. f0 = P(0! 1) 6¼ f1 = P(1! 0)) the performance will clearly be affected. The bias can be

Fig 10. Uniform and nonuniform targets. Subdivision of the unit interval into discrete targets for selection can be

performed uniformly (top, corresponding to a flat prior over targets), or according to some known prior distribution π(si)
(bottom).

https://doi.org/10.1371/journal.pone.0233603.g010

Fig 11. Ridge-plots of the PDFs from the Horstein algorithm. PDFs are plotted following each input bi applying

Horstein algorithm to select the the 5 bit symbol 01010 (mapped to the interval around θ = 0.3125, highlighted in red), for

the noise-free case (left, f = 0) and with simulated noise (right, f = 0.15), with k = 5, β = 2. Sharpening of the PDF is gentler

in the case with noise.

https://doi.org/10.1371/journal.pone.0233603.g011

PLOS ONE Efficient human-machine control with asymmetric marginal reliability input devices

PLOS ONE | https://doi.org/10.1371/journal.pone.0233603 June 1, 2020 21 / 56

https://doi.org/10.1371/journal.pone.0233603.g010
https://doi.org/10.1371/journal.pone.0233603.g011
https://doi.org/10.1371/journal.pone.0233603


represented as a term δ, −1� δ� 1, so that P(0! 1) = f0 = f + fδ, P(1! 0) = f1 = f − fδ, which

maintains a constant average error rate f. The Horstein algorithm can deal optimally with

biased channels. Fig 12 shows simulations illustrating the evolution of the density function for

biased and unbiased errors. A general Horstein decoder is fully parameterised by the tuple (k,

β, f0, f1).

4.2.7 Headroom. Since we have an imperfect knowledge of the true channel statistics f0
and f1, and there is a steep penalty for under-estimating the error rate (see Section 6.3) it is pru-

dent to add some tolerance to the expected channel statistics when setting the decoder’s con-

figured rates f 0
0

and f 0
1
. This headroom fh introduces a penalty in reduced communication rate

but in return offers protection against uncorrectable error cascades when the uncorrected

error rate ek slips above the rate that a concatenated backspace decoder can recover from.

4.2.8 Trisection and q-ary inputs. In some use cases it is easier to imagine an interface

splitting a set into an inner and outer part, rather than bisecting on a central point (for exam-

ple, consider an interface requiring a motion towards or away from a screen). This can be

implemented with the Horstein decoder by trisecting the CDF Fi(x) at the 25% and 75% per-

centiles instead of the median, and using the input bi to either scale the first and fourth quartile

or the second and third quartile.

The Horstein decoder extends naturally to q-ary channels. Instead of splitting at the median

mi at each step, the splitting is perfomed at each quantile m0. . .mq, dividing the CDF Fi(x) into

q units. Given a new q-ary symbol bi, the slopes of each quantile segment Fi[j], j 6¼ bi are multi-

plied by 1 − fb and the slope of Fi[bi] is multiplied by fb, where fb is the expected probability of

error for input symbol fb.
4.2.9 Entropy coding. It is straightforward to combine the Horstein algorithm with

entropy coded data using arithmetic coding. In this case, we have a non-uniform prior over

targets, which is represented as distribution over the unit interval π(x). We simply continue

with the Horstein code in k length chunks then output any completed symbols pending.

4.2.10 Decision quality metrics. It has been assumed that only a fixed, unvarying estimate

of the channel statistics is available, for example from calibration. Some input devices can

report reliability on a per-decision basis (e.g. from a probabilistic classifier), instead of a dis-

crete binary value. The reliability measure can be used to dynamically estimate f0 and f1 at each

step. In the simplest case, the classifier emits probabilities directly which are used as f0 and f1.

Other methods (e.g. support vector machine-based classification) may report distance mea-

sures from which an (approximate) probability can be derived.

Fig 12. Example simulation of the Horstein algorithm with noisy inputs. k = 8, β = 0 selecting a target θ = 0.71875, with

symmetric (left) and biased (right) noise. The pulse traces show the inputs for bi = 0 and bi = 1 respectively; highlighted

sections indicate erroneous inputs. The centre plot shows the log PDF logfi(x) at each step.

https://doi.org/10.1371/journal.pone.0233603.g012
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4.2.11 Adaptation. In the simplest case, a calibration procedure with known targets can

be used to estimate f̂0 and f̂1 ; however, this requires the user to spend time performing this cali-

bration task, or a strong prior model of the channel to be known. In cases where the channel

statistics may be unknown, or may change over time, it is possible to adapt the decoder online.

This can be done by counting the number of inputs n actually required to reduce the entropy

to k + β for each symbol, and compare with the expected inputs for the configured channel sta-

tistics using Eq 2, np ¼
1

�cð f0;f1Þ
. This leads to the adaptive update rule where

fiþ1 ¼

fi þ dn if n� np
np
> �n

fi if � �n <
n� np
np
< �n

fi � dn if n� np
np
< � �n;

8
>>>>><

>>>>>:

ð10Þ

for some threshold �n, and a small fixed quantity δn. This provides a simple way to adapt the

decoder online for symmetric channels. See Section 6.4.2 for an online adaptation algorithm

suitable for biased channels.

4.3 Limitations

The Horstein coder is optimal for memoryless channels with known statistics [3]. However,

like all error-correcting codes it achieves optimality only asymptotically as the code length k
increases. The performance of the Horstein code is very good for small k< 12, particularly

compared to feedforward error correction, and reasonable performance requires k> 4 at the

least. This means that it must make sense for the user interface to bundle up a sequence of

decisions into a choice from a large number of symbols. For tasks such as text entry (where

symbols can be letters or words or relatively unbounded sequences, as in Dasher [83]) or spa-

tial selection (where symbols are (x, y) co-ordinates on a dense grid), or even future trajectory

planning (where symbols are sequences of movement commands) this is often straightforward.

For tasks requiring real-time intervention or control (such as steering a vehicle in a changing

environment), an error-correcting code is less useful, as there are often a small number of

options available, and they must be activated at predictable times, a structure which does not

lend itself well to channel coding.

5 Interface design

The inverse probability density function f � 1
i ðxÞ expands around the median mi for each step

(this is how the algorithm is presented in Horstein’s original paper). The problem of selecting

can be transformed into one of binary control, where the user decides if a target area (repre-

senting a codeword) lies to the left or right of mi on a number line distorted by f � 1
i ðxÞ (Fig 13)

and produces a decision bi. This decision is fed to a Horstein decoder, which computes a new

f � 1
iþ1
ðxÞ and this can be displayed to elicit the subsequent decision bi+1.

This gives rise to an obvious implementation as a (non-uniform) distortion of space. This

can be implemented as a type of zooming user interface [107–110], where f−1(x) is used to

directly distort the display, expanding regions of high probability. Alternatively, non-uniform

distortion can be hidden and an interval of fixed density (e.g. the 50% highest density posterior

interval (HDPI)), to produce a linear zooming interface.

The zooming approach for the entropy coding was successfully applied in Dasher [83] and

is particularly well-suited to building interactions with variable length codes and with hierar-

chical or sequential decisions. Longer codes imply deeper zooming and there is a particularly
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elegant representation of entropy indicated the current displayed zoom level; as the decoder

becomes more certain, zoom increases; as it becomes less certain, the view backs out. Depen-

dent sequential decisions (coding steps) are visually related to each other through the hierarchy

of visual scales. A zooming interface can proportionally dedicate screen space to decisions a

user must immediately make, while preserving spatial context about prior decisions and an

indication to help a user predict future actions. Animated interpolation between zoom levels

can be used to strengthen this spatial context by minimising sudden changes in display.

The result is an interface which gradually zooms in on the region of interest, even when

the input is subject to bit flips. The code effectively creates a type of continuous undo which

through the memory of previous decisions (accumulated in the CDF at each step) can recover

from errors. The zooming effect ensures that the visual resolution varies according to the cer-

tainty of the intervals, so that more certain regions have higher resolution.

5.1 2D mapping

The coding technique requires that we have relatively long codewords to obtain good perfor-

mance. In other words, there must be a large number of available options for each decision

“bundle”. To design a usable interface using the Horstein decoder mechanism, it must be pos-

sible for a target user to be able to identify each of the options available for selection, so that

they can decide which side of the median their desired option lies and produce the appropriate

binary symbol by flipping a switch, invoking a motor imagination sequence or actuating what-

ever other input means are available. With a simple 1D display the number of options that are

visible is very limited, and is only practical where a user can interpolate between options sensi-

bly (e.g. if the options are ordered numerically or lexicographically). For the more general

case, a 2D grid layout provides a much greater display area, but introduces complexities in

mapping from the symbol space (and any associated probability distribution) to 2D geometry

and in the mapping of a single two-state switch to 2D navigation. We discuss solutions to these

problems below.

5.1.1 Multiple dimensions. The decoder can be extended to N dimensions by maintain-

ing N independent Horstein decoders C0. . .CN, each representing a marginal probability dis-

tribution pjiðxÞ; 0 � j < N at decision i. As these are independent, we can compute the joint

distribution on the N dimensional space simply as pðx0; x1; . . . ; xNÞ ¼
QN

j¼0
pjiðxÞ: Simply

cycling through decoders in round robin order is inefficient, because the random distribution

of errors may have one decoder almost certain, while others are far from convergence. We

Fig 13. Zooming into the number line. The Horstein algorithm being applied to approach θ = 0.71875, with an assumed

f = 0.1, shown as the inverse PDF f0(x) distorting a ruler spanning the unit interval. The median mi is shown as a red line.

https://doi.org/10.1371/journal.pone.0233603.g013
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propose a more intelligent selection of decoder at each decision, as the feedback channel gives

us the freedom to elicit information from dimensions on an arbitrary schedule by changing

the display. To select the next decoder to update, we compute the entropies Hj(x) for each

decoder Cj, and request input for the dimension with the largest entropy. This entropy-based

scheduling can also be extended to multiple input modalities (e.g. hybrid BCI).

5.1.2 Mapping controls: Diagonal split interfaces. This approach provides a straightfor-

ward decoding process for 2D grids (although it is perfectly possible to perform the selection

in 3 or more dimensions, a 2D grid is the most practical to display). Multiple options can be

laid out on a 2k × 2k grid, and the system can request input from the appropriate decoder

dimension by drawing a median line on appropriate axis. From a user’s point of view, a binary

input device provides two options, normally with a strongly associated directional component

(e.g. left hand versus right hand). Scheduling dimensions to distinct decoders according to

entropy is theoretically efficient, but it requires changing the mapping from the input device to

the display every time the decoder switches (switching left vs. right to up vs. down, for exam-

ple). It is quite challenging to deal with an input device whose interpretation changes regularly,

especially for input channels like motor imagery, where the input classes might be left hand

imagination and right hand imagination; rapidly switching between a left hand being inter-

preted as “select the left side” and meaning “select the upper side” makes the input task much

more difficult, as we observed in initial early prototypes of our interface. A simple solution in

2D is to rotate the displayed grid 45˚, so that every decision is always between left and right,

even as the axes alternate (Fig 14). This allows packing options onto a 2D grid, but requiring

only left/right decisions which map precisely to the visual display.

5.2 Non-linear versus linear visualisation

We use a form of zooming interface to represent the state of the decoder. User interfaces

based on zooming have a long history in human computer interaction [107, 108] and are a

natural fit for the Horstein decoder process applied to 2D selection. There are two ways to

represent this display to the user as a zooming user interface. Linear zooming computes the

highest density posterior interval (HDPI) at some threshold on both axes, and then centres

and scales the display around fit this interval into view, maintaining the aspect ratio (e.g. by

scaling by the reciprocal of the maximum of the HDPI across both axes). This results in a

interface where points initially laid out in the unit interval have unchanging geometry, but

the “camera view” gradually homes in on the region being selected. This approach is shown

in Fig 15(a). This has the advantage of having minimal visual distortion and having familiar

zooming behaviour, simulating the appearance of a camera approaching a plane along the

plane normal. However, the displayed region does not completely reflect the state of the

decoder and hides some context.

Fig 14. Diagonal split interfaces. Rotating the plane 45 degrees allows partition on both axes with only left-right decisions.

https://doi.org/10.1371/journal.pone.0233603.g014
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Alternatively, nonlinear zooming uses the inverse PDF f � 1
i ðxÞ directly to warp the (x, y) coor-

dinates of each point in the unit interval. This keeps the entire geometry over all options inside

a box, but gradually stretches out the regions with highest density, squashing unlikely regions

towards the edges of the space. This is particularly appropriate where the density function may

be multi-modal and a user may want track of the entire space to track multiple hypotheses. This

approach is shown in Fig 15(b). However, it has higher visual complexity and is less familiar than

straightforward linear zooming approach. For some data display types, the aspect ratio of targets

must be preserved (e.g. images) and pure nonlinear zooming is not suitable.

5.2.1 Implementation. We implemented a number of variants of the 2D Horstein

decoder, including linear and non-linear zooming, point targets, rectangular targets, circle-

packed targets, space-filling curve models, diagonal split interfaces and trisection interfaces.

Images of these implementations are shown in Fig 16.

5.3 Packing and target identification

The use of a 2D layout expands the symbol space that can be displayed, which is essential for

efficient decoding, but makes it more challenging to lay out and label items. The location of

targets corresponding to symbols must be visible to users for closed-loop selection. This can

either be by explicit labelling, or by implicit structure (e.g. ordering may allow interpolation).

Without strong prior structure, randomly ordered items on the plane will incur significant

visual search time and mental effort. We can consider the problem one of assigning each

Fig 15. Linear and nonlinear zooming. A 2D Horstein-zooming interface using linear and non-linear zooming displays (every

second step shown). Targets are shown as black points, with the intended target shown as a larger red marker. (a) Linear

zooming, where the geometry of points is fixed, and the view spans an interval of constant density. (b) Non-linear zooming,

where the inverse PDF is directly applied to points in a 2D space, pushing unlikely points to the edges of space, always showing

the entire unit interval.

https://doi.org/10.1371/journal.pone.0233603.g015

Fig 16. Screenshots of prototype Horstein decoder interfaces. Left-to-right: (a) Simple 2D point based non-linear zooming (b)

Nonlinear zooming with rectangular area targets (c) Linear zooming with a randomised circle-packing (d) Diagonal-split

interface which only requires left-right decisions (e) An interface using Jigsaw space-filling curves [111] to layout blocks of

ordered targets.

https://doi.org/10.1371/journal.pone.0233603.g016
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symbol si to a unique contiguous region of the unit square Xi � R
RR 2

, such that the area of Xi,

A(Xi)� π(si), ideally such that the boundaries of Xi are simple.

The data that the symbols represent introduce additional constraints. For example S may be

an ordered set of symbols (an alphabetic contacts list); it may have hierarchical grouping (file-

system paths); it may have an underlying 2D geometry (map navigation). These implicit struc-

tures reduce the dependence on explicit labelling, but there is a trade-off between preserving

of structure of S and approximating the underlying probability distribution. In some cases,

there is a natural mapping of the underlying data space to the 2D unit plane and the 2D zoom-

ing interface is trivial to apply, such as geographical map or a 2D scatterplot. Selecting a spe-

cific region is simply a matter of specifying the precision of the selection needed and running

the selection process until the probability mass is sufficiently concentrated. In other cases,

there is weaker structure on S, and a partitioning the 2D plane into areas corresponding to

each si must be devised that preserves a relationship between area and π(si).
5.3.1 Space filling curves. Space filling curves, like the classical Hilbert or Peano curves,

or modern compact curves like the Jigsaw curve [111] or the Balanced GP curve [112] provide

a natural way to wind a 1D sequence onto a 2D unit square. This provides a straightforward

mapping for ordered data into a 2D Horstein decoder. In particular, curves like the Balanced

GP curve which optimise for bounding-box optimality result in subdivisions that are reason-

able to select with this interface design. Space-filling curve approaches are suitable for 2D

selection of ordered data types.

5.3.2 Packings and tilings. In cases where ordering is not the primary organisational cue,

some form of packing may be used to allocated targets to the 2D space, maintaining a probabil-

ity to area relationship. Packing of rectangular or circular targets via randomised algorithms

gives a straightforward way to construct an interface. This will necessarily leave gaps in the

unit square, which is suboptimal from a coding point of view. This “dead space” between

packed targets, however, can be reclaimed as a natural way to include a backspace control;

selection of the gap area actuates backspace. Packing structures make most sense for unor-

dered data types or for data types where a 2D layout is approximately known. For example, an

image collection in a photo browser application might be laid out by some form of dimen-

sional reduction to establish approximate 2D locations; a prior probability over images could

be defined to determine target areas; and a packing algorithm used to place appropriately sized

targets.

5.3.3 Hierarchies. Hierarchies of symbols are easily accommodated using the strategy

applied by Dasher [83] which nests sub-symbols, leading to a spatial representation of the

arithmetic coding of the symbol sequence. There are three competing factors in a hierarchical

2D layout: good aspect ratio for subdivisions to maintain visibility so that labels remain clear;

visual representation of the hierarchy; accurate representation of the underlying probability of

each subdivision as its visual area. In 2D the treemap/squarified treemap approach [113, 114]

gives a suitable algorithm for the case where the subdivisions are orthogonal to the axes. Alter-

native variants can subdivide the plane non-orthogonally and retain better aspect ratios [115].

This style of layout is natural for many interaction problems like navigating hierarchical file

systems or hierarchical menus. Some hierarchical layout algorithms can become irregular as

symbols nest deeply. Sub-optimal layouts like circle or square packings provide a simpler navi-

gation experience, at the cost of null space.

5.4 Unreliable undo channels

In assistive technology contexts, it is often the case that there are multiple channels available

with different reliabilities. Many of these can only be activated sporadically (e.g. because they
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require very significant effort to engage) and cannot be used for regular communication.

These channels might take the form of muscle-activated single switches for users with limited

residual motor function, electromyography to detect muscular activity [116] or a BCI error

potential [117]. Although these channels cannot generally be used for input directly, because

of their limited frequency of activation, they can usefully be used as occasional undo or back-

space inputs, where they will only be required occasionally. We will term such input channels

infrequent reversal channels, and the only symbol they can communicate is an impulse which

is interpreted to undo a previous action.

Perdikis et al. [5], for example demonstrate a hybrid BCI text entry application which uses

motor imagery for text input, but with an undo command activated by EMG. In a BCI context,

the error potential [117–119], evoked when a subject observes that they have committed an

error, is a very natural signal to trigger undo. However, the potential is only evoked if errors

are relatively rare. It is not feasible to use the error potential to correct mistakes when they

account for more than 10% or so of the decisions executed. Similarly, physiological changes in

grip can be detected in pointing tasks in mobile devices when occasional errors occur [120],

which can provide an implicit infrequent reversal channel.

There are two problems with using these infrequent reversal channels: probability of error

must be limited; and the reversal channel itself is often uncertain. The first problem is easily

solved as the probability of decoded error ek can be precisely controlled using the Horstein

decoder described above, and any arbitrary error rate can be achieved. There is also a simple

solution to the problem of uncertainty in the reversal channel. Each reversal command carries

a certain information value, which depends on the certainty with which it is issued and the

domain to which it is expected to be applied. In a text entry example, the domain of the rever-

sal command might be a single binary decision, a single character, a word or an entire sen-

tence. In the Horstein scheme, an undo can be applied within the domain of one symbol of k
bits. If we know the information content of the reversal channel in advance, we can apply it as

follows:

• Store the CDF Fi(x) at each step i, along with its entropy Hi(x);

• If a reversal is received with information content H(r), we go back to the most recent step j
where Hj(x)�Hi(x) −H(r).

In other words, we undo as close to H(r) bits of input as possible. This could be fractional,

for example undoing the last 1.7 bits of input. We can, if required, partially undo a single input

decision, with a “partial reverse Horstein step”, rescaling both sides of the last partition of the

CDF to bring it some factor closer to uniform. Lenman and Roberts discuss the importance of

having multiple layers of granularity in undo [38] in human interfaces; this form of decoding

allows for continuous undo with arbitrary granularity.

5.5 Non-stationary noise and diffused decoders

The Horstein decoding process assumes that errors are iid. distributed. Human input channels

such are often non-stationary, as cognitive factors such as stress or exhaustion, or external

physical factors in sensor configuration such as impedance changes due to electrode drying

cause error rates to vary over time. One way to mitigate such effects and reduce autocorrela-

tion in errors is to re-distribute the errors so that they are closer to iid using n independent

decoders. Elicited input is then randomly diffused among them by interleaving inputs from

the user for different subtasks.

For example, in a text entry system a sequence of letters in a word could be laid out as

blanks (as in a game of Hangman), and the system randomly alternate between letters to
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“work on”. With each letter having its own independent decoder, bursts of errors would be

diffused among the decoders, bringing the error seen by each decoder closer to an iid source

and so mitigating the effect on the decoding. Doing so necessarily adds some complexity, in

terms of the mental model the user must have of how their next input will affect the whole

sequence, but could increase robustness. This type of diffusion can mitigate relatively short-

term correlated variations in signal quality, while longer term non-independence requires

online adaptation.

6 Monte Carlo simulation

Evaluating the performance of low-capacity interfaces by running live tests is expensive, so

prior to evaluating a system with humans-in-the-loop we developed Monte Carlo numerical

simulations to establish predicted performance levels. This follows the thinking of [121] and

[122] who illustrated how simulator-based models could be used to iterate effective interface

designs for assistive technology contexts. We present results which characterise the perfor-

mance of the Horstein decoder as a function k, β, bias b, non-stationarity and channel mis-

match. This simulator always makes perfect choices, but inputs are passed through a channel

emulator which randomly introduces Bernoulli noise.

This simulation model does not account for the memory or cognitive constraints of a

human controller. To investigate this cognitive impact of our interface, we followed this with

an experimental trial with human users. This used an input device simulator which takes reli-

able keyboard input and injects noise to simulate different levels of signal corruption, focusing

on noise levels which are at the extremes of usability for standard techniques. The human-in-

the-loop addresses the question of usability of the Horstein decoder approach and validates

the predictions of the Monte Carlo simulations.

6.1 Simulator

We constructed an offline Monte Carlo simulator in Python to evaluate the performance of

the Horstein decoder with various parameter settings. We explore two cases: the performance

of the Horstein decoder (as described in Algorithm 1) for various parameterisations when the

channel statistics are assumed to be perfectly known and the simulator makes perfect choices;

and the properties of the decoder when these assumption are violated. This includes the effect

of mismatched channel statistics, where the decoder is configured for channel statistics that do

not match the real bit flip probabilities; where the noise is not memoryless and there is correla-

tion in errors over time; and where the assumption that the user has a single known target is

violated.

6.1.1 Concatenating with the backspace code. A real interface would apply a backspace

correction to the output of the Horstein decoder, concatenating these two error correcting

codes. This will reduce the uncorrected error rate to zero at a cost given by Eq 3, where e(k, f0,

f1) is the uncorrected error rate of the Horstein decoder. Each set of simulation results pre-

sented shows three plots: input bits/uncorrected output bit R; the uncorrected error rate of k
bit symbols ek; the predicted input bits/error free output bit R0 using the backspace decoder

approximation of Equation 4.1.2.

6.2 Perfectly known channel statistics

For each configuration, the simulator executed N = 10000 identically parameterised random

simulations. The experiments varied word lengths k, true simulated error rates f0 and f1, con-

figured error rates f 0
0

and f 0
1

and margins β. The key metrics are the number of input bits the
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decoder must consume for each output bit produced R(k, f0, f1), and the fraction of uncor-

rected errors ek that remain; that is the fraction of k-bit output symbols which are incorrectly

decoded. As we are operating under perfect feedback conditions, we assume that any practical

decoder interface would be concatenated with the backspace/undo decoder to make any

uncorrected errors recoverable, but there is a significant penalty attached to increasing uncor-

rected errors and we would hope to approach small error probability with ek< � for some

small � (e.g. the 4% rate described in Section 2.1).

6.2.1 Effect of β and k. As k increases, the performance of the decoder approaches the

Shannon bound (Fig 19). Shorter codes have poorer performance, as expected. As the confir-

mation factor β increases the probability of uncorrected errors decreases, at a corresponding

increase in the number bits per correct symbol (Fig 17). Fig 18 shows that, for a fixed β, there

Fig 17. Decoder performance for varying confirmation β. k = 8 in all trials. (Left) input bits per output bit R, (Centre)

uncorrected k bit symbol errors ek (Right) backspace corrected rate R0(k; f). As β increases ek! 0.

https://doi.org/10.1371/journal.pone.0233603.g017

Fig 18. Relation of β, f and ek. Simulated uncorrected error rates ek from N = 10000 repetitions, for k 2 4, 6, 8, 10 and various

different β. There is a very strong linear relation between the uncorrected error rate and β, which does not depend on k. The

linear fit is shown as a dashed line. The gradient and offset of the line reduce exponentially with increasing β. The dashed line

shows the approximated error rate ek(f) using Eq 11.

https://doi.org/10.1371/journal.pone.0233603.g018
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is a very strong linear relationship between f and the uncorrected error level ek that does not
depend on k. The gradient and offset of this line reducing approximately exponentially with

increasing β. An empirical log-linear fit to the error rate for a given bit flip probability ek(f)
gives the approximation (shown in dashed lines in Fig 17):

ekðf Þ ¼ e� 0:28ðbþ5:17Þf þ e� 1:19ðbþ2:57Þ: ð11Þ

This simple closed-form approximation for ek(f) means that a desired residual error level

can easily be optimised for when implementing a decoder for an input device; for example, tar-

geting the 4% error rate discussed in Section 2.1.

The total number of bits for one correct entry with a perfectly matched decoder j is:

Rðk; f0; f1Þ ¼
k

kþ b

� �
m

�cðf0; f1Þ
; ð12Þ

for some constant m. The probability of uncorrected error depends directly on β (see Fig 19),

so larger k is more efficient both because of a better approximation to the Shannon bound and

because of a reduced influence of β on the total overhead. For larger k (e.g. k = 16), the Hor-

stein code approaches the Shannon bound very closely. Increasing β> 0 typically degrades

performance when combined with the backspace decoder, because it is more efficient to a

small number of residual correct errors via backspace than to eliminate all errors in the Hor-

stein stage; however, this becomes less straightforward when the channel statistics are impre-

cisely known. In some cases, it is important that symbols be selected accurately the first time

(e.g. if they have real-world consequences that cannot be corrected after the fact, or to mini-

mise user interface complexity). In this case, increasing β gives a way of reducing the error

level to any arbitrary level without requiring a separate undo stage. Additionally, it should be

noted that β can be fractional, allowing any level of confirmation to be achieved.

6.2.2 Effect of bias fδ. The Horstein decoder is efficient with biased channels and can take

advantage of known biases, as shown from the simulation results of Fig 20. The bias of a chan-

nel has no strong effect on the uncorrected error rate.

Fig 19. Decoder performance for varying symbol size k. β = 2. Larger k has improved capacity.

https://doi.org/10.1371/journal.pone.0233603.g019
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6.3 Mismatched statistics f0 6¼ f
Optimal coding for a channel requires knowledge of the reliability of that channel. An exces-

sively robust code wastes capacity just as a insufficiently tolerant code introduces errors that

must be corrected. Unfortunately, we cannot in general know the reliability of the channel pre-

cisely, and in BCI, where noise properties tend to the very non-stationary, this is a particular

issue. Thus when considering the performance of our interface, we must account for the

uncertainty of our estimate of the channel reliability. We performed simulations with the Hor-

stein code which controlled both the true error probability f and the error probability used by

the decoder f0, to evaluate how mismatch between true and expected error rates affects the per-

formance of the algorithm. The results are summarised in Fig 21 and shown for a fine-grained

grid of parameterisations in Fig 22. It is clear that the performance is best when f0 = f, as

expected, but that the behaviour is highly asymmetric. If f0 < f there is a cliff-edge drop off in

Fig 20. Decoder performance for varying relative bias b. k = 12, β = 2, fδ = bf where f0 = f + bf, f1 = f − bf. Dashed lines

show the theoretical bound for the given bias, and the solid lines show the mean simulated results from the Horstein

decoder. The decoder approaches the bound for any level of bias.

https://doi.org/10.1371/journal.pone.0233603.g020

Fig 21. Decoder performance for mismatch between decoder and simulated statistics. f0 = f + fh, k = 8 and β = 0. When

fh< 0, the decoder is optimistic and uncorrected error rates rapidly rise. When fh> 0, the decoder is pessimistic and

induces a penalty to the rate while decreasing uncorrected errors.

https://doi.org/10.1371/journal.pone.0233603.g021
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performance, reducing to nearly zero effective capacity due to rapidly increasing uncorrected

error rates for even small deviations; for f0 > f there is a more gentle loss in performance where

there is a gradual increase in the number of inputs required to terminate the decision for one

symbol.

6.3.1 Bursty channels and non-stationarity. The Horstein decoder (in the binary case)

assumes corruption by memoryless iid Bernoulli noise. However, many real assistive technol-

ogy channels do not have independent white noise distributions. There are often strong

slowly-varying time varying components to the noise introduced, for example from classifier

drift in BCI [123], electrode drying in EMG [124] or illumination changes on vision-based

systems.

A simple but versatile model of non-iid noise in a binary channel is the Gilbert-Elliot

bursty channel model [125, 126], which is widely used in modelling bursty packet loss on net-

working systems (e.g. packet-based network channels subject to varying congestion [127]).

The two state Gilbert model is constructed around a binary Markov chain switching between a

good state G with error probability fG and a bad state B with error probability fB (Fig 23). The

Fig 22. Decoder performance with mismatched statistics. Decoder performance is shown for k = 8 and β = 8, as a

function of fh and f. There is a complex trade off between capacity and the pessimism/optimism of the decoder. The mean

rate (left) uncorrected error rate (centre) and backspace-corrected rate (right) are shown. White spaces indicate regions

where throughput is zero due to error cascades. Each contour line indicates one additional input bit per error-free output

bit.

https://doi.org/10.1371/journal.pone.0233603.g022

Fig 23. The Gilbert-Elliot Markov chain for a bursty channel. The Markov chain randomly transitions between a good

state G and bad state B.

https://doi.org/10.1371/journal.pone.0233603.g023
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Markov chain has transition matrix:

T ¼
1 � pb pb

pg 1 � pg

2

4

3

5 ð13Þ

and stationary distribution:

pG ¼
pg

pg þ pb
; pB ¼

pb
pg þ pb

ð14Þ

We can apply this model to simulate the effect of non-stationarity on the Horstein decoder.

Assuming that the good state G is perfect with no error fG = 0, and the bad state B is always

flipped fB = 1, we can parameterise a Gilbert-Elliot model in terms of expected flip probability

(average error rate) f and a “burstiness” t, t> 1. We can set:

pb ¼
1

t
; pg ¼

ð� fpbÞ
f � 1

ð15Þ

Fig 24 illustrates the effect of increasing burstiness on the Horstein decoder. As the channel

becomes less iid the uncorrected error rate goes up, but the number of decisions per bit

decreases because the errors become more predictable. We conclude that non-iid noise—

perhaps surprisingly given that the code is only optimal for memoryless channels—does not

significantly affect the performance of the Horstein decoder if we consider the backspace-cor-

rected rate R0. Increasing burstiness t decreases the raw decisions/bit R while uncorrected error

rate ek increases; these effects nearly perfectly cancel out.

The Gilbert-Elliot Markov model can be generalised to good/bad states with other error

probabilities and to multi-state non-stationary biased channel models where the one state may

be “burstier” than the other and/or bias varies in good and bad states. We do not consider

these extensions here.

6.3.2 Change of heart analysis. The decoder is modelled with the assumption that the

user has a specific, fixed intention for a target symbol s and then consistently produces inputs

Fig 24. Effect of burstiness on decoding performance. The plots show the effects of varying burstiness t and average error rate f

on theHorstein decoder with k = 8, β = 8 from N = 10000 random simulations. Increasing burstiness leads to increased

uncorrected error rates but a decrease in the decisions/bit. Consequently, the backspace-corrected entry rate is largely unaffected

by burstiness.

https://doi.org/10.1371/journal.pone.0233603.g024
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to drive the decoder towards that state until termination according to Equation 4.2.5. How-

ever, sometimes a user may start down a path of selecting some target sa, but decide they

really wanted to select another target sb. This could be the result of an initial mistake in iden-

tifying targets, or a change in circumstances during the selection process. If the decoding

process is long, completing a selection of the “wrong target”, undoing, then selecting the

correct target will be frustrating. This can be seen as an extreme form of non-stationarity in

error distribution.

The Horstein decoder is not designed for switches of intention, but sufficient level of toler-

ance β allows for some level of initially incorrect selection to be accommodated. We conducted

a change of heart analysis with our simulator to quantify this performance, where we simulate

users switching from intending sa to sb partway through selection, without completing the

selection of sa.
To analyse the effect of this we run simulations where we control:

• xΔ the target separation, xΔ = |d(sa)−d(sb)|, where d(s) is the function that maps target sym-

bol centres to the unit interval [0, 1]. Larger xΔ indicates the decoder must make a more radi-

cal change in the probability density to select sb.

• λ The switchpointλ, 0� λ� 1 controls when the change of heart is initiated. The simulator

switches targets when decoder entropy H(X)<Hλ, where Hλ = −λ(k + β). For example, when

λ = 0.5 the switch happens when the decoder is halfway to completion in terms of informa-

tion accumulated.

Fig 25 illustrates the Monte Carlo simulations of the entropy decoder for a change of heart

for Hλ = 0.5, xΔ = 0.25. Following the change of heart, the decoder’s uncertainty gradually

increases as inputs indicate a changed intention, then decreases as the new target becomes

more certain. It is clear that the decoder can cope with changing targets, as long as β is suffi-

cient. Fig 26 shows results of Monte Carlo simulations for a wide range of noise/decoder con-

figurations. The ratio of inputs/bit from the “no change of heart” case R�/R, is shown, along

with the absolute difference in error e�k � ek and the backspace-corrected ratio R�0=R. The bit

error rate f and the headroom fh have no noticeable effect on the ability to recover from a

change of heart, but λ, β and xΔ affect the recovery. In the left panel, there is a clear decrease in

the uncorrected error rate ek as β increases (brighter colours), and this is sufficiently large that

even with the additional overhead increased β implies, the backspace-corrected ratio R�0=R
improves for larger β, particularly when very late corrections are made (larger λ). There is a

smaller effect for xΔ (right panel)—smaller deviations are more easily tolerated because they

reduce R�/R but have almost no effect on the uncorrected error rate ek. As might be expected,

small changes made early are easier to cope with, and a larger β can absorb more errors.

6.4 Adaptation

6.4.1 Online adaptation for symmetric channels. Section 4.2.11 introduced an adaptive

algorithm to adapt channel statistics online. We ran numerical simulations, adapting f0 to
match an unknown (randomly selected) true error rate f. The simulations used �n = 0.01 and

δn = 0.005. Fig 27 summarises the results, showing sequential runs of k = 8, β = 8 decoding

with f0 = f1 = f with random starting f0 2 [0.01, 0.4] and fixed random target f in each panel.

Adaptation is relatively slow, taking around 100 symbols to converge for these parameters, but

this would often be sufficient for slowly-varying channels.

6.4.2 Online adaptation for biased channels. Adapting to biased channels is slightly

trickier. We need to adjust the f 0
0

and f 0
1

based on the count of input bits bi = 0 and bi = 1, but

these obviously depend on the specific target being acquired and there is not a convenient
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Fig 25. Example entropy time series with a change of heart. Change of heart occurs at λ = 0.5; xΔ = 0.25(Hλ = −5). The decoder

is configured with k = 8, β = 2; f = 0.15; fh = 0.1, N = 250 trials, mean curve shown in blue. The simulation changes target when Hλ

� −5 to a target with separation xΔ = 0.25. 99.2% of trials acquired the changed target sb correctly. There is a marked v shape to

the curve as the decoder entropy increases after input starts to become incompatible with the original target sa, and then decreases

as sb is approached.

https://doi.org/10.1371/journal.pone.0233603.g025

Fig 26. Change of heart analysis. This plot shows the effect of a sudden change of intention during selection. Coloured by β (left) and by

xδ (right). Simulations run with k = 8, f 2 [0.0, 0.3], β 2 {0, 1, 2, 4, 8}, fh 2 [0.0, 0.2], f0 = f + fh, xΔ 2 [0.0, 1.0], λ 2 [0.0, 1.0]. Each point

represents the mean of N = 500 trials. λ represents the proportion of the selection at which the target intention changes (in terms of

decoder entropy). xΔ is the distance between the originally intended and final targets in the unit interval. Artificial jitter added to x values

to separate points.

https://doi.org/10.1371/journal.pone.0233603.g026
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closed-form formula. However, we found a simple heuristic that can adapt to biased channels

online. During selection, we record the count of bi = 0, n0 and the count of bi = 1, n1 received

during the selection. Then, we use the numerical simulator to simulate selection of the same

target—but with the current configured parameters as the simulated noise level—and count

the number of 0s and 1s in this simulation, n0
0
; n0

1
. This replicate simulation can be run multiple

times and the results averaged to reduce variance. Then we update f 0
0

and f 0
1

as follows:

f 0
0
ðjþ 1Þ ¼ f 0

0
ðjÞ þ

�nðn0 � n0
0
Þ

k
;

f 0
1
ðjþ 1Þ ¼ f 0

1
ðjÞ þ

�nðn1 � n0
1
Þ

k
;

ð16Þ

where �n is a small constant. Fig 28 shows examples of online adaptation to a step change in

channel statistics, using �n = 0.0005, with a k = 8, β = 8 decoder. This simulated change is an

extreme example of channel condition variations and a real user interface would typically

adapt to more slowly varying components.

6.5 Predicting performance in hypothetical designs

The availability of an offline numerical simulator makes it possible to thoroughly evaluate

potential designs before prototype implementation and human trials. Section 7 will establish

that the simulator is a viable predictor of human-in-the-loop performance with the zooming

Horstein-style decoder. This section illustrates, via a set of design vignettes, how applying the

Monte Carlo simulator can help explore designs and establish performance limits as part of a

user-centered design process.

The expected user-sensor characteristics for a new device can be used to configure the sim-

ulator to predict a range of performance metrics, specifically uncorrected error rate, entry time

and latency. This can be used to select among technologies and explore design consequences

(for example, is it worth adding extra controls to a BCI-operated wheelchair?) before expensive

human-in-the-loop trials. It can, for example, bound the risks in terms of task performance

conditioned on of poorly known sensor characteristics like BCI classifier accuracy. While the

specific task performance achieved will depend on the details of the final interface, quantitative

Fig 27. Online adaptation of the channel statistics. A decoder with k = 8, β = 8 is used for selection. In each panel, the

simulated error level f is held fixed, and the configured expected error level f0 is adapted online. Each panel shows 50 replications

with random initial starting values for f0 (shown as circles at left), showing the decoder will converge regardless of the

initialisation.

https://doi.org/10.1371/journal.pone.0233603.g027
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predictions can help minimise risk in user-centred design. We illustrate this use of the simula-

tor to predict performance in three hypothetical design scenarios:

6.5.1 Scenario A: Wheelchair controls. A system is being developed for a wheelchair

with four directional controls |S| = 4 = 22; therefore k = 2. Errors obviously cannot be directly

corrected after movement has happened, so the uncorrected error rate is taken to be 1 in 100;

ek< 0.01. The input is a BCI which is known to be heavily biased and expected to have f0 =

0.01 and f1 = 0.3. This estimate of accuracy is expected to be within a tolerance of fh = 0.05,

so a decoder is configured with f 0
0
¼ 0:06 and f 0

1
¼ 0:35. Each binary classification takes

300ms, ti = 0.3.

• Simulated performance (a) β is selected via bisection to achieve ek = 0.01 with β = 2.3.

R = 7.64 decisions/bit. Each wheelchair command will take Tk = 7.64 × 2 × 0.3 = 4.61s.

• Simulated performance (b) If we imagine that subsequent experiments are performed

which suggest that the accuracy was mis-estimated, and the real channel is f0 = 0.1, f1 = 0.4;

10% of “left” inputs are flipped and 40% of “right” inputs are flipped. With the same decoder,

we get R = 9.48, Tk = 5.69s but ek = 0.08 (8% error rate).

6.5.2 Scenario B: Word selection. A communication support system is being built which

allows users to select one word at a time from a set of N = 1000 common requests, so k = 10�

log2(1000). Errors can be corrected by undoing the last word. The input is a eyebrow-switch

which has f = 0.2, accurately estimated from extensive calibration. Each classification takes

500ms, ti = 0.5.

• Simulated performance (a) With β = 0, R = 4.07, ek = 0.08. The backspace-corrected rate is

R0 = 4.99 decisions/correct bit. Each correct word will take Tk = 24.96s.

• Simulated performance (b) After a (hypothetical) trial, our imagined users indicate that

they find backspace frustrating. We can use the simulator to model a reduced reliance on

backspace by setting β = 7. This reduces the error rate to ek = 0.003 at a cost of increasing R
to 6.63. Each correct word will take Tk = 33.45s, and backspace will be required less than

0.3% of the time.

Fig 28. Online adaptation of the channel statistics for a biased channel. A decoder with k = 8, β = 8 is used for selection. In each panel,

the decoder is initially run with f 0
0
¼ f0 and f 0

1
¼ f1 (both randomly chosen in the range [0.0, 0.35]). At symbol 100, f0 and f1 are changed

to random values, and f 0
0

and f 0
1

are automatically adapted using Eq 16.

https://doi.org/10.1371/journal.pone.0233603.g028
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6.5.3 Scenario C: Classifier choice. An interface to let users select a personal contact to

phone from a list of |S| = 200 is being created. k = 8� log2(200) and we assume a tolerable

error level of ek = 0.01 (one misdial every 100 calls); undo is not meaningful. Three classifiers

for an assistive technology sensor have been developed. In all cases, a headroom of fh = 0.03 is

assumed to account for mis-calibration of classifier accuracy.

• (a) Fast, unreliable, biased f0 = 0.15, f1 = 0.4, ti = 0.15

• (b) Moderate, some error f0 = 0.1, f1 = 0.1, ti = 0.3

• (c) Slow, reliable f0 = 0.01, f1 = 0.06, ti = 1.5

Simulated performance

• (a) β = 3, ek = 0.007, R = 10.60. Tk = 12.72s/dial.

• (b) β = 2, ek = 0.007, R = 2.93. Tk = 7.03s/dial.

• (c) β = 1, ek = 0.002, R = 1.58, Tk = 18.95s/dial.

Classifier (b) will be significantly faster for this application.

7 Simulation with humans-in-the-loop

We ran an experiment with human users to validate the decoder as a practical user interface

for noisy binary channels. We investigated control across a range of channel reliabilities, and

with both symmetric and asymmetric bit flip probabilities. The channel properties were

treated as known, and the interface was configured to expect channel properties matching that

of those introduced by the simulator plus some headroom to accommodate cognitive errors.

To establish the usability of interface we used a simulation environment, using keyboard input

and visual display, with the noisy input created by artificially randomly flipping keyboard

inputs according to pre-set channel flip probabilities. These flips generated were indepen-

dently distributed random samples from a Bernoulli process generated by a pseudo-random

number generator. The experiment involved a participant selecting a target of a specified

information capacity (12 bits, split across two six bit decoders for two spatial axes) using the

diagonal split-based 2D zooming interface using binary inputs (left, right). Performance in

acquiring the target was evaluated in four noisy channel conditions, along with a control

noise-free condition.

7.1 Study design

Our study has two purposes, each of which has specific questions that are addressed:

• Simulator validation: Does the Monte Carlo simulator accurately predict human performance?

• Do users introduce errors above and beyond simulated noise? A poorly designed inter-

face might introduce cognitive errors in addition to expected channel noise. This would

result in more frequent errors larger than that injected by the noise simulation.

• Are predicted entry rates close to observed entry rates? The overall user performance in

selection, in terms of decisions per bit and the backspace-corrected rate, should be close to

that of the simulator.

• Interface usability: Can users use the interface to select targets with noisy binary inputs?

• Can users control the interface effectively? The interface is intended to provide transpar-
ent channel coding, where users are unaware of the error correction algorithm and are
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simply engaged in closed-loop control of acquiring targets. We would hope to see that

users control the interface:

• accurately, introducing few additional errors due to confusion;

• quickly, issuing inputs at a rate that indicates insignificant cognitive delay;

• Can users select targets under high noise conditions? This includes noise levels that

exceed those that are normally considered usable [5] with error rates f> 0.2.

• Can users select targets in the presence of strong channel bias? Many marginal input

devices are not only noisy but biased. We wish to know if users are able to communicate

reliably with a biased channel, where noise may be unevenly distributed over inputs.

• Can we achieve a constant factor of the theoretical bounds across all channel condi-

tions? We wish to approach a constant factor of the Shannon bound, and performance

similar to the numerical simulations of the previous section. We would hope to obtain

error-free (backspace-corrected) input rates R0 � a�Rðf0; f1Þ, for some constant α.

• Does the entropy drop smoothly? The interface should result in a gradual drop in entropy

proportional to the information content of each decision.

Independent variables

We manipulate the channel properties f0 and f1 (i.e. the simulated noise levels) in different

conditions. The decoder is configured to decode calibrated to these noise levels, with a fixed

headroom.

Dependent variables

We measure three primary dependent variables:

• R̂ the measured number of decisions (keypresses) per bit communicated;

• êk the residual uncorrected error rate;

• T̂ the time for one decision to be made;

and the derived variables R̂0 the backspace-corrected rate (using the prediction from Equation

4.1.2), and T̂ b the time to communicate one bit.

Hypothesis

We hypothesise that the human-in-the-loop performance in terms of R̂; êk will be close to

that of the Monte Carlo simulator, and that Td and T0 do not indicate any significant cognitive

delays in controlling the interface.

7.2 Experimental setup

7.2.1 Participants. N = 20 participants (10 male, 10 female) were recruited locally. The

participants were healthy adult volunteers without any relevant impairments. Each partici-

pant completed the study in a single session, while seated in laboratory conditions, control-

ling a laptop via keyboard commands. This research was approved by the University of

Glasgow College of Science and Engineering ethics board. The ethics board approval number

is CSE-01125. Written informed consent was obtained from all participants. Participants

were offered a £10 reward for their participation. Each experimental trial took approximately

one hour.

7.2.2 Visual display. The visual interface appeared as the diagonal subdivision interface

described in Section 5.1.2, similar to the prototype (d) in Fig 16; the exact interface layout is
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shown in illustrated in Fig 29. Linear zooming was used for the display, showing the smallest

subsection of square such that at least of the 50% HDPI was spanned in each axis.

A single targets were represented as visually as a red square in the 2D space. We did not

test the effect of searching for labelled targets. The size of the targets was fixed in terms of the

information required to identify them, which corresponds to a fixed visual area in the zoom-

ing interface. The interface was configured to simulate selecting from a twelve bit alphabet

of symbols (1 from 4096). A “twelve bit” target is represented as a square of sides 2−6 × 2−6

inside a unit square and requires twelve bits to reliably identify, as 212 such targets will fit in a

1×1 unit square. Showing the true size of the targets in a linear zooming interface with twelve

bit targets makes them very small (a few pixels across) at the initial fully zoomed out state of

the interface. To make the target visible at all zoom levels, the target square was displayed as

a fixed size when its true visual area would be too small to see reliably. As the display zoomed

in, the target took on its true area. Fig 29 shows images of the experimental software. A prog-

ress bar showing the remaining entropy before termination was shown at the bottom of the

screen.

7.2.3 Trial procedure. Participants were asked to select the red square representing the

target by selecting the left or right side of the visible dividing line. Participants pressed the

[LEFT SHIFT] or [RIGHT SHIFT] keys to indicate a leftward or rightward movement,

which would expand the space on the side of the diagonal line specified. Participants were

instructed to press the key corresponding to the side of the divider the target was on; they were

not given further instructions on the selection task. This process completed until the entropy

of the decoder dropped by 12 bits, at which point the selection was determined to be correct

if the decoder medians mxi, myi both lay within the target square (i.e. the correct symbol was

decoded on both axes) and incorrect otherwise. There is no explicit actuation of selection in

this interface; that is, there is no equivalent of a mouse click that indicates a selection happens

at a particular moment. Selection is implicitly performed once the decoder is sufficiently cer-

tain. The input was user-paced (asynchronous) and participants could wait as long as desired

before pressing a key, and once a key was pressed the transition happened following a 300ms

delay. The transition could not be interrupted or reversed once actuated, and the screen was

grayed-out during this period. An interpolated zoom was used to transition between zoom

states.

7.2.4 Tasks. In each condition, the participants had to select six twelve-bit targets, each

target having six bits of information in the x and y axes (total of twelve bits per target), for a

total of 72 bits communicated per condition. User keyboard input was randomly flipped

according to the channel configuration for each condition. For example, if condition specified

f0 = 0.05, f1 = 0.25, the system would actually move to the right of the dividing line 5% of the

time when the user pressed [LEFT SHIFT] and move left 25% of the time when [RIGHT

Fig 29. The visual display used in the experiment. A single target is shown in red, appearing at an initial random location. The target

has sides of length 2−6. A diagonal split is used to elicit user responses and linear zooming is used. A progress bar shows the entropy drop

remaining.

https://doi.org/10.1371/journal.pone.0233603.g029
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SHIFT] was pressed. Once the termination criteria for each target was reached, participants

were invited to take a short break.

7.2.5 Conditions. Before beginning the experiment, every participant performed a train-

ing condition. In the training condition, no errors were introduced and the participant was

allowed to discuss what was happening with the experimenter. An onscreen label was shown

to indicate where the target was, and which key to press during the training session.

Following the training session, five different conditions were presented, each with different

channel properties. The full set of conditions tested are shown in Table 1. These span a range

of reliabilities, including moderate error rates (C-15-15); error rates that would be very chal-

lenging for most user interfaces (C-25-25); and extremely biased inputs (C-5-45) where one

control is nearly non-functional. The presentation order of the conditions following the train-

ing session was randomised for each participant to mitigate learning effects.

7.2.6 Decoder. The decoder was configured as a pair of Horstein decoders each with

k = 6, β = 0 and f 0
0
¼ f0 þ fh; f 01 ¼ f1 þ fh, where f0, f1 are the simulated error levels. We set the

headroom fh = 0.02. For example, for C-5-45, we introduced errors to the keyboard input with

f0 = 0.05 and f1 = 0.45, and configured the decoder to expect error rates of f 0
0
¼ 0:07, f 0

1
¼ 0:47.

7.2.7 Exclusions. One participant failed to select any targets at all in the training condition,

apparently due to a misunderstanding of the instructions, and was excluded from the study.

The remaining 19 participants completed all tasks and their data is included in the analysis.

7.3 Human-in-the-loop results

7.3.1 Terminology. When we report results comparing experimental results to simula-

tions or theoretical predictions, we report the comparison of the experimentally measured

decisions/bit R̂ and uncorrected error rate êk against three theoretical models. We compare

against �Rðf̂0 ; f̂1Þ, the maximum possible performance at the actual observed channel statistics,

empirically measured from the user responses, which is the most meaningful prediction;

�Rðf 0
0
; f 0

1
Þ, the bound using the configured statistics (the most pessimistic model, including the

headroom fh), and �Rðf0; f1Þ, the bound using the simulated statistics (i.e. the bit flip rate used

to inject noise into the simulator), the most optimistic model. We use the following terms to

distinguish user inputs and decoded selections: Target: One decoded 12 bit symbol si; selecting

a target is a one from 4096 choice. Decision: A single binary input provided by the user, corre-

sponding to one keypress. Bit: One bit of the entropy used to select a target. “Decisions per

bit” means the number of keypresses required to select 1/12th of a target.

7.4 Validation of the simulator

Table 2 shows the summary of the experimental results for each condition, including the actual

measured error rates f0, f1, the number of decisions per bit measured R̂, the uncorrected error

rate êk , and the predicted number of decisions per bit for perfect entry using Equation 4.1.2 R̂0 .

Table 1. The experimental conditions for the human-in-the-loop experiment.

Condition f0 f1 Description

TR-0-0 0.0 0.0 Training condition

C-0-0 0.0 0.0 No error

C-5-25 0.05 0.25 Asymmetric, low error rate

C-15-15 0.15 0.15 Symmetric, low error rate

C-25-25 0.25 0.25 Symmetric, high error rate

C-5-45 0.05 0.45 Asymmetric, high error rate

https://doi.org/10.1371/journal.pone.0233603.t001
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We verified that the actual input bit error rates observed are within the headroom, i.e. that

users introduced additional errors at a rate less than 2% (Fig 30). An average additional error

rate of�0.95% was observed.

Table 3 compares the human-in-the-loop experimental results to running the numerical

simulator of the Horstein decoder from Section 6.1. This accurately predicts the effect of

the short symbol size k = 6. It shows decisions (keypresses) required to communicate each

(uncorrected) bit of information and uncorrected error rate across conditions, compared to a

numerical simulation (N = 1000) trials for a k = 6, β = 0 decoder. In each case, the decoder is

configured with the same values as the experimental trial. In the actual simulation, input

errors are introduced at the same rate as empirically determined from the experiment f̂0 ; f̂1 ;

the expected simulation uses the induced error rate f0, f1; and the configured simulation

Table 2. Summary of experimental results, including observed input error rates f̂0 ; f̂1 , decisions/bit R̂, uncorrected errors êk and backspace-corrected equivalent

rates R̂ 0.

Condition f̂0 f̂1 Decisions R̂ Errors êk Backspace rate R̂ 0

C-0-0 0.01 0.01 1.52 (0.33) 0.04 (0.11) 1.61 (0.29)

C-5-25 0.06 0.25 4.16 (1.09) 0.16 (0.18) 2.19 (0.39)

C-15-15 0.14 0.16 3.98 (0.72) 0.08 (0.10) 1.77 (0.31)

C-25-25 0.26 0.25 8.35 (1.39) 0.11 (0.10) 1.90 (0.34)

C-5-45 0.05 0.45 6.64 (1.47) 0.13 (0.14) 2.03 (0.36)

TR-0-0 0.01 0.01 1.47 (0.26) 0.02 (0.07) 1.54 (0.27)

https://doi.org/10.1371/journal.pone.0233603.t002

Fig 30. Additional input errors introduced over the simulated noise. Error bars are 95% CI. Red line indicates the

headroom fh. Mean additional input error is 0.95%.

https://doi.org/10.1371/journal.pone.0233603.g030
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introduces input errors at a rate of f 0
0
; f 0

1
. Performance in the human trials is very similar to

what would be expected from the simulated decoder running with the actual observed error

rates in the input channel though the biased conditions, particularly C-5-25, have a higher

uncorrected error rate than would be expected.

7.5 Usability

We next consider the questions of usability, and whether the performance of users was com-

patible with effective control of an interface. Table 4 shows the mean number of targets cor-

rectly selected (all 12 bits correctly communicated) for each condition, and the mean correct

bits communicated. As êk is not zero, some residual error remains; this could have been

reduced to any arbitrary level by increasing β at a cost of slower input.

7.5.1 Can users approach the Shannon bound?. The most salient overall metric is the

number of input bits required to produce one error-free output bit. Our simulator did not

include a backspace function, but we can directly estimate the correction penalty required to

get error-free output using Equation 4.1.2. This gives a directly comparable measure to the the-

oretical channel bounds. The key results are Table 5, which compares the backspace-corrected

observed entry rates R̂0 against the numerical simulation using the actual channel statistics

R0sðk; f0; f1Þ and the Shannon bound for the actual statistics �Rðk; f̂0 ; f̂1Þ. The percentage of the

Shannon bound achieved is also given, showing that the interface achieves approximately 50-

Table 3. Comparison of experimental results R̂; êk with numerical simulations Rs, es.

Condition R̂ Rsðk; f̂0 ; f̂1 Þ Rs(k, f0, f1) Rsðk; f 00 ; f 01Þ

C-0-0 1.52 (0.33) 1.42 1.38 1.47

C-5-25 4.16 (1.09) 3.28 3.16 3.43

C-15-15 3.98 (0.72) 3.48 3.38 3.70

C-25-25 8.35 (1.39) 7.17 7.09 7.54

C-5-45 6.64 (1.47) 5.56 5.65 6.07

TR-0-0 1.47 (0.26) 1.43 1.39 1.48

êk esðk; f̂0 ; f̂1 Þ es(k, f0, f1) esðk; f 00 ; f
0
1
Þ

C-0-0 0.04 (0.11) 0.05 0.03 0.06

C-5-25 0.16 (0.18) 0.06 0.05 0.06

C-15-15 0.08 (0.10) 0.06 0.06 0.08

C-25-25 0.11 (0.10) 0.09 0.06 0.10

C-5-45 0.13 (0.14) 0.06 0.06 0.10

TR-0-0 0.02 (0.07) 0.04 0.03 0.06

https://doi.org/10.1371/journal.pone.0233603.t003

Table 4. Average number of targets selected correctly by participants, and the average number of bits entered cor-

rectly, averaged across all targets in each condition. The average time to select one target is also given. Each condition

has six twelve-bit targets.

Condition Correct targets (/6) Correct bits (/12) Time per target (s)

C-0-0 5.76 (0.64) 11.64 (0.96) 93.22 (39.28)

C-15-15 5.53 (0.60) 11.62 (0.99) 188.68 (27.89)

C-25-25 5.37 (0.58) 11.46 (1.19) 402.91 (86.42)

C-5-25 5.05 (1.05) 11.48 (1.26) 184.33 (36.08)

C-5-45 5.21 (0.84) 11.44 (1.25) 289.53 (52.65)

TR-0-0 5.89 (0.45) 11.72 (0.92) 104.17 (24.35)

https://doi.org/10.1371/journal.pone.0233603.t004
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75% of the theoretical maximum. The backspace-corrected decision/bit rates against all three

of the theoretical models are summarised in Table 6, which compares the decisions per/bit

across conditions, along with the theoretical minimum from Eq 2 at each of the actual,

expected and configured models. Fig 31 shows a regression of the observed R̂ against the theo-

retical bounds for the actual and configured models. Performance is nearly linear across the

full range of error rates, and is on average 54% of the theoretical upper bound for the config-

ured statistics.

Table 7 summarises the timing of the inputs including duration to select each 12 bit target,

the number of keypresses in the whole condition (for six targets), the duration of each

Table 5. Backspace-corrected experimental rates against simulated backspace-corrected rate and Shannon bound, and fraction of simulator performance/Shannon

bound achieved.

Condition R̂0 R0sðk; f0; f1Þ �Rðk; f̂0 ; f̂1 Þ %. sim. % max.

C-0-0 1.69 (0.37) 1.65 1.09 97.7% 64.5%

C-5-25 6.27 (1.64) 3.71 2.46 59.2% 39.3%

C-15-15 4.84 (0.88) 3.81 2.56 78.6% 52.9%

C-25-25 10.91 (1.82) 8.23 5.53 75.4% 50.7%

C-5-45 9.28 (2.05) 6.48 4.09 69.8% 44.1%

TR-0-0 1.55 (0.27) 1.59 1.09 102.0% 70.0%

https://doi.org/10.1371/journal.pone.0233603.t005

Table 6. Backspace-corrected rate against theoretical Shannon upper bounds.

Condition R̂0 �Rðk; f̂0 ; f̂1 Þ �Rðk; f0; f1Þ �Rðk; f 0
0
; f 0

1
Þ

C-0-0 1.69 (0.37) 1.09 1.00 1.16

C-5-25 6.27 (1.64) 2.46 2.36 2.71

C-15-15 4.84 (0.88) 2.56 2.56 2.92

C-25-25 10.91 (1.82) 5.53 5.30 6.31

C-5-45 9.28 (2.05) 4.09 4.09 4.97

TR-0-0 1.55 (0.27) 1.09 1.00 1.16

https://doi.org/10.1371/journal.pone.0233603.t006

Fig 31. Measured performance against Shannon upper bound. R̂0 is plotted against �Rðk; f0; f1Þ, �Rðk; f̂0 ; f̂1 Þ for each

condition. A line at α = 0:5 showing 50% of the Shannon bound is shown.

https://doi.org/10.1371/journal.pone.0233603.g031
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condition in seconds, and the average number of keypresses per second. There is no strong

variation across conditions in terms of input timing. Fig 32 summarises the effort required to

make each selection, including the number of binary inputs per bit successfully communicated

and the mean time taken for each binary decision. Users showed little variation in generating

inputs, suggesting they did not spend long pondering the correct decision to move towards the

target.

7.5.2 Illustrations of entry process. As a user interacts with the linear zooming interface,

there is a visual expansion of the view corresponding to the concentration of probability den-

sity. Fig 33 illustrates the viewports displayed in one example trial after each keypress. The

marginal probability densities px(x), py(x) for the X and Y axes after each keypress are shown.

The gradual contraction of probability density around the target is clearly visible. Fig 34 shows

how entropy of the PDFs decreases as each input is received during selection of a target, aver-

aged across all users for each condition. As would be expected, the PDF decreases by twelve

bits across the target selection process. The information rate is almost exactly the linear drop

that would be predicted.

7.6 Discussion

• Simulator validation

• Do users introduce errors above and beyond simulated noise? Users introduced input

errors at around a rate of 0.95%, suggesting there was little confusion as to the correct

Table 7. Timing of inputs. All numbers in seconds. T̂ is duration of one decision (from prompt to keypress); Tmin is

the 300ms minimum delay enforced; T̂ b ¼ R̂T̂ is the time taken to enter one bit of information, on average.

Condition T̂ T̂ � Tmin 1T̂ T̂ b

C-0-0 0.46 (0.26) 0.16 (0.26) 2.60 (1.01) 7.77 (3.32)

C-15-15 0.38 (0.11) 0.08 (0.11) 2.84 (0.77) 15.72 (2.38)

C-25-25 0.42 (0.13) 0.12 (0.13) 2.61 (0.81) 33.58 (7.37)

C-5-25 0.41 (0.13) 0.11 (0.13) 2.64 (0.73) 15.36 (3.08)

C-5-45 0.38 (0.11) 0.08 (0.11) 2.79 (0.76) 24.13 (4.49)

TR-0-0 0.55 (0.22) 0.25 (0.22) 2.12 (0.90) 8.68 (2.08)

https://doi.org/10.1371/journal.pone.0233603.t007

Fig 32. Decisions per bit and timing of decisions. (Left) The number of decisions R required for each bit (Right) The

time taken for each decision T̂ , which remained approximately constant across conditions. Red line shows the minimum

fixed delay.

https://doi.org/10.1371/journal.pone.0233603.g032
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action at each timestep. This is within the headroom of 2% the decoder was configured for

in the human-in-the-loop experiments.

• Are predicted entry rates close to observed entry rates? As Table 3 indicates, user perfor-

mance is between 59%-99% of the predicted simulation performance, with lowest results

in the most biased conditions (C-5-25 59.2% and C-5-45 69.8%). Other conditions acheive

greater than 75% of the simulated predictions. The numerical simulation is a good but not

perfect predictor of performance.

Fig 33. PDF evolution form a random run from C-15-15. (above) Colormap showing PDF after each input; darker

indicates greater density (below) Ridge-plot of the same density sequence, where the height of the line is proportional to

the log PDF; each line corresponds to a single decision. The maintenance of multiple hypotheses is visible.

https://doi.org/10.1371/journal.pone.0233603.g033

Fig 34. Mean entropy time series. Each plot shows the mean (solid line), one standard deviation (shaded area) and the

theoretical prediction (dashed line) of the entropy of the decoder’s PDF against decision number, for each of the

experimental conditions.

https://doi.org/10.1371/journal.pone.0233603.g034
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• Interface usability

• Can users control the interface effectively? All 19 participants were able to control the

interface and select targets efficiently. Table 5 indicates that users were able to select the

vast majority of targets correctly in all conditions, and this is well predicted by the expected

residual error ek estimates from the simulator in Table 3. Overall performance was close to

what would be expected from the numerical simulations of Section 6.1.

• Accuracy Error rates êk are comparable to Monte Carlo simulation, though above

slightly raised in the biased conditions. This may be caused by “key-leaning” when frus-

trated users repeatedly hit the “bad” input without waiting for feedback.

• Speed Time per decision was close to the maximum possible rate resulting from the

300ms transition time and varied little from condition to condition (Fig 32).

• Can users select targets under high noise conditions? Users were able to successfully

select targets in channels with in the highest noise symmetric channel f = 0.25, where one

quarter of all inputs were reversed. While this necessarily required many keypresses to

select each target, this is a very effective control under extreme corruption.

• Can users select targets in the presence of strong channel bias? In the biased conditions,

users were exposed to a channel with a 45% flip probability on one input, and a 5% flip

probability on the other. This level of bias is common in interfaces like motor imagery

BCI. Users were able control efficiently under these conditions, with performance around

50% of the theoretical optimum.

• Can we achieve a constant factor of the theoretical bounds across all channel condi-

tions? On average, users were able to select targets with around twice the minimal key-

presses possible (Table 4) across all conditions. We would expect better performance with

larger k and tighter headroom (e.g. k = 8, h = 0.01).

• Does the entropy drop smoothly? The entropy drops smoothly during selections, and

roughly in line with predicted behaviour, as Fig 34 illustrates.

8 Conclusions

We have presented a widely-applicable interface for 1-of-n selection for marginal reliability

inputs with high-reliability displays. This is based on Horstein’s elegant feedback error correc-

tion algorithm. This approach can scavenge information from input devices that have previ-

ously been considered impractical, and allows arbitrary reliability of control with arbitrarily

corrupted inputs—so long as the channel properties are reasonably well known and a low-

noise feedback channel is available. In particular, this provides useful control with noisy but-

ton-like inputs with reliabilities in the range 65-90%, and heavily biased channels. Partial undo

and online adaptation to changing channels are straightforward.

The combination of a nonlinear zooming interface with the Horstein feedback decoder

results in an interface that can exploit asymmetric control channels close to the theoretical

upper bound. The user interface is simple to implement, adaptable to many selection prob-

lems and input device types and our experiments suggest it is easy for users to operate. Our

simulator can predict performance early in the design process and provides insight beyond

the theoretical asymptotic properties (e.g. impact of burst-mode noise or mis-calibrated

channel statistics).
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8.1 Coding for asymmetric control channels

Good design for asymmetric low-reliability channels should be such that a user does not need

to consider how errors should be protected against or recovered from, or how to most effi-

ciently convey their inputs with their limited input budget. Our approach puts errors at the

core of the interface design and works from the principle that input will always be noisy and

corrupted. This is a different stance than designs which try to “fix-up” inconvenient errors

with ad hoc filters and interaction mechanisms. We suggest explicitly designing the entropy,

channel and line codings that a user must use to communicate, and designing closed-loops at

each coding layer that support each of these layers transparently through feedback. Continu-

ous feedback from the system should offer opportunities for control that are adapted to be

optimal.

8.2 Interface components

The nonlinear zoomed view with alternating diagonal decisions is a simple but effective way of

packing options into a 2D space so that they can be selected among efficiently. It reduces all

interaction to binary left/right choices, but still allows complete freedom to select any region

on the plane. It is transparent to users who only need to focus on their target and decide on

which side of a dividing line it lies. Adapting to multi-state noisy button channels (q-ary

inputs) is straightforward, and each input symbol can have different reliability. Incorporating

undo functionality from infrequent reversal channels as found in a hybrid BCI is elegant and

conveniently parameterisable in terms of information to be reversed.

8.3 Limitations and caveats

Closed-loop interaction allows efficient channel coding like the Horstein decoder to be used

without users even being aware of its application, but comes at the cost of making users feed-

back-bound. This reduces opportunity for learning, since the interface structure is not stable,

and has implications on the latency of the feedback channel, both in terms of the display

update and the user perceptual delay. In most assistive technology contexts, the input rate is so

much slower than feedback that this is not significant, but latency may be a more significant

issue when applying this approach domains with frequent updates. Our approach requires a

mapping of symbols to a 1D line or 2D plane, but it also requires symbols to be “bundled up”

into codewords for efficient coding. This presents interface challenges in terms of labelling

and logically organising targets. In some cases, this is straightforward (e.g. navigating a filesys-

tem); in others it may be difficult to organise large numbers of symbols such that they remain

identifiable. The tension between efficient bundling of decisions and latency means that some

interactions cannot be meaningfully improved by this approach, such as real-time control

where decisions among a small set of alternatives must be issued frequently. Similarly, efficient

selection with a Horstein decoder requires that users commit to a decision until selection com-

pletes. A user changing his or her mind during selection requires more thought, but Section

6.3.2 indicates that the decoder can be configured to be surprisingly robust to a change of tar-

get partway through selection.

The Horstein algorithm is not a panacea. A binary input with 65% accuracy is technically

usable, but still unbearably slow to operate for most uses. The theoretical best rate will require

15 inputs/bit, and a practical k = 8 configuration gives�26 inputs/uncorrected bit at this error

level; this is equivalent to perhaps 120 inputs per correct English word emitted assuming an

efficient entropy coder. Decoding is also sensitive to the configuration of the error level. Small

changes in measured versus true channel noise can introduce severe penalties if the decoder

configuration is optimistic. Although we have demonstrated online adaptive schemes which
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can cope with of mis-calibration, these are relatively slow to adjust and some inputs may

degrade too quickly to retain effective control. The decoder can cope with user mistakes within

the configured headroom, assuming errors are approximately iid However, perceptual errors

may be more complex than this simple model allows for.

8.4 Results

8.4.1 Monte Carlo simulations. Our numerical simulations demonstrate that this

decoder is near-optimal across a range of real-world conditions outside of the theoretical

predictions. While it is relatively sensitive to calibration with true channel characteristics, it

is possible to bound the channel with sufficient headroom to cope with minor fluctuations in

reliability at a cost of some loss of input rate. The Horstein decoder can reduce the error to a

level that a backspace decoder can “mop up” any remaining error and still retain control very

close to the theoretical optimum. Our simulations show the approach works across a full spec-

trum of biased channels without modification and functions effectively even in the presence of

non-stationary noise. In simulation, the algorithm can adapt online to changing signal condi-

tions, including changes in bias. Our results with heavily biased channels are particularly

promising as these are frequently encountered in marginal reliability input devices and adop-

tion of this style of interface could render many otherwise frustrating inputs usable. The ability

to integrate probabilistic classifiers, and hybrid input devices with infrequent reversal channels

(such as EMG-triggered undo) make this an attractive fundamental component to build reli-

able assistive technology interfaces.

8.4.2 Human-in-the-loop user trials. The user trials indicate that the numerical simula-

tions generalise to the human-in-the-loop case, and that the interaction design based on non-

linear zooming is sufficiently transparent that non-expert users can immediately control

systems with extreme input corruptions. User performance is very close to that predicted by

numerical simulations and suggests that the interface is transparent to users.

8.5 Outlook

There are many niches were interaction has been too unreliable to be useful. Some of these

marginal reliability input devices are of minor importance, such as setting parameters on cam-

era underwater in a diving suit. Some are of utmost importance to those who depend on them;

control for locked-in users with unreliable BCI control. Our contribution is a technique to

form these into reliable, efficient inputs with a simple visualisation that is transparent to the

user. There remain many interesting design challenges in using the components we have pre-

sented to bridge the information theoretic optimal algorithms and the cognitive and ergo-

nomic human constraints on an interface.
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80. Junker H, Amft O, Lukowicz P, Tröster G. Gesture Spotting with Body-Worn Inertial Sensors to Detect

User Activities. Pattern Recognition. 2008; 41(6):2010–2024. https://doi.org/10.1016/j.patcog.2007.

11.016
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